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1 Introduction

If A ∈ Md(C) is a complex d × d matrix, and σ(A) denotes its eigenvalues,
then the resolvent of A is the analytic Md(C)-valued function

λ 7→ (λI − A)−1 (1.1)

defined in C \ σ(A). The resolvent is usually given in one of the following
three ways.

The series

(λI − A)−1 =
∞∑

j=0

Ajλ−1−j (1.2)

is simple to state but it converges only for

|λ| > ρ(A) = max
λ∈σ(A)

|λ|.

Secondly, assuming that the characteristic polynomial πA is available one can
form a polynomial q in two variables, see (1.14) below, so that

(λI − A)−1 =
q(λ,A)

πA(λ)
, (1.3)

which is valid everywhere. However, this is practical only if the dimension
d is moderate. The third obvious possibility is to work out at some discrete
points λj the matrix (or a numerical approximation to it)

R(λj) = (λjI − A)−1

and then write for λ near λj

(λI − A)−1 =
∞∑

k=0

R(λj)
k+1(λj − λ)k. (1.4)

However, then we need to work with several different local representations
and, for example, Cauchy integrals do not reduce to residue calculus.

In this paper we give a construction which produces smaller and smaller
inclusion sets for the spectrum in such a way that outside of each such in-
clusion set a single explicit representation for the resolvent converges. The
construction is formulated in general Banach algebras.

Let A be a complex Banach algebra with unit. We shall write all formulas
without explicitly expressing the unit in the algebra, e.g. we write (λ− a)−1

to denote the resolvent.
We assume that for given a ∈ A we can compute polynomials of it, and

norms of the polynomials generated. Thus, all our calculations stay in the
subalgebra generated by the element and thus the spectrum we can compute
is at best w.r.t to this subalgebra. In particular, the resolvent exists in the
subalgebra only outside the polynomially convex hull of the spectrum σ(a),
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that is for λ /∈ σ̂(a). Recall, that the polynomially convex hull of a compact
set K ⊂ C is

K̂ = {z ∈ K : |p(z)| ≤ max
w∈K

|p(w)| holds for all polynomials}.

We denote by P the set of polynomials with complex coefficients. Given
p ∈ P and a ∈ A we put

Vp(a) = {λ ∈ C : |p(λ)| ≤ ‖p(a)‖}. (1.5)

In [11], we defined the polynomial numerical hull of a as

V (a) =
⋂
p∈P

Vp(a) (1.6)

and showed that it always equals the polynomial convex hull of the spectrum:

V (a) = σ̂(a). (1.7)

Further, if we denote by Pk polynomials of degree at most k, then setting

V k(a) =
⋂

p∈Pk

Vp(a) (1.8)

we obtain the polynomial numerical hull of degree k. These form a nested
sequence V k+1(a) ⊂ V k(a) of compact sets such that

V (a) =
⋂
k

V k(a).

In [11] this was discussed for bounded operators in Banach spaces. If A is a
bounded operator in a Hilbert space, then V 1(A) agrees with the closure of
the numerical range W (A) of A, [11]

V 1(A) = cl W (A).

On polynomial numerical hulls see additionally [1], [2], [3],[4], [5], [6], [7],[12].

One immediate consequence of (1.7) is that we can formulate a simple
(but slow) procedure to find out whether λ /∈ σ̂(a). In fact, enumerate all
monic polynomials with coefficients having rational real and imaginary parts
and check whether

|p(λ)| > ‖p(a)‖. (1.9)

If λ /∈ σ̂(a), then eventually there comes a polynomial pj such that (1.9)
holds, and you get an answer. On the other hand, if λ ∈ σ̂(a), then (1.9)
never holds and you never get an answer. Situations like this are sometimes
called semidecidable:
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Proposition 1.1. There exists a sequence of monic polynomials {pk} with
the following property. If A is a Banach algebra with unit and a ∈ A and
λ ∈ C are given, then there exists j such that

|pj(λ)| > ‖pj(a)‖ (1.10)

if and only if λ /∈ σ̂(a).

