CONVERGENCE OF SOLUTIONS
OF A NON-LOCAL PHASE-FIELD SYSTEM

Stig-Olof Londen Hana Petzeltová
CONVERGENCE OF SOLUTIONS
OF A NON-LOCAL PHASE-FIELD SYSTEM

Stig-Olof Londen Hana Petzeltová

Abstract: We study the asymptotic behavior and convergence to equilibria of a two-phase model containing non-local terms. Our analysis employs the non-smooth version of the Simon-Lojasiewicz theorem.

AMS subject classifications: 35K45, 35K57, 35B40, 80A22

Keywords: non-local phase-field systems, Simon-Lojasiewicz theorem, convergence to equilibria

Correspondence
Stig-Olof Londen
Department of Mathematics and Systems Analysis
Helsinki University of Technology
P.O. Box 1100
FI-02015 TKK
Finland

Hana Petzeltová
Institute of Mathematics
Czech Academy of Sciences
AV ČR
Žitná 25
115 67 Praha 1
Czech Republic

slonden@math.tkk.fi, petzelt@math.cas.cz

The research of the second author was supported by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503 and by Grant IAA100190606 of GA AV CR.

ISBN 978-951-22-9281-3 (PDF)
ISBN 978-951-22-9280-6 (print)
ISSN 0784-3143

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Mathematics and Systems Analysis
P.O. Box 1100, FI-02015 TKK, Finland
email: math@tkk.fi
http://math.tkk.fi/
1 Introduction

This paper is devoted to the study of asymptotic properties and convergence to equilibria of a two-phase model involving non-local terms. Considering a binary alloy with components A and B occupying a spatial domain \(\Omega \), and denoting by \(u \) and \(1 - u \) the local concentrations of A and B respectively, Gajewski and Zacharias [5] studied a model describing also long range interaction of particles. This phenomenon is represented by spatial convolution with a suitable kernel, cf. Chen and Fife [2]. The system in question reads:

\[
\begin{align*}
 u_t - \nabla \cdot (\mu \nabla v) &= 0 \quad \text{in} \ (0,T) \times \Omega, \\
 v &= f'(u) + \int_{\Omega} K(|x-y|)(1-2u(t,y))dy, \quad (t,x) \in (0,T) \times \Omega, \\
 \mu v \cdot \nabla v &= 0 \quad \text{in} \ (0,T) \times \partial \Omega, \\
 u(0,x) &= u_0, \quad u_0 \in L^\infty(\Omega), \quad 0 \leq u_0(x) \leq 1, \quad 0 < \int_\Omega u_0 \, dx = u_0 < 1.
\end{align*}
\]

Gajewski and Zacharias [5] proved global existence, uniqueness of solutions and compactness of trajectories in the space \(L^2(\Omega) \) under assumptions stated below. In particular, the (strictly convex) function \(f \) is given by \(f(u) = u \ln u + (1-u) \ln(1-u) \). However, convergence of trajectories of this system to equilibria was proved only in the case when the non-convex global interaction represented by the convolution term is small compared with the strong convexity constant of \(f \). This condition ensures that the equilibrium state is uniquely defined, which need not be the case in general.

The convergence of solutions of various phase-field systems to equilibria has been proved by many authors with help of the Lojasiewicz inequality. In our case, we have compactness of trajectories only in the space \(L^2(\Omega) \). But, in this space, the energy functional is not twice continuously differentiable, so we have to use the non-smooth version of the Simon-Lojasiewicz theorem which was proved in [6] and generalized in [4]. This version is formulated in Section 4.

The boundedness of \(v \) in \(L^\infty(\Omega) \) norm was proved in [5] on compact time intervals provided that the initial datum \(u_0 \) is bounded away from "pure states" 0 and 1. The aim of the present paper is to show that this holds true on the whole positive line and, moreover, any solution with such an initial datum stabilizes to a single stationary state. In addition, the solution starting from \(u_0 \) satisfying (1.4) separates from 0 and 1 in the sense that

\[
\max \left\{ \| \ln u(t) \|_{L^r(\Omega)}, \| \ln(1-u(t)) \|_{L^r(\Omega)} \right\} \leq Cr^2 \quad \text{for all} \ t \geq 1, \ r \geq 1, \ (1.5)
\]

and there is a sequence of times \(\{t_r\} \), \(t_r \to \infty \), when \(r \to \infty \), such that

\[
\max \left\{ \| \ln u(t) \|_{L^r(\Omega)}, \| \ln(1-u(t)) \|_{L^r(\Omega)} \right\} \leq C \quad \text{for all} \ t \geq t_r. \quad (1.6)
\]

