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ciple for Linear FE Solutions of Elliptic Problems with a Nondiagonal Coefficient

Matrix ; Helsinki University of Technology Institute of Mathematics Research Re-
ports A559 (2008).

Abstract: In this paper we present a sufficient condition for the validity of
a discrete maximum principle (DMP) for a class of elliptic problems of the
second order with a nondiagonal coefficient matrix, solved by means of linear
finite elements (FEs). Numerical tests are presented.

AMS subject classifications: 65N30, 65N50

Keywords: discrete maximum principle, finite element method, acute triangu-
lations, full diffusion tensor

Correspondence

Sergey Korotov
Institute of Mathematics, Helsinki University of Technology
P.O. Box 1100, FI–02015 TKK, Finland
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1 Introduction

There are many works devoted to the validity of various DMPs for FE-type
approximations. In general, all such papers can be split into two groups:
those dealing with standard (linear) FE computational schemes, see e.g. [2],
[5], [8], [9], [21], and papers, where certain nonlinear FE-type schemes are
proposed, as in [4], [11], [15], [16].

There are two main reasons why nonlinear FE schemes are developed.
First of all, linear FE schemes have been shown to produce approximations
satisfying DMP for problems mostly with diagonal coefficient matrices. Sec-
ond, such schemes often require a usage of FE triangulations with certain
geometrical properties (e.g. the nonobtuseness of simplicial FE meshes, etc.).
However, it is not always easy to construct such meshes, and further refine
them preserving the desired geometrical conditions.

Note that the only obtuse triangle in a given triangulation may destroy
the validity of DMP when solving the Poisson equation by standard linear
finite elements, see [3]. The situation is even worse for anisotropic case.

In this paper we demonstrate that imposing slightly more severe condition
on the triangulations used (forcing them be acute and not only nonobtuse as
in [2], [5], [8], [9]), we can still produce DMP-adequate approximations for
some class of elliptic problems with full diffusion tensors using only standard
linear FE schemes, see [7] for treating similar situation in the parabolic case.
We need to solve elliptic equations with nondiagonal coefficient matrices in
many areas, e.g., for flow in porous media, transport of atmospheric gases,
heat conduction in anisotropic media, financial mathematics [6], [13], [18],
[19].

2 Model problem and maximum principle

We consider the following elliptic problem: Find a function u such that

−div (A∇u) = f in Ω, (1)

u = 0 on ∂Ω, (2)

where Ω ⊂ R2 is a bounded polygonal domain with Lipschitz boundary ∂Ω,
f ∈ L2(Ω), A is a symmetric uniformly positive definite 2 × 2 matrix (often
called a diffusion tensor) with smooth entries Akm, k,m = 1, 2, defined on
Ω.

The classical solution of (1)–(2), if it exists, is known to satisfy the fol-
lowing maximum principle [12]:

f ≤ 0 =⇒ u ≤ 0 in Ω. (3)

Remark 2.1 If the matrix A is constant then by the linear transformation
F (x) = A−1/2x equation (1) becomes the Poisson equation on the domain
F (Ω) with zero boundary conditions on ∂(F (Ω)).
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3 FE discretization

We shall use the standard Sobolev space notation. Assume that the coeffi-
cients Akm ∈ L∞(Ω). Then the weak formulation of problem (1)–(2) reads:
Find a function u ∈ H1

0 (Ω) such that

∫

Ω

A∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ H1
0 (Ω). (4)

Let Th stand for a face-to-face triangulation of Ω with a discretization
parameter h and triangular elements denoted by symbol T (possibly with
some subindices). Let Vh ⊂ H1

0 (Ω) be a FE space spanned by the standard
piecewise linear continuous basis functions ϕ1, . . . , ϕN associated with the
interior nodes P1, . . . , PN , i.e., those vertices of triangles from Th that do not
belong to ∂Ω.