In this paper we aim to show that we can in an effective way construct a
nested sequence of compact sets Kk such that

σ̂(a) =
⋂
k

Kk (1.11)

and for every k an explicit representation for the resolvent in C \ Kk.
Given an arbitrary monic polynomial p ∈ Pd

p(λ) = λd + a1λ
d−1 + · · · + ad (1.12)

we put for j = 0, 1, . . . , d − 1

Qj(λ) = λj + a1λ
j−1 + · · · + aj (1.13)

and then, given a ∈ A

q(λ, a) =
d−1∑
j=0

Qd−1−j(λ)aj. (1.14)

One checks easily that then

(λ − a)q(λ, a) = p(λ) − p(a). (1.15)

Suppose now that λ is such that (1.9) holds. Then p(λ) − p(a) has an in-
verse in the form of a convergent power series and we obtain from (1.15) a
representation for the resolvent in an explicit form:

(λ − a)−1 =
q(λ, a)

p(λ)

∞∑
j=0

p(a)j

p(λ)j
for all λ /∈ Vp(a). (1.16)

We start with the following result.

Theorem 1.2. Given an element a in a Banach algebra A and an open set
U containing σ̂(a) there exists a polynomial p such that σ̂(a) ⊂ Vp(a) ⊂ U .
In particular, the representation (1.16) holds in C \ U .

This result is weak in two ways. It assumes the knowledge of the spectrum
and it does not indicate how to find the representing polynomial. Our main
result is summarized in the following result.
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Theorem 1.3. There exists a procedure such that, given an element a in a
Banach algebra A it produces a sequence of compact sets Kk and polynomials
pk satisfying the following: Kk+1 ⊂ Kk, Vpk

(a) ⊂ Kk and

σ̂(a) =
⋂
k

Kk. (1.17)

In particular, the representation (1.16) holds in C \ Kk with p = pk.

The computation of Kk in Theorem 1.3 assumes a finite number of mini-
mization problems to be carried out. Theorem 1.2 is proved in Section 2 and
the construction of sets and polynomials in Theorem 1.3 in Sections 3 to 5.
Section 6 discusses ”stagnation”: the polynomial convex hull of the spectrum
has been found but one does not know it. To the end we make two remarks
on the representation: one on low rank perturbation theory and another on
holomorphic functional calculus. Preliminary versions of these ideas were
reported in [14].

2 Proof of Theorem 1.2 and convergence of

the representations

The first part of Theorem 1.2 is the following.

Lemma 2.1. If for a given a ∈ A one knows that an open U ⊂ C is such
that σ̂(a) ⊂ U , then there exists a polynomial p such that

σ̂(a) ⊂ Vp(a) ⊂ U. (2.1)

Proof. If a ∈ A is algebraic, then there exists p such that p(a) = 0 and
Vp(a) = σ(a). So, suppose a is not algebraic so that p(a) 6= 0 for all nonzero
polynomials. By Hilbert Lemniscate Theorem, see Theorem 5.5.8 in [17],
there exists a polynomial q such that

|q(λ)| > sup
z∈σ(a)

|q(z)| for λ ∈ C \ U.

But then there exists δ > 0 such that

|q(λ)| > (1 + δ) sup
z∈σ(a)

|q(z)| for λ ∈ C \ U. (2.2)

By the spectral radius formula

sup
z∈σ(a)

|q(z)| = lim
k→∞

‖q(a)k‖1/k
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and thus for large enough m we have

sup
z∈σ(a)

|q(z)| >
1 + δ/2

1 + δ
‖q(a)m‖1/m. (2.3)

Combining (2.2) and (2.3) we obtain

|q(λ)m| > (1 + δ/2)m‖q(a)m‖ for λ ∈ C \ U.

Thus we have (2.1) with p = qm.

Theorem 1.2 follows from Lemma 2.1 as the series
∑ ‖p(a)k‖

|p(λ)k|
converges in

C \ U . In fact, in the notation of the proof we have

∑ ‖p(a)k‖

|p(λ)k|
<

1

1 − (1 + δ/2)−m
.

It is of interest to study more careful the convergence of the series. Let us
put

Rm(λ, a, p) =
q(λ, a)

p(λ)

m∑
k=0

p(a)k

p(λ)k
(2.4)

as a rational approximation to the resolvent and ask about the error

‖(λ − a)−1 − Rm(λ, a, p)‖ (2.5)

as m → ∞. We shall see that the error can be controlled by the Green’s
function for the set C \ Vp(a).

Definition 2.2. Given a nonempty compact K ⊂ C such that G = C \K is
connected we call gG a Green’s function for G if

gG is harmonic in G,

gG(λ) = log |λ| + O(1) as λ → ∞

and
gG(λ) → 0 as λ → ζ for n.e. ζ ∈ ∂G.

For G = C\K such a Green’s function exists if and only if K has positive
capacity, cap(K) > 0. The function is unique, see [17] and the capacity
satisfies

log cap(K) = log |λ| − gG(λ) + o(1) as λ → ∞.