We will proceed as follows. First, we start with the initial value such that

\[
c \leq u(0,x) \leq 1-c \quad \text{for a.a.} \ x \in \Omega, \quad \text{and some} \ 0 < c < 1, \quad (1.7)
\]
and prove that u remains bounded away from 0 and 1 for all $t \geq 0$. To this end, we apply the method of Alikakos [1] in a bit different way than in [5]. Then we prove (1.5), (1.6) (Lemma 3.3, Lemma 3.5). Finally, we apply a generalized version of the Lojasiewicz-Simon theorem to show that the time derivative of u belongs to $L^1(T, +\infty; H^1(\Omega)^*)$ which in turn allows us to show convergence of $u(t)$ in $L^2(\Omega)$, when $t \to \infty$.

2 Assumptions and Preliminaries

We assume that $\Omega \subset \mathbb{R}^n$ is a bounded domain with a smooth boundary $\partial \Omega$. The existence of global weak solutions of the problem (1.1)-(1.4) in the class

$$u \in C(0,T; L^\infty(\Omega)) \cap L^2(0,T; H^1(\Omega)), \quad u_t \in L^2(0,T; H^1(\Omega)^*),$$

was proved in [5] under the following assumptions:

$$f(u) = u \ln u + (1-u) \ln(1-u),$$

$$\mu = a(x, |\nabla v|) f''(u),$$

where $f''(u)$ satisfies some monotonicity conditions,

$$\int_{\Omega} \int_{\Omega} |K(|x-y|)| dx \ dy = k_0 < \infty, \quad \sup_{x \in \Omega} \int_{\Omega} |K(|x-y|)| dy = k_1 < \infty,$$

and the operator J defined by

$$Jz = \int_{\Omega} K(|x-y|)z(y) dy$$

satisfies

$$\|Jz\|_{H^{1,p}} \leq r_p \|z\|_{L^p(\Omega)}, \quad 1 \leq p \leq \infty.$$

In addition, the existence of a triple (u^*, v^*, w^*) and a sequence of times $t_n \to \infty$ such that

$$u(t_n) \to u^* \text{ strongly in } L^2(\Omega)$$

$$w(t_n) \to w^* \text{ strongly in } H^1$$

$$\arctan(e^{-v(t_n)/2}) \to \arctan(e^{-v^*/2}) \text{ strongly in } H^1, \quad v^* = \text{const.}$$

with

$$u^* = \frac{1}{1 + \exp(w^* - v^*)}, \quad v^* = \text{const}, \quad w^* = \int_{\Omega} K(|x-y|)(1-2u^*(t,y)) dy$$

was proved.

In what follows, for the sake of simplicity, and without loss of generality, we will assume that

$$0 < a = \text{const}, \quad |\Omega| = 1.$$

Then

$$\mu = \frac{a}{f''(u)} = a \frac{u(1-u)}{1-u} + w.$$
3 Global boundedness

In this section, we prove that \(\ln u(t), \ln(1 - u(t)) \), and, consequently, \(v \), is globally bounded in \(L^r(\Omega) \) for any \(1 \leq r < \infty \). We proceed as follows. First, we assume that

\[
0 < c \leq u(0, x) \leq 1 - c, \quad \text{for a.a. } x \in \Omega, \tag{3.1}
\]

and show that \(\| \ln u(t) \|_{L^1(\Omega)} \leq m_1 \), for all \(t \geq 1 \), where \(m_1 \) depends only on \(u_0 \), the integral mean of the initial datum. The proof is based on a comparison with a quadratic ODE. The continuous dependence on the initial data allows us to prove boundedness of \(\| \ln u(t) \|_{L^r(\Omega)} \) for any \(u_0 \) satisfying (1.4) (Lemma 3.3). Then the iteration method of Alikakos is used to show that \(\| \ln u(t) \|_{L^r(\Omega)} \) remains bounded, where the bound depends on the initial datum. It follows that it is sufficient to derive bounds for \(L^r \)-norms with a general datum satisfying (1.4) only at some times \(t_r \) to get the corresponding estimates for \(t \geq t_r \). The dependence on the initial datum is removed at the cost that the estimate depends on \(r \), again, using a comparison with a suitable ODE. Finally, existence of a sequence \(t_n \to \infty \) such that \(u(t_n) \to u^* \) in \(L^2(\Omega) \), \(\| \ln u(t_n) \|_{L^2(\Omega)} \leq c \), \(\| u^* \|_{L^\infty(\Omega)} \leq c \) implies that also \(\ln(u(t_n)) \to \ln(u^*) \) in \(L^2(\Omega) \), and the interpolation inequality enables to show that there is a sequence of times \(t_r \to \infty \) such that \(\| \ln u(t) \|_{L^r(\Omega)} \leq c \) for \(t \geq t_r \) (Lemma 3.4).

