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1 Introduction

We consider the finite element approximation of the reaction-diffusion prob-
lem

−ε2∆u + u = f in Ω and u = 0 on ∂Ω, (1)

with the parameter ε > 0. For ε & 1 the problem is a standard elliptic
equation. We are, however, interested in the case of a ”small” ε << 1. In
this case, the problem is a singularly perturbed problem, and the question is
how to incorporate the effect of ε into the finite element a posteriori analysis.
The problem has been studied for example in [4, 1]. Here we introduce and
analyze an alternative a posteriori estimator. In [2], this is extended to the
Brinkman equations modeling flow in porous media.

2 The a posteriori error estimate

Let Ω ⊂ R
n be a domain with a polygonal or a polyhedral boundary ∂Ω. We

assume a shape regular triangular/tetrahedral partitioning Ch of the domain
Ω. With hK we denote the diameter of K ∈ Ch and we let h = max hK .
With Eh we denote the internal edges (faces in 3D) of Ch. The constant C is
a generic constant independent of the mesh size and problem parameter ε.

Defining the bilinear form

A(u, v) = ε2 (∇u,∇v) + (u, v) , (2)

the weak form of the problem is: find u ∈ V such that

A(u, v) = (f, v) ∀v ∈ H1

0 (Ω). (3)

Defining Vh = {v ∈ H1
0 (Ω) | v|K ∈ Pk(K) ∀K ∈ Ch}, the finite element

method is: find uh ∈ Vh such that

A(uh, v) = (f, v) ∀v ∈ Vh. (4)

The natural energy norm is

‖v‖2

ε = ε2‖∇v‖2

0 + ‖v‖2

0, (5)

and the finite element solution is the best approximation with respect to this
norm

‖u − uh‖ε = inf
v∈Vh

‖u − v‖ε. (6)

In general, the problem has a boundary layer of the form e−d/ε, where d is
the distance from the boundary. Hence, even for a smooth load f , a uniform
mesh will only lead to the following estimate

‖u − uh‖ε ≤ C
√

h (7)
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uniformly valid with respect to ε. For a smooth solution the estimate ob-
tained is

‖u − uh‖ε ≤ C(εhk + hk+1). (8)

To improve the convergence, adaptive mesh refinement is natural. Here, we
we introduce a novel residual based a posteriori estimator. The elementwise
estimator is defined as

EK(uh)
2 =

h2
K

ε2 + h2
K

‖ε2∆uh − uh + f‖2

0,K +
hK

ε2 + h2
K

‖[[ε2∂nuh]]‖2

0,∂K∩Eh
(9)

and the global estimator is

η =
(

∑

K∈Ch

EK(uh)
2
)1/2

. (10)

Above [[·]] denotes the jump and ∂n denotes the normal derivative.
If ε & 1, the elementwise estimator recovers the usual estimator for second

order elliptic equations

EK(uh)
2 ≈ h2

K‖ε2∆uh − uh + f‖2

0,K + hK‖[[ε2∂nuh]]‖2

0,∂K∩Eh
.

On the other hand, in the limit ε → 0 (or ε ≪ h), when the FE solution is
the L2-projection of the loading, we have EK(uh)

2 ≈ ‖ − uh + f‖2
0,K .

For our analysis we will need a saturation assumption. The partitioning
Ch is refined into Ch/2 by dividing each triangle/tetrahedron K into four/eight
elements with mesh size hK/2. By uh/2 ∈ Vh/2 we denote the finite element
solution on the refined mesh.

Assumption 1. There exists a positive constant β < 1 such that

‖u − uh/2‖ε ≤ β‖u − uh‖ε. (11)

The main result is the following theorem.

Theorem 2. Let Assumption 1 hold. Then there exists C > 0 such that

‖u − uh‖ε ≤ Cη. (12)

Proof. By the triangle inequality the saturation assumption gives

‖u − uh‖ε ≤
C

1 − β

(

‖uh/2 − uh‖ε

)

. (13)

Next, with v = (uh/2 − uh)/‖uh/2 − uh‖ε, we have

‖uh/2 − uh‖ε = A(uh/2 − uh, v) (14)

and ‖v‖ε = 1. Let ṽ ∈ Vh be the Lagrange interpolant of v. Since both v
and ṽ are in the finite element spaces, scaling arguments give

(

∑

K∈Ch/2

(ε + hK

hK

)2‖v − ṽ‖2

0,K

)1/2

≤ C
(

∑

K∈Ch/2

(

ε2‖∇v‖2

0,K + ‖v‖2

0,K

))1/2
= C‖v‖ε = C (15)
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and

(

∑

K∈Ch/2

ε2 + h2
K

hK

‖v − ṽ‖2

0,∂K

)1/2 ≤ C
(

∑

K∈Ch/2

ε2 + h2
K

hK

h−1

K ‖v − ṽ‖2

0,K

)1/2

= C
(

∑

K∈Ch/2

( ε2

h2
K

+ 1
)

‖v − ṽ‖2

0,K

)1/2 ≤ C
(

∑

K∈Ch/2

(

ε2‖∇v‖2

0,K + ‖v‖2

0,K

))1/2

= C‖v‖ε = C. (16)

Since it holds A(uh/2 − uh, ṽ) = 0, we have

A(uh/2 − uh, v) = A(uh/2 − uh, v − ṽ). (17)

Using the fact that uh/2 satisfies

A(uh/2, v − ṽ) = (f, v − ṽ) (18)

and integrating by parts, we get

A(uh/2 − uh, v − ṽ)

= (f, v − ṽ) − ε2 (∇uh,∇(v − ṽ)) − (uh, v − ṽ) (19)

=
∑

K∈Ch/2

{

(

ε2∆uh − uh + f, v − ṽ
)

K
+ ε2 〈∂nuh, v − ṽ〉∂K∩Eh/2

}

.

Using Schwartz inequality and the estimates (15)–(16) we then obtain

A(uh/2 − uh, v − ṽ) ≤ Cη. (20)

The a posteriori upper bound η is also a lower bound to the error. In
this sense the estimator is sharp. The proof of the following theorem uses
classical techniques, see [3].

Theorem 3. Let fh ∈ Vh an approximation of the load f . Then there exist
C > 0 such that

η2 ≤ C
{

‖u − uh‖2

ε +
∑

K∈Ch

( h2
K

ε2 + h2
K

‖f − fh‖2

0,K

)}

. (21)

3 Numerical results

For the computations we choose the unit square Ω = (0, 1)× (0, 1) and a unit
load f = 1. For the number of degrees of freedom N , the uniform estimate
(7) and the asymptotic estimate (8) become

‖u − uh‖ε ≤ CN−0.25 and ‖u − uh‖ε ≤ CN−k/2, (22)

respectively. In Figure 1 this behavior is seen for linear and quadratic ele-
ments (k = 1, 2).
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Figure 1: Convergence for uniform and adaptive meshes for parameter values
ε = 0.05 and ε = 0.01.
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Figure 2: First three meshes of the adaptive scheme using linear elements
and parameter value ǫ = 0.05.
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