Lemma 2.3. Let p be a monic polynomial of degree d, and suppose p(a) 6= 0.
Then the Green’s function for C \ Vp(a) , denoted here by g(λ, a, p) is

g(λ, a, p) =
1

d
log

|p(λ)|

‖p(a)‖
. (2.6)

In particular, the capacity of Vp(a) is

cap(Vp(a)) = ‖p(a)‖1/d. (2.7)
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Proof. Since |p(λ)| > ‖p(a)‖ outside of Vp(a), g(λ, p, a) is there harmonic. It
vanishes along ∂Vp(a) and

g(λ, p, a) = log |λ| +
1

d
log

1

‖p(a)‖
+ o(1) for λ → ∞. (2.8)

Consider now estimating the error in (2.5). The truncation of the sum
satisfies

‖
∞∑

k=m+1

p(a)k

p(λ)k
‖ ≤

e−(m+1)dg(λ,a,p)

1 − e−dg(λ,a,p)

We need also the following.

Lemma 2.4. Assume p(a) 6= 0. The function

R0(λ, a, p) =
q(λ, a)

p(λ)
(2.9)

is rational of degree d and satisfies for λ ∈ C \ Vp(a) the following estimates:

‖R0(λ, a, p)‖ ≤ 2‖(λ − a)−1‖ (2.10)

and
‖R0(λ, a, p)‖ ≤ C (2.11)

where

C = max
λ∈Vp(a)

‖q(λ, a)‖

‖p(a)‖
. (2.12)

Proof. The first estimate (2.10) follows immediately from (1.15) and from
the fact that for λ /∈ Vp(a)

‖1 −
p(a)

p(λ)
‖ ≤ 2.

To conclude (2.11) notice that R0 is analytic and bounded in C\Vp(a) and by
maximum principle its maximum value is obtained on the boundary. How-
ever, on the boundary |p(λ)| = ‖p(a)‖ so all we really need, is the maximum
of the polynomial q in Vp(a).

We formulate still another lemma for later reference.

Lemma 2.5. Assume p(a) 6= 0. For θ > 1 put

Vp(a, θ) = {λ ∈ C : |p(λ)| ≤ θ‖p(a)‖}. (2.13)

Then for λ /∈ Vp(a, θ)

‖(λ − a)−1‖ ≤ C
θ

θ − 1
, (2.14)

where C is given in (2.12).
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We can now summarize the convergence discussion as follows.

Theorem 2.6. Let an element a be given in a Banach algebra A, p be monic
of degree d such that p(a) 6= 0, q be given by (1.14) and Rm by (2.4). Then
we have

‖(λ − a)−1 − Rm(λ, a, p)‖ ≤ M(λ)
η(λ)m+1

1 − η(λ)
for λ ∈ C \ Vp(a), (2.15)

where

M(λ) = min{ max
λ∈Vp(a)

‖q(λ, a)‖

‖p(a)‖
, 2‖(λ − a)−1‖} (2.16)

and

η(λ) =
‖p(a)‖

|p(λ)|
= e−dg(λ,p,a). (2.17)

Remark 2.7. Notice that both η(λ) and M(λ), or more precisely C in (2.12),
can be computed based on knowing p and a. Thus no knowledge of the
location of the spectrum enters as an assumption.

Remark 2.8. Notice that if we normalize the convergence speed wrt evalua-
tions of the element, which is natural in particular when dealing with opera-
tors operating on vectors, η(λ) is not the true convergence factor but rather
η(λ)1/d = e−g(λ,a,p) as evaluation of p requires d operations with an operator
on a vector. In any case the speed is linear and generally not superlinear
even if the element a would be quasialgebraic. It would be superlinear only
in the unlikely case that σ(a) is finite and p would happen to vanish on it
exactly.

Remark 2.9. Recall that a is quasialgebraic if cap(σ(a)) = 0, [8], [16].
For example, all compact operators are quasialgebraic. For such elements
Theorem 1.3 provides polynomials for which the capacity of Vp(a) becomes
arbitrarily small. Likewise, the convergence factor e−g(λ,a,p) can be brought
arbitrarily close to 0. On the other hand, if cap(σ(a)) > 0, then the Green’s
function for C \ σ̂(a) provides the lower bound for the convergence factor
with any polynomial p, but on the other hand by again Theorem 1.3 provides
polynomials for which the speed becomes arbitrarily close to the lower bound.

3 Convergence of an idealized Arnoldi-type

algorithm

We shall start now discussing procedures with aim to produce polynomials
pj such that

σ̂(a) =
⋂
j

Vpj
(a).