To begin, assume (3.1). Then, by (2.1), there is \(t_0 > 0 \) such that \(\frac{1}{u} \in L^2(0, t_0; H^1(\Omega)) \). It follows that the time derivative of \(\int \ln u \, dx \) is an \(L^1 \)-function and we have

\[
\frac{d}{dt} \int_\Omega |\ln u(t)| \, dx = -\frac{d}{dt} \int_\Omega \ln u(t) \, dx
\]

\[
= \int_\Omega \frac{1}{u^2} \nabla u(t) \cdot \nabla u(t) - \frac{1}{u^2} \nabla u(t) \cdot au(1-u)(t) \nabla w(t) \, dx
\]

\[
= -\int_\Omega a |\nabla \ln u(t)|^2 \, dx - \int_\Omega a(1-u)(t) \nabla \ln u(t) \nabla w(t) \, dx
\]

\[
\leq -\frac{1}{2} \int_\Omega a |\nabla \ln u(t)|^2 \, dx + \frac{1}{2} \int_\Omega a |\nabla w(t)|^2 \, dx.
\]

Similarly,

\[
\frac{d}{dt} \int_\Omega -\ln(1-u) \, dx = -\int_\Omega \frac{1}{(1-u)^2} \nabla u \cdot a \nabla u - \frac{1}{(1-u)^2} \nabla u \cdot au(1-u) \nabla w \, dx
\]

\[
= -\int_\Omega a |\nabla \ln(1-u)|^2 \, dx + \int_\Omega au \nabla \ln(1-u) \nabla w \, dx
\]

\[
\leq -\frac{1}{2} \int_\Omega a |\nabla \ln(1-u)|^2 \, dx + \frac{1}{2} \int_\Omega a |\nabla w|^2 \, dx.
\]
Denote
\[C_1 = \frac{1}{2} \text{ess sup}_{t \geq 0} \|\nabla w(t)\|_\infty^2, \]
(3.2)
\[\Omega'_1 = \{ x \in \Omega; u(t, x) \geq \frac{1}{2} u_\alpha \}. \]
(3.3)
Then, necessarily,
\[|\Omega'_1| \geq \frac{1}{2} u_\alpha \quad \text{for all } t \geq 0. \]
(3.4)
Indeed, if it is not the case, then we have
\[u_\alpha = \int_\Omega u(t, x) \, dx = \int_{\Omega_1} + \int_{\Omega \setminus \Omega_1} < \frac{u_\alpha}{2} \cdot 1 + \frac{u_\alpha}{2} |\Omega \setminus \Omega_1| < u_\alpha, \]
a contradiction.

To estimate \(\int_{\Omega} a |\nabla \ln u|^2 \, dx \), we use the following lemma, which is a particular case of Theorem 4.2.1 in [7].

Lemma 3.1 Let \(\Omega \) be a connected, Lipschitz domain and suppose \(z \in H^1(\Omega) \). If \(L \in [H^1(\Omega)]^* \) and \(L(\chi_\Omega) = 1 \), then
\[\|z - L(z)\|_{L^2(\Omega)} \leq C_2 \|L\| \|\nabla z\|_{L^2(\Omega)}, \]
(3.5)
where \(C_2 = C_2(\Omega). \)

(Here we denoted by \(L(z) \) both the value of the functional and the corresponding constant function). We apply Lemma 3.1 with the functional \(L \) of the form
\[Lz = \frac{1}{|\Omega_1|} \int_{\Omega_1} z(x) \, dx, \quad \text{where } \Omega_1 \subset \Omega. \]