The FE solution of problem (4) is a function uh ∈ Vh such that

∫

Ω

A∇uh · ∇vh dx =

∫

Ω

fvh dx ∀vh ∈ Vh. (5)

Algorithmically, uh =
N
∑

i=1

yiϕi with y = (y1, . . . , yN)⊤ being a vector-

solution of the following system of linear equations

Ay = F, (6)

where A is the finite element N × N matrix with entries aij =
∫

Ω
A∇ϕj ·

∇ϕi dx, and the vector F = (f1, . . . , fN)⊤ has entries fi =
∫

Ω
fϕi dx.

Consider acute triangulations, i.e., for any angle α of any element T from
Th we have

α ≤
π

2
− α1, (7)

where α1 is a fixed positive constant. Obviously, this implies that

α ≥ 2α1 (8)

for any angle α of any T ∈ Th.

Remark 3.1 For a given Th there exists a constant C > 0 such that for any
triangle T ∈ Th and any of its altitude ℓ (which is always inside of T due to
the acuteness property) we have

ℓ ≥ ChT , (9)

where hT is the diameter of T .
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4 DMP and conditions for its validity

The following implication

f ≤ 0 =⇒ uh ≤ 0 in Ω (10)

presents a natural discrete analogue (discrete maximum principle, or DMP
in short) of the maximum principle (3). It is clear that (10) holds if A is a
monotone matrix.

It is known that A is symmetric and positive definite. Hence, due to a
well-known result on monotonicity of the Stieltjes matrices (cf. [20, p. 85])
we only need to provide the nonpositivity of the off-diagonal entries of A

which, in turn, holds if

aij|T =

∫

T

A∇ϕj · ∇ϕi dx ≤ 0 (i 6= j) (11)

for each triangular element T ∈ Th.
In what follows, we shall work with the following matrix decompositions

of the diffusion tensor
A = D + B, (12)

where D = d I, with I being the unit matrix and d > 0 being a positive
constant. The entries of B = A−D are denoted by Bkm, k,m = 1, 2. Let

b̄ := max
k,m=1,2

{ess supx∈Ω |Bkm(x)|}. (13)

Remark 4.1 Note that there are infinitely many decompositions of the type
(12).

Theorem 4.1 Let

b̄ ≤
dC2 ctg 2α1

4 cos α1

, (14)

where the constants α1, C, and b̄ are defined in (7), (9), and (13), respec-
tively. Then the discrete maximum principle (10) holds.

P r o o f: We observe that, in view of (12),

aij|T =

∫

T

A∇ϕj · ∇ϕi dx =

∫

T

(D + B)∇ϕj · ∇ϕi dx = d

∫

T

∇ϕj · ∇ϕi dx+

+

∫

T

B∇ϕj ·∇ϕi dx ≤ d

∫

T

∇ϕj ·∇ϕi dx+4b̄

∫

T

(

max
i=1,...,N,k=1,2

∣

∣

∣

∂ϕi

∂xk

∣

∣

∣

)2

dx. (15)

The following well-known formula
∫

T

∇ϕi · ∇ϕj dx = −
1

2
ctg αT

ij (16)

is valid, where αT
ij is the angle in T opposite to the edge PiPj.
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Further, from (9) we have the following property for the basis functions

∣

∣

∣

∂ϕi

∂xk

∣

∣

∣

T

∣

∣

∣
≤

1

ChT

, (17)

where C is the constant from (9), i = 1, . . . , N, and k = 1, 2. Therefore,
using (15), (16), (17), (7), and the formula for the area of a triangle, we get

aij|T ≤ −
d

2
ctg αT

ij +
2b̄

C2
sin(

π

2
− α1) ≤ −

d

2
ctg 2α1 +

2b̄

C2
cos α1 ≤ 0,

provided (14) holds.

Remark 4.2 Consider a strongly regular family of triangulations F = {Th}h→0,
see [1] for a definition. The same analysis can be now done again with an-
other (uniform) constants.