The major difficulty is of course that in the beginning of the computation
σ̂(a) is not known. We first consider a sequence which imitates the Arnoldi
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process. These polynomials can be thought of as solutions of minimization
problems of the form

min
q∈Pj−1

‖aj − q(a)‖.

It is worth of reminding how the standard Arnoldi method works, here
formulated in a Hilbert space H. Given a bounded operator A ∈ B(H) and
a vector b ∈ H one creates polynomials pj of degree j such that {pj(A)b}
becomes an orthogonal basis for the Krylov space

K(A, b) = cl spanj≥0{A
jb}. (3.1)

Denote the restriction of A to the invariant subspace K(A, b) by A[b]. We
have always

σ̂(A[b]) ⊂ σ̂(A)

and the set of vectors b for which the inclusion is equality is of second category,
[10], [11]. In standard Arnoldi process one approximates the spectrum of A[b]

by considering the accumulation of the zeros of the polynomials pj.
There are two kinds of problems with this procedure.
(i) The zeros can accumulate outside of σ̂(A[b]),
and
(ii) parts of the boundary of σ̂(A[b]) can stay away form the zeros.

Example 3.1. Suppose K is a compact set of the complex plane and X is
the space of bounded complex functions on K with supremum-norm. If A
denotes the multiplication operator

(Af)(z) = zf(z)

then clearly σ(A) = K. Consider K = [−2,−1]∪ [1, 2] and suppose b(z) = 1.
Then the polynomials minimizing ‖pj(A)b‖ over all monic polynomials of
degree j have a zero at origin for every odd j. Such an example can naturally
also be formulated in a Hilbert space.

Example 3.2. Consider the unitary shift S in l2 with initial vector b = e0.
Then S[e0] is the forward shift with unit disc as spectrum, the polynomials
are simply λj with zeros staying at the origin while the spectrum of S is the
unit circle.

Example 3.3. In the previous example the initial vector e0 is in the kernel
of (S[e0])

∗ while ‖S[e0]x‖ = ‖x‖. This can happen only when the operator
is not quasitriangular. Recall that A is called quasitriangular if there exists
a sequence {Pn} of finite rank projections converging strongly to identity,
PnX ⊂ Pn+1X and such that

‖APn − PnAPn‖ → 0.

Iteration operators in the waveform relaxation or Picard-Lindelöf iteration
are examples of operators which are not quasitriangular, if considered as
operating on infinite intervals. More on this, see [9].
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Remark 3.4. If A[b] is quasialgebraic, then (i) cannot happen, if one selects
a suitable subsequence of polynomials. In fact, if hj k denotes the elements of
A[b] when represented in Hessenberg form using the orthogonal basis created,
then

(
n∏
1

hj j−1)
1/n → 0

and in particular, there exists a subsequence such that

hjk jk−1 → 0,

see Theorem 4.3, [12]. If Pn denotes the orthogonal projection onto

span{b, Ab, . . . , An−1b}

then
hn n−1 = ‖PnA[b]Pn − A[b]Pn‖

and we see that a quasialgebraic A[b] is quasitriangular. If now µnσ(PnA[b]Pn)
and if a subsequence µnm

→ µ0 while hnm nm−1 → 0 then µ0 ∈ σ(A[b]). In
fact, if xn = Pnxn is of unit length and such that

PnA[b]Pnxn = µnxn

then
‖Axn − µ0xn‖ ≤ hn n−1 + |µn − µ0|

implies that µ0 is in the approximate point spectrum of A[b] and hence in
σ(A) as well. More on this, see [12], [15].

For theoretical reasons there has been some interest also on an idealized
Arnoldi method. At each j compute the monic polynomial of degree j mini-
mizing the operator norm ‖p(A)‖. It is clear from the examples above that
this method suffers from the same weaknesses as the true Arnoldi, that is
both (i) and (ii) can happen. Our first result concerns a modification of this
idealized Arnoldi so that the true outer boundary of the spectrum becomes
uniformly close to the outside of the inclusion set constructed. The discus-
sion is formulated for general Banach algebras and it applies to the idealized
Arnoldi as such, taking the algebra to be B(H).

Theorem 3.5. Let A be a Banach algebra and a ∈ A be given. Let pj be a
monic polynomial such that for all monic polynomials p of degree j one has

‖pj(a)‖ ≤ ‖p(a)‖. (3.2)

Denoting

Z =
⋂
j>0

Vpj
(a)

and

Zn =
n⋂

j=1

Vpj
(a),
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we have
σ̂(a) ⊂ Z (3.3)

and
sup

λ∈∂σ̂(a)

dist(λ, C \ Zn) → 0 as n → ∞. (3.4)

In order to prove the theorem we need a simple lemma.