Then
\[\|L\| = \frac{1}{|\Omega_1|}, \]
and, with \(z = \ln u \), we have for a.a. \(t \geq 0 \), and \(\Omega_1 = \Omega'_1 \),
\[\int_\Omega |\nabla \ln u(t)|^2 \, dx \geq \left(\frac{|\Omega'_1|}{C_2} \left(\|\ln u(t) - L(\ln u(t))\|_{L^2(\Omega)} \right) \right)^2 \]
\[\geq \frac{|\Omega'_1|^2}{2C_2^2} \left(\int_\Omega |\ln u(t)| \, dx \right)^2 - \frac{|\Omega'_1|}{C_2^2} \ln \frac{u_\alpha}{2}. \]
(3.6)
To get the second inequality we used the definition of \(\Omega'_1 \), Hölder’s inequality and the fact that \(|a - b|^2 \geq \frac{a^2}{2} - b^2 \). It follows that
\[\frac{d}{dt} \int_\Omega |\ln u(t)| \, dx + \beta^2 \left(\int_\Omega |\ln u(t)| \, dx \right)^2 \leq N^2 \]
where
\[\beta^2 = \frac{a}{4C_2^2} \left(\frac{u_\alpha}{2} \right)^2, \quad N^2 = \frac{a}{2C_2^2} \left(\ln \frac{u_\alpha}{2} \right)^2 + C_1. \]
Then \(\int_{\Omega} |\ln u(t)| \, dx \) is dominated by the solution \(b \) of the equation
\[
\dot{b}(t) + \beta^2 b^2(t) = N^2, \quad b(0) = \int_{\Omega} |\ln u(0)| \, dx.
\]
(3.7)
The solution of this equation is bounded by \(\frac{N}{\beta} \) if the initial value \(b(0) \leq \frac{N}{\beta} \),
and it is given by
\[
b(t) = \frac{N \exp(2N\beta(t + k)) + 1}{\beta \exp(2N\beta(t + k)) - 1}
\]
(3.8)
for \(b(0) > \frac{N}{\beta} \), where \(k \) is chosen such that the initial condition is satisfied.

We see that for \(t \geq 1 \) and any \(k \geq 0 \), the estimate
\[
\|\ln u(t)\|_1 \leq m_1 \triangleq \frac{N \exp(2N\beta) + 1}{\beta \exp(2N\beta) - 1}
\]
(3.9)
holds true, where \(m_1 \) depends only on \(u_\alpha \), the integral mean of \(u_0 \).

If \(u(0) \) satisfies (1.4) but not (3.1), we find a sequence of functions \(u^n(0) \) satisfying (3.1) such that
\[
u^n(0) \to u(0) \text{ in } L^\infty(\Omega),
\]
and use the following lemma on continuous dependence of solutions on the initial data:

Lemma 3.2 Let \(u_1, u_2 \) be two solutions of (1.1), (1.2). Then
\[
\|(u_1 - u_2)(t)\|_{L^2(\Omega)}^2 \leq C(t) \|(u_1 - u_2)(0)\|_{L^2(\Omega)}^2.
\]
(3.10)

Proof: We subtract the corresponding equations (1.1) and multiply by \(u_1 - u_2 \). We get
\[
\frac{d}{dt} \frac{1}{2} \|u_1 - u_2\|_{L^2(\Omega)}^2
\]
\[
= - \int_{\Omega} a|\nabla u_1 - \nabla u_2|^2 - (\mu_1 \nabla w_1 - \mu_2 \nabla w_2)(\nabla u_1 - \nabla u_2) \, dx
\]
\[
\leq - \int_{\Omega} \frac{a}{2} |\nabla u_1 - \nabla u_2|^2
\]
\[
+ \frac{a}{2} \left[u_1(1 - u_1)(\nabla w_1 - \nabla w_2) + u_1(1 - u_1) - u_2(1 - u_2)\nabla w_2(t) \right]^2 \, dx
\]
\[
\leq \frac{a}{16} \|\nabla w_1 - \nabla w_2\|_{L^2(\Omega)}^2 + a\|\nabla w_2\|_{L^\infty(\Omega)}^2 \|u_1 - u_2\|^2 \leq C \|u_1 - u_2\|_{L^2(\Omega)}^2.
\]
Hence (3.10) follows.