5 Numerical tests

Consider our problem with the diffusion tensor A defined by

A(x) =

[

r2(x) r1(x)
−r1(x) r2(x)

] [

K 0
0 1/K

] [

r2(x) −r1(x)
r1(x) r2(x)

]

, (18)

where (r1(x), r2(x))⊤ is the unit (normalized) radius-vector from the origin to
the point x. The condition number of A(x) and the eccentricity of the asso-
ciated ellipse is determined by a positive parameter K. The diffusion tensor
field is radially symmetric, so it should behave in the same manner in every
direction. Such a problem may describe, e.g., the temperature distribution
in a wooden log or in a vulcanic basalt.
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Figure 1: Diffusion tensor field. The main axes of ellipsae indicate directions
of the largest heat conductivities (for K = 3).

The shape of the domain Ω(s) is controlled by a slope parametr s. The
rectangular domain (−2.5, 2.5)×(−1.5, 1.5) is discretized in the standard way
(see Fig. 2) and then it is deformed so that each subsequent row of elements
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Figure 2: The triangulation for s = 0 and s = 1.

is shifted against the preceding one by the distance shx, where hx is width
of an element in direction of the axis x. Thus,

Ω(s) = {(x, y) ∈ R2 : y ∈ (−1.5, 1.5); −
5

2
+ s

10

9
y ≤ x ≤

5

2
+ s

10

9
y}.

If s ∈ (0, 1), the triangulation has only acute angles. For s = 0.5 all
elements are isosceles triangles. For s = 0 and s = 1 they have right angles
and the triangulations have locally the same structure, but the shape of the
domain is different.

We choose the parameter d from decomposition (12) as the mean value
of diagonal entries of the middle matrix on the right-hand side of (18), i.e.,
d = K2+1

2K
.

If the DMP is not satisfied, the inverse of the stiffness matrix has to
contain some negative entries (cf. Fig. 3 (left)).
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Figure 3: Left: Negative entries in the inverse matrix for K = 30 and s = 1.5.
Right: Dependence of the minimal entry of the inverse stiffness matrix on
parameters s and K.

We computed the stiffness matrices for many combinations of parameters
K and s, and found the minimal values of entries of their inverses. The colour
of each pixel in Fig. 3 (right) corresponds to the minimal value of the inverse
stiffness matrix for a given pair of parameters. The vertical axis describes the
dependence of the minimum on the slope parameter s. The range overlaps
the interval (0, 1), so it shows the area of non-acute triangulations, too.

Condition (14) can be modified to the form

4 b̄ cos α1

dC2 ctg 2α1

≤ 1. (19)
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Values of the expression on the left-hand side of (19) are shown in Fig. 4.
By Theorem 1, the DMP is satisfied for those values that are less or equal
to one. Note that the functions in Figs. 3 and 4 need not be symmetric,
because the shape of Ω(s) is different for s = 0 and s = 1.
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Figure 4: Left: Behaviour of the left-side of condition (19). Right: Areas of
the validity of (19). The values larger than 1 are indicated by a dark colour.

Example: Fig. 5 shows that the area, where the DMP is violated, can
be in the middle of the domain for K = 8 and s = 0.

 0   

−0.05

−0.1 

−0.15

−0.2 

−0.25

−0.3 

−0.35

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5: Left: The discrete solution uh for a certain F . Right: A domain,
where DMP is violated.

6 Conclusions and open problems

The above analysis shows that DMP is valid on acute and regular triangula-
tions for full diffusion tensors with a sufficiently strong diagonal dominance
property.

Construction of acute triangulations is quite well studied, e.g., in works
[14], [17]. The family of uniformly acute triangulations can be easily con-
structed using the standard 2d red refinement of triangles by midlines.

It is worth mentioning that the idea proposed here cannot be easily gener-
alized for elliptic problems in dimension 3 and higher, since it is not clear how
to construct and further refine acute simplicial meshes of a given polytopic
domain (cf. [3], [10]).
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