Lemma 3.6. Let E,F ⊂ C be compact sets such that E = Ê, F = F̂ and
E ∩ F = ∅. If cap(F ) > 0 then

cap(E) < cap(E ∪ F ). (3.5)

Proof. If E is polar and cap(E) = 0, then (3.5) is trivial. Otherwise, let g be
the Green’s function for C \ E and h that for C \ (E ∪ F ), with logarithmic
singularities at ∞. Then u = g − h is harmonic in C \ (E ∪ F ) and bounded
near ∞, hence harmonic and bounded in C∞ \ (E ∪F ). Since E ∩F = ∅ we
conclude that u ≥ 0 on C \ (E ∪ F ) and in particular

lim
λ→ζ

u(λ) > 0 for n.e. ζ ∈ ∂F. (3.6)

If cap(E) = cap(E ∪ F ), then u(λ) → 0 as λ → ∞. As u is harmonic this
would imply that u(λ) = 0 in all of C \ (E ∪ F ) contradicting (3.6).

Proof. With the help of the lemma we can now prove Theorem 3.5. Note first
that (3.3) follows immediately from the fact that each Vp(a) is an inclusion
set for σ̂(a). Suppose now that (3.2) holds. Since the capacity is a monotone
set function we have

cap(σ̂(a)) ≤ cap(Z) ≤ cap(Vpj
(a))

However, a result of Halmos, [8] implies that

cap(σ̂(a)) = lim inf ‖pj(a)‖1/j

and therefore
cap(σ̂(a)) = cap(Z) (3.7)

If (3.4) would not hold, by compactness of boundary of σ̂(a) there would
exist a λ0 ∈ ∂σ̂(a) such that

dist(λ0, C \ Z) > 0,

implying the existence of a small closed line segment L inside Z\σ̂(a). Taking
L to be F and σ̂(a) to be E in the previous lemma, we get

cap(σ̂(a)) < cap(σ̂(a) ∪ L) ≤ cap(Z)

contradicting (3.7).
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4 A convergent algorithm

The Arnoldi type algorithm discussed in the last section seems to be efficient
in practise, extreme points of the outer boundary of the spectrum and the
boundaries of Vpj

(a) are close already in early stages of the iteration. How-
ever, Theorem 3.5 leaves open the possibility that Z\σ̂(a) could be nonempty.
Isolated points in Z \ σ̂(a) can easily be detected using the representations
for the resolvent but we prefer here to present a different type of approach
for detecting and eliminating Z \ σ̂(a).

Let pj be as before a monic polynomial of degree j which minimizes the
norm ‖p(a)‖ over all such polynomials, and

Vp(a) = {λ ∈ C : |p(λ)| ≤ ‖p(a)‖}.

We create a sequence of compact sets Wn such that the sequence is decreasing,
Wn+1 ⊂ Wn, and the following holds

σ̂(a) ⊂ Wn ⊂ Zn =
n⋂

j=1

Vpj
(a) (4.1)

and

σ̂(a) =
⋂
n>0

Wn. (4.2)

Description of the algorithm

Initially, put W1 = Vp1
(a).

Cover Wj with open balls Bj,k of radius ‖a‖/j. By compactness of Wj

this can be done with a finite number of balls. In each such ball B compute a
polynomial p = pj,k which maximizes, over all monic polynomials of at most
degree j the following expression

|p|B
‖p(a)‖

(4.3)

where

|p|B = min
λ∈∂B

|p(λ)|.

Let J(j) contain all k’s for which

|pj,k|Bj,k
> ‖pj,k(a)‖.

Then set

Wj+1 = Wj ∩ Vpj
(a) ∩

⋂
k∈J(j)

Vpj,k
(a). (4.4)

Notice that by construction, Bj,k ∩ Vpj,k
(a) = ∅ whenever k ∈ J(j).
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Theorem 4.1. The nested sequence of compact sets {Wj} satisfies

σ̂(a) =
⋂
j>0

Wj. (4.5)

Proof. By construction σ̂(a) ⊂ Wj+1 ⊂ Wj. If (4.5) would not hold, there
would exist µ ∈

⋂
j>0 Wj such that µ /∈ σ̂(a). But since σ̂(a) = V (a), there

would exist p such that for λ = µ

|p(λ)| > ‖p(a)‖. (4.6)

By continuity of p we there exists an open neighborhood U such that (4.6)
holds for all λ ∈ U . Since µ ∈ Wj for all j, there exists for every j an index
k(j) such that

µ ∈ Bj,k(j).