Consequently, \(u^n(t) \to u(t) \) in \(L^2(\Omega) \), for any \(t > 0 \), and also in \(L^r(\Omega) \) for any \(r > 0 \) because \(\|u(t)\|_{L^\infty(\Omega)} \leq 1 \). Moreover, \(\int_{\Omega} |\ln u^n(t)| \, dx \leq m_1 \) for any \(n \) and any \(t > 1 \), which allows us to deduce
\[
\int_{\Omega} |\ln u(t)| \, dx \leq m_1, \quad t > 1.
\]
(3.11)
The same procedure applies to \(\int_{\Omega} |\ln(1 - u)| \, dx \), which, together with (2.7) yields:
Lemma 3.3 Let \(u_0 \) satisfy (1.4), \((u, v, w)\) be a solution of (1.1)-(1.4). Then

\[
\|v(t)\|_{L^1(\Omega)} \leq m_1 + r_\infty \quad \text{for all} \quad t \geq 1, \tag{3.12}
\]

\[
\|w(t)\|_{H^1(\Omega)} \leq r_\infty \quad \text{for} \quad t \geq 0, \tag{3.13}
\]

where \(m_1, r_\infty \) are given by (3.9), (2.7) respectively.

Next, we derive estimates of the norm of \(\ln u(t) \), also in the space \(L^r(\Omega), r \geq 2 \).

Proposition 3.1 Let \(u \) be a solution of (1.1)-(1.4). Then there exist constants \(B_1, B_2, B_3 \), depending only on \(u_\alpha \), and a sequence of times \(\{t_r\} \) such that the following estimates hold for \(r \geq 1 \):

\[
\| \ln u(t) \|_{L^r(\Omega)} \leq B_1 \| \ln u(0) \|_{L^r(\Omega)} \quad \text{for all} \quad t \geq 0, \tag{3.14}
\]

\[
\| \ln u(t) \|_{L^r(\Omega)} \leq B_2 r \tag{3.15}
\]

\[
\| \ln u(t) \|_{L^r(\Omega)} \leq B_3 \quad \text{for all} \quad t \geq t_r. \tag{3.16}
\]

Proof. For \(r \geq 2 \) we denote

\[
\mathcal{M}_r(t) = \int_\Omega (-\ln u(t))^r \, dx, \tag{3.17}
\]

and estimate its time derivative:

\[
\frac{d}{dt} \mathcal{M}_r(t) = \frac{d}{dt} \int_\Omega (-\ln u(t))^r \, dx = -r \int_\Omega (-\ln u(t))^{r-1} u_t \, dx
\]

\[
= r \int_\Omega \nabla \left(\frac{(-\ln u(t))^{r-1}}{u} \right) \mu \nabla v(t) \, dx
\]

\[
= -r \int_\Omega \left((r-1)(-\ln u(t))^{r-1} \nabla u + (-\ln u(t))^{r-1} \nabla u \frac{a(\nabla u + u(1-u)\nabla w)}{u^2} \right) \, dx
\]

\[
= -r \int_\Omega a \left[(r-1)(-\ln u)^{r-2} + (-\ln u)^{r-1} \right] \left[u^2 |\nabla \ln u|^2 + \nabla (\ln u)(1-u)\nabla w \right] \, dx
\]

\[
\leq -r \int_\Omega a \left[(r-1)(-\ln u)^{r-2} + (-\ln u)^{r-1} \right] \left[\frac{1}{2} |\nabla \ln u|^2 - \frac{1}{2} (1-u)^2 |\nabla w|^2 \right] \, dx
\]

\[
\leq -r \int_\Omega a(r-1)(-\ln u)^{r-2} \frac{1}{2} |\nabla \ln u|^2 \, dx
\]

\[
+ \int_\Omega \left[r(r-1)(-\ln u)^{r-2} + r(-\ln u)^{r-1} \right] C_1 \, dx
\]
\[\begin{align*}
= - \frac{2a(r-1)}{r} \int_{\Omega} \left| \nabla (-\ln u) \right|^2 dx + \\
+ C_1 \int_{\Omega} r(r-1)(-\ln u)^{r-2} + r(-\ln u)^{r-1} dx
\end{align*} \]

where \(C_1 \) is given by (3.2), and we used the inequality

\[\| \xi \|^2_{L^2} \leq \| \nabla \xi \|^2_{L^2} + C \varepsilon^{-n/2} \| \xi \|^2_{L^1}. \]