As the radii of the balls become arbitrarily small, and U is a fixed open
neighborhood of µ, there exists an index j0 such that for j ≥ j0 the closures
of the balls Bj,k(j) are inside of U . As soon as j ≥ max{j0, deg(p)} where p
is the polynomial which is large on U we get for B = Bj,k(j)

max
q∈Pj

|q|B
‖q(a)‖

≥
|p|B

‖p(a)‖
> 1

which means that k(j) ∈ J(j) and by (4.4) Wj+1 no longer contains µ which
is a contradiction.

Remark 4.2. It is clear from the proof that the sizes of the balls, and the
degrees of polynomials pj and pj,k can be modified. One can monitor the size
of isolated components in Zn and use the safeguard procedure adaptively
and not at every iteration round. In the other extreme, one can bypass the
computation of pj’s completely, by starting with W1 = {λ ∈ C : |λ| ≤ ‖a‖}
and computing only pj,k’s.

5 Construction of a representing polynomial

sequence

We shall complete our proof of Theorem 1.3 by showing how one can, based
on a nested sequence {Wj} satisfying (4.5) compute monic polynomials pj,
generally of degree dj, and another nested sequence Kj such that

Vpj
(a) ⊂ Kj

and such that (1.17 ) holds. Assume Wj has been computed as in the last
section, using e.g. the procedure described in the last section. Put

Kj = {λ ∈ C : dist(λ,Wj) ≤ ‖a‖/j}. (5.1)
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We shall consider Fekete polynomials for the set Wj. Recall that fn is a
Fekete polynomial for a compact set K of degree n if

fn(z) =
n∏

j=1

(z − zj) (5.2)

where zj are such that the expression

δn = (
∏
j<k

|wj − wk|)
2/n(n−1

with zj = wj is maximal over all choices satisfying wj ∈ K. This construction
forces the zeros of the polynomials to lie in the desired set.

Let now f = fj,n(j) be a Fekete polynomial of smallest degree n = n(j)
such that

{λ ∈ C : |f(λ)| ≤ (1 +
1

n
) max

z∈Wj

|f(z)|} ⊂ Kj.

Such a polynomial always exists, see Theorem 5.5.8 in [17]. By the spectral
mapping theorem and σ̂(a) ⊂ Wj we have

‖fj,n(j)(a)m‖1/m → max
λ∈σ̂(a)

|fj,n(j)(λ)| ≤ max
λ∈Wj

|fj,n(j)(λ)|.

Choose m large enough so that

‖fj,n(j)(a)m‖ ≤ (1 +
1

n(j)
)m max

λ∈Wj

|fj,n(j)(λ)m|,

then with pj = fm
j,n(j) we have

Vpj
(a) ⊂ {λ : |pj(λ)| ≤ (1 +

1

n(j)
)m max

λ∈Wj

|fj,n(j)(λ)m|} ⊂ Kj.

This completes the proof of Theorem 1.3 setting.

6 Finite termination and stagnation

Recall that a ∈ A is called algebraic if there exists a monic polynomial p
such that p(a) = 0; if such a p is of lowest degree it is called the minimal
polynomial and a is said to be algebraic of degree deg(p).

Consider the sequence of monic polynomials {pj} as in Theorem 3.4 where
pj satisfies

‖pj(a)‖ ≤ ‖p(a)‖ (6.1)

for monic polynomials p of degree j. As we can monitor ‖pj(a)‖ we can
terminate the algorithm as soon as pj(a) = 0. Thus we can formulate
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Proposition 6.1. The sequence {pj} contains the minimal polynomial if and
only if a is algebraic. If a is of degree d then pd(a) = 0, and

σ(a) = Vpd
(a)

and
(λ − a)−1 = R0(λ, a, pd).

Suppose now that a ∈ A is not algebraic, that is ‖p(a)‖ > 0 for all
nontrivial polynomials and the construction does not terminate. However,
the process can still stagnate. Assume there exists a monic polynomial p such
that

σ̂(a) = Vp(a). (6.2)

In that case there again exists such a monic polynomial p̃ of smallest degree,
let it be of degree d.

Lemma 6.2. The polynomial p̃ is unique and satisfies p̃ = pd.

Proof. We have
σ̂(a) = Vp̃(a) ⊂ Vpd

(a)

and if the inclusion is proper then cap(Vp̃(a)) < cap(Vpd
(a)). However, by

Lemma 2.3 this means that

‖p̃(a)‖ < ‖pd(a)‖

contradicting the definition of pd. Then p̃ = pd as the polynomials are monic,
of the same degree and the Green’s function for Vp(a) is unique.