With the notation (3.17) we have \(\mathcal{M}_s(t) \leq \mathcal{M}_r(t) \) whenever \(s \leq r \) and \(\mathcal{M}_r(t) \geq 1 \). Then, taking \(\varepsilon = \frac{a}{C_1 r^2} \), we arrive at

\[\begin{align*}
\frac{d}{dt} \mathcal{M}_r(t) &\leq -C_1 r(r-2) \mathcal{M}_r(t) + 2C_1 rCa^{-\frac{n}{2}}C_1^\frac{n}{2}(r-1)r^n \left(\mathcal{M}_r (t) \right)^2 \\
&\leq -2C_1 r \mathcal{M}_r(t) + 2C_1 r A r^{n+1} \left(\mathcal{M}_r (t) \right)^2 ,
\end{align*} \]

provided that \(r \geq 4 \) and \(A = C a^{-n/2} C_1^{n/2} \). This yields

\[\mathcal{M}_r(t) \leq 2 \max \{ 1, \ \text{ess sup}_{t \in (0,t_0)} A r^{n+1} \left(\mathcal{M}_r (t) \right)^2, \ \mathcal{M}_r(0) \} . \]

Consequently, choosing \(r = 2^k \), we get

\[\mathcal{M}_{2^k}(t) \leq A 2^{k(n+2)} \cdot \left(A 2^{(k-1)(n+2)} \right)^2 \cdots \left(A 2^{(k-(k-1))(n+2)} \right)^{2^{k-1}} \cdot \left(\mathcal{M}_{1,2^k} \right)^{2^k} , \]

where

\[\mathcal{M}_{1,r} = \max \{ 1, \ \text{ess sup}_{t > 0} \mathcal{M}_1(t), \ \mathcal{M}_r(0) \} . \]

The right hand side of (3.21) becomes

\[A^{2^{k-1}} \left(\mathcal{M}_{1,2^k} \right)^{2^k} \cdot 2^{n+2} \cdot 2^{n+2} \cdot 2^{k-2} \cdot \cdots \cdot 2^{k-1} \cdot \left(\mathcal{M}_{1,2^k} \right)^{2^k} \]

\[= A^{2^{k-1}} \left(\mathcal{M}_{1,2^k} \right)^{2^k} \cdot 2^{n+2} \cdot (-k+2^{k+1}-2) . \]

Taking the \(1/2^k\) power of both sides of (3.21) we obtain

\[\| \ln u(t) \|_{L^r(\Omega)} \leq A \mathcal{M}_{1,r} \cdot 2^{2(n+2)} , \quad r = 2^k , \]

which implies (3.14).

To get estimates independent of the size of the initial value \(\| \ln u(0) \|_{L^r(\Omega)} \), we proceed in a similar way as in the proof of Lemma 3.3. Dominating the
equation for \mathcal{F}_t by a quadratic differential equation, we get an estimate which does not depend on the size of the initial datum, but it grows as r^2. It is sufficient to show (3.15) for some $t_0 \in (0, 1]$, and then proceed as in the proof of (3.14) starting at t_0. To get a quadratic equation, we denote

$$M_r(t) = \mathcal{F}_t(t) = \|\ln u(t)\|_{L^r(\Omega)},$$

and estimate its time derivative:

$$\frac{d}{dt} M_r = \frac{1}{r} \mathcal{F}^{\frac{1}{r} - 1}_t \cdot \frac{d}{dt} \mathcal{F}_r.$$

We proceed in the same way as above but this time we need more precise estimates, so we do not neglect the (negative) term

$$-ar \int_\Omega (-\ln u)^{r-1} \frac{1}{2} |\nabla \ln u|^2 \, dx = -\frac{2a}{(r+1)^2} \int_\Omega \left|\nabla (-\ln u)^{\frac{r+1}{2}}\right|^2 \, dx.$$

Thus we have (see (3.18)):

$$\frac{d}{dt} M_r \leq -\mathcal{F}^{\frac{1}{r} - 1}_t \cdot \int_\Omega \left[(r-1)(-\ln u)^{r-2} + (-\ln u)^{r-1} \right]$$

$$\cdot \left[-\frac{1}{2} |\nabla \ln u|^2 - \frac{1}{2} (1-u)^2 |\nabla w|^2 \right] \, dx$$

$$\leq -\frac{2a(r-1)}{r^2} \mathcal{F}^{\frac{1}{r} - 1}_t \cdot \int_\Omega \left|\nabla (-\ln u)^{\frac{r+1}{2}}\right|^2 \, dx$$

$$- \frac{2a}{(r+1)^2} \mathcal{F}^{\frac{1}{r} - 1}_t \cdot \int_\Omega \left|\nabla (-\ln u)^{\frac{r+1}{2}}\right|^2 \, dx$$

$$+ \mathcal{F}^{\frac{1}{r} - 1}_t - C_1 [(r-1)M_{r-2} + M_{r-1}]$$

Now, we apply Lemma 3.1 with

$$z = |\ln u|^2, \quad z = |\ln u|^\frac{r+1}{2},$$

respectively. Taking (3.4) and (3.6) into account, we get

$$\int_\Omega \left|\nabla (-\ln u)^{\frac{r}{2}}\right|^2 \, dx \geq \frac{u_0^2}{8C^2_2} M_r - \frac{u_0}{C^2} \ln \frac{u_0}{2} |r|,$$

$$\int_\Omega \left|\nabla (-\ln u)^{\frac{r+1}{2}}\right|^2 \, dx \geq \frac{u_0^2}{8C^2_2} M_{r+1} - \frac{u_0}{C^2} \ln \frac{u_0}{2} |r+1|.$$

If

$$\frac{1}{2} \frac{u_0^2}{8C^2_2} M_r \leq \frac{u_0}{C^2} \ln \frac{u_0}{2} |r|, \quad \frac{1}{2} \frac{u_0^2}{8C^2_2} M_{r+1} \leq \frac{u_0}{C^2} \ln \frac{u_0}{2} |r+1|,$$

at some point $t_0 \in (0, 1)$ then we can start at this point and proceed as in the proof of (i) to show that $M_r(t), M_{r+1}(t)$ are bounded for all $t \geq t_0$. If it is not the case, we arrive at the estimate

$$\frac{d}{dt} M_r \leq -\frac{au_0^2}{4C^2_2} \frac{r-1}{r^2} M_r - \frac{au_0^2}{16C^2_2} \frac{1}{(r+1)^2} M_r^2 + C_1 [(r-1)M_{r-1}^2 + 1].$$

(3.23)
Again, we are done if we can find a constant $C_3 > 0$ such that $M_r(t_1) \leq C_3r$ for some $t_1 \in (0,1)$. Otherwise we have
\[
\frac{au^2}{4C_2^2} \frac{r - 1}{r^2} M_r \geq C_1((r - 1)M_r^{-1} + 1)
\]
for $t \in (0,1)$, which implies that M_r satisfies a quadratic differential inequality, and we deduce that
\[
M_r(1) \leq C_4r^2, \quad C_4 = \frac{32C_2^2}{au_0^2}.
\]
Hence (3.15) follows.

To prove (3.16), we use (3.15), (2.8), and the interpolation inequality. There is a sequence of times $\{t_n\} \to \infty$ such that $u(t_n) \to u^*$ strongly in $L^2(\Omega)$, and $\|\ln u(t_n)\|_{L^2(\Omega)} \leq 4B_2$. Hence, we get
\[
\ln(u_{t_n}) \to \ln(u^*) \text{ strongly in } L^2(\Omega),
\]
where, due to (2.11), and the boundedness of w,
\[
\max\{\|u^*\|_{L^\infty(\Omega)}, \|1 - u^*\|_{L^\infty(\Omega)}\} = m < 1
\]
and, subsequently,
\[
\max\{\|\ln u^*\|_{L^\infty(\Omega)}, \|\ln(1 - u^*)\|_{L^\infty(\Omega)}\} \leq C_5 = -\ln m.
\]
Now, we find a sequence $\{\varepsilon_r\}$ such that
\[
\varepsilon_r \leq \left(\frac{1}{4B_2r^2 + C_5}\right)^{r^{-1}},
\]
and a corresponding sequence of times $\{t_r\}$ such that
\[
\|\ln u(t_r) - \ln u^*\|_{L^2(\Omega)} \leq \varepsilon_r.
\]
It follows that
\[
\|M_r(t_r)\|_{L^r(\Omega)} \leq \|\ln u(t_r) - \ln u^*\|_{L^2(\Omega)} \cdot \|\ln u(t_r) - \ln u^*\|_{L^{2r}(\Omega)} + C_5
\]
\[
\leq \varepsilon_r^{-1} (4B_2r^2 + C_5) + C_5 \leq 1 + C_5.
\]
Again, starting at t_r, we repeat the proof of (3.14) to get (3.16).

q.e.d.