This allows us to se up a definition.

Definition 6.3. Suppose a ∈ A is such that there exists a monic p for
which (6.2) holds. Then we say that a is polynomially round and the monic
polynomial of smallest degree for which (6.2) holds is spectrally minimal for
a. Finally, a is polynomially round of degree d if the spectrally minimal
polynomial is of degree d.

Proposition 6.4. If {pj} is defined as in (6.1), then a ∈ A is polynomially
round of degree d if and only if for k = 1, 2, . . .

‖pkd(a)‖ = ‖pd(a)‖k. (6.3)

Proof. If pd is spectrally minimal, then

‖pd(a)‖1/d ≤ ‖pkd(a)‖1/kd ≤ ‖pd(a)k‖1/kd

where the first inequality follows from the monotonicity of capacity and the
second from the definition of pkd.
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Suppose therefore that there exists a j such that we have for all k

‖pkj(a)‖ = ‖pj(a)‖k.

Put b = pj(a). We claim that

σ̂(b) = {µ : |µ| ≤ ‖b‖}. (6.4)

In fact, if there is a point µ0 of absolute value ‖b‖ which is not part of
spectrum of b then there exists a monic polynomial q such that the capacity
of Vq(b) is less than ‖b‖. If q is of degree n then we have

‖q(pj(a))‖ < ‖pj(a)‖n = ‖pnj(a)‖

contradicting the minimality of pnj. Thus (6.4) holds and it follows from the
spectral theory that

σ̂(pj(a)) = Vpj
(a).

Here is another characterization of a being polynomially round.

Proposition 6.5. Given a ∈ A and a polynomial p we have

σ̂(a) = Vp(a) (6.5)

if and only if
‖(p(λ) − p(a))−1‖ = (|p(λ)| − ‖p(a)‖)−1 (6.6)

holds for all λ /∈ Vp(a).

Proof. It is clear that (6.6) implies (6.5) as ‖(p(λ)− p(a))−1‖ blows up when
λ approaches the boundary of Vp(λ).

Reversely, assuming (6.5) we obtain immediately that for λ /∈ Vp(a)

‖(p(λ) − p(a))−1‖ ≤
∞∑

k=0

‖p(a)‖k

|p(λ)|k+1
= (|p(λ)| − ‖p(a)‖)−1.

On the other hand, if µ0 satisfies |µ0| = ‖p(a)‖, then µ0 ∈ σ(p(a)). Put
µ = tµ0 with t > 1. Then

‖(µ − p(a))−1‖ ≥
1

dist(µ, σ(p(a))
=

1

(t − 1)‖p(a)‖
.

For p(λ) = µ this is

‖(p(λ) − p(a))−1‖ ≥ (|p(λ)| − ‖p(a)‖)−1.

Propositions 6.4 and 6.5 give some necessary conditions for stagnation.
Here is still one such.
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Proposition 6.6. Assume that a ∈ A is polynomially round and pd is the
spectrally minimal polynomial. If pd has at least one simple zero, then for
0 < j < d

‖pd+j(a)‖
1

d+j > ‖pd(a)‖1/d. (6.7)

Proof. Let λ0 be a simple zero of pd and write pd(λ) = (λ − λ0)q0(λ) where
q0(λ0) 6= 0. Further, write likewise pd+j = (λ − λ0)

mjqj(λ) , with qj(λ0) 6= 0.
Let us assume that (6.7) does not hold for some 0 < j < d. Since pd is
spectrally minimal we must have equality:

‖pd+j(a)‖
1

d+j = ‖pd(a)‖1/d.

As in the proof of Lemma 6.2. we conclude that pd and pd+j determine
the same Green’s function. This means that

pd+j
d = pd

d+j, (6.8)

which near λ0 implies

(λ − λ0)
d+j = (λ − λ0)

mjd.

In particular, mj = (1 + j/d). But this is a contradiction as mj must be an
integer.

7 Spectrum in low rank perturbation

We point out that the explicit representation of the resolvent allows ap-
plications to perturbation theory. We demonstrate it in simplest form by
considering rank-1 perturbations of bounded operators in a Hilbert space.
We developed a general perturbation theory for low rank perturbations in
[13], but without explicit representations of the resolvent.

Consider rank-1 perturbations of A ∈ B(H)

Aµ = A + µuv∗ (7.1)

where µ ∈ C and u, v ∈ H are unit vectors. Assume we are interested in
knowing for what µ the spectrum of Aµ lies in an open set Ω provided we
know that this is the case for µ = 0:

σ(A) ⊂ Ω. (7.2)

It follows from Theorem 1.3 that we may further assume that we know a
polynomial p such that

Vp(A) ⊂ Ω. (7.3)

By continuity of p and compactness of Vp(A) there exists θ > 1 such that

Vp(A, θ) = {λ ∈ C : |p(λ)| ≤ θ‖p(A)‖} ⊂ Ω. (7.4)
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Lemma 7.1. If Aµ is as in (7.1), then

σ(Aµ) ⊂ σ(A) ∪ Zµ (7.5)

where Zµ denotes the set of solutions of

ϕ(λ) =
1

µ
(7.6)

and
ϕ(λ) = v∗(λ − A)−1u, for λ /∈ σ(A). (7.7)

Proof. We have for λ /∈ σ(A)

λ − Aµ = (λ − A)(1 − µ(λ − A)−1uv∗) (7.8)

so that
(λ − Aµ)−1 = (1 +

µ

1 − µϕ(λ)
uv∗)(λ − A)−1, (7.9)

from which the claim follows.

We are interested in the part of the spectrum of Aµ which is not inside
Vp(A, θ), that is Zµ ∩ (C \ Vp(A, θ)). To start with, observe that we can
calculate a tθ such that for |µ| < tθ the intersection is empty. In fact, for
λ /∈ Vp(A, θ) we have by Lemma 2.5

|ϕ(λ)| ≤ C
θ

θ − 1
, (7.10)

Then, (7.6) cannot have solutions outside Vp(A, θ) as long as

C
θ

θ − 1
<

1

|µ|
.

Denoting tθ = θ−1
Cθ

we thus have the following.

Proposition 7.2. If |µ| ≤ tθ, then σ(Aµ) ⊂ Vp(A, θ).

From the value distribution theory of meromorphic functions we know
that the solutions of (7.6), that is, the poles of

1

ϕ(λ) − 1
µ

are tied with the speed of growth of |ϕ| as |p(λ)| decays, [13]. As |µ| grows
over tθ solutions branches λj(µ) can appear outside Kθ, but their number is
always finite and following each branch is in principally easy as ϕ is analytic
and explicitly given. Notice further that when one moves away from Vp(A, θ),
|p(λ)| decays and the accurate computation of ϕ becomes easier making it
possible to study when

λj(µ) ∈ ∂Ω.
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8 Holomorphic functional calculus using residues

Suppose Ω ⊂ C is open and f is a holomorphic scalar valued function in Ω.
Suppose a ∈ A and p is a polynomial such that

Vp(a) ⊂ Ω. (8.1)

If γ is a contour in Ω surrounding Vp(a), then

f(a) =
1

2πi

∫
γ

f(λ)(λ − a)−1dλ. (8.2)

Let Rm be as in (2.4). Then we can set

fm(a) =
1

2πi

∫
γ

f(λ)Rm(λ, a, p)dλ. (8.3)

Let θ > 1 be such that Vp(a, θ) ⊂ Ω. With help of Theorem 2.6 we know
that there exists η ≤ 1/θ and a constant C such that for all m = 0, 1, . . .

‖fm(a) − f(a)‖ ≤ Cηm+1. (8.4)

The interesting thing here is that Rm is a rational function with known
singularities. Thus fm(a) can be computed using residues at zeros of p,
without knowing the singularities of the resolvent.

It is natural also to look at f(a) as expanded as a power series in p(a). If
we put

cj(a) =
1

2πi

∫
γ

f(λ)
q(λ, a)

p(λ)j+1
dλ, (8.5)

then cj(a) is a polynomial in a of degree one less than p. Notice that com-
puting cj(a) can be performed by computing the residues at zeros of p and
hence, the computation of f(a) can be carried out by performing at most a
countable number of residues, independent of the cardinality of the spectrum
of a.

We close this by a convergence estimate for the power series.

Proposition 8.1. Let θ > 1 and p be such that

Vp(a, θ) = {λ : |p(λ)| ≤ θ‖p(a)‖} ⊂ Ω

and suppose γ surrounds Vp(a, θ) inside Ω. Put

M =
1

2π

∫
γ

|f |

and let C be as in Lemma 2.5. Then

f(a) =
∞∑

j=0

cj(a)p(a)j, (8.6)

where the coefficients cj(a) satisfy

‖cj(a)‖ ≤ MC
1

(θ‖p(a)‖)j
.
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A555 Juho Könnö, Rolf Stenberg

Finite element analysis of composite plates with an application to the paper

cockling problem

December 2008

A554 Lasse Leskelä
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