Remark 1. This procedure applied to $\|\ln(1 - u)\|_r^r$ yields the same estimates also in this case. With Lemma 3.3 at hand, we can also deduce the convergence of a sequence $v(t_n)$ to v^* in $L^2(\Omega)$, in addition to (2.10).
Remark 2. Assuming that
\[f'(u_0) \in L^\infty(\Omega), \] (3.25)
we can take the limit as \(k \to \infty \) of both sides of (3.22) to infer that there is a constant \(B \) (which does not depend on time) such that
\[\| v(t) \|_{L^\infty(\Omega)} \leq B \quad \text{for all} \quad t \geq 0, \] (3.26)
which extends the assertion of Theorem 3.5 in [5]. We also have the \(L^\infty \)-estimate for \(u \), namely, there exists a constant \(0 < k < 1 \) depending only on \(u_\alpha \) such that
\[k \leq u(t, x) \leq 1 - k \quad \text{for a.a.} \quad x \in \Omega, \quad t \geq 0, \] (3.27)
and, consequently,
\[ak^2 \leq \mu \leq \frac{a}{4} \quad \text{for a.a.} \quad x \in \Omega, \quad t \geq 0. \] (3.28)

4 Łojasiewicz-Simon Theorem

In this section, we state the generalized version of the Łojasiewicz-Simon Theorem proved in [4].

Let \(V \) and \(W \) be Banach spaces densely and continuously embedded into the Hilbert space \(H \) and its dual \(H^* \), respectively. Assume that the restriction of the duality map \(J \in L(H, H^*) \) to \(V \) is an isomorphism from \(V \) onto \(W = J(V) \). Moreover, let \(H = H_0 + H_1 \) where \(H_1 \subset V \) is a finite-dimensional subspace and \(H_0 \) is its orthogonal complement in \(H \). Denote by \(H_0^0 \) the annihilator of \(H_0 \):
\[H_0^0 = \{ g \in H^*; \langle g, z \rangle = 0 \text{ for all } z \in H_0 \}. \]

Let
\[F \overset{\text{def}}{=} \Phi + \Psi, \] (4.1)
with \(\Phi, \Psi \) satisfying the following conditions:

\(\Phi \) is a Fréchet differentiable functional from an open set \(U \subset V \to R \). Moreover, assume that the Fréchet derivative \(D\Phi : U \to W \) is a real analytic operator which satisfies
\[\langle D\Phi(z_1) - D\Phi(z_2), z_1 - z_2 \rangle \geq \alpha \| z_1 - z_2 \|^2_H, \]
\[\| D\Phi(z_1) - D\Phi(z_2) \|_{H^*} \leq \gamma \| z_1 - z_2 \|_H, \] (4.2)
for all \(z_1, z_2 \in U \) and some constants \(\alpha, \gamma > 0 \). In addition, the second Fréchet derivative \(D^2\Phi(z) \in L(V, W) \) is assumed to be an isomorphism for all \(z \in U \). Concerning \(\Psi \), assume that
\[\Psi(z) = \frac{1}{2} \langle Tz, z \rangle + \langle l, z \rangle + d, \quad z \in H, \]
where \(T \in L(H, H^*) \) be a self-adjoint and completely continuous operator such that its restriction to \(V \) is a completely continuous operator in \(L(V, W) \). \(l \in W \) and \(d \in \mathbb{R} \) are fixed.
Theorem 4.1 Let F be given by (4.1) and the above assumptions be satisfied. Let $(u^*, v^*) \in U \times H_0^0$ satisfy $DF(u^*) = v^*$. Then we can find constants δ, $\lambda > 0$, and $\theta \in (0, \frac{1}{2})$ such that for all $z \in U$ which satisfy $z - u^* \in H_0$ and $\|z - u^*\|_H \leq \delta$ we have the following inequality:

$$|F(z) - F(u^*)|^{1-\theta} \leq \lambda \inf\{\|DF(z) - f\|_{H^*}; f \in H_0^0\}. \quad (4.3)$$

5 Convergence

In this section, we prove that there is $T > 0$ such that $u_t \in L^1(T, \infty; (H^1)^*)$, which enables us to show convergence of the whole trajectory of u to u^*, a stationary solution given by (2.11). We will apply Theorem 4.1 to the energy functional associated with our system, i.e.,

$$F(z) = \int_\Omega f(z) + u \mathcal{J}(z) + z \cdot K * 1 \, dx, \quad u^*, \quad v^* \text{ satisfy } (2.11), \quad (5.1)$$

the corresponding spaces being

$$H = H^* = L^2(\Omega), \quad H^0 = \{z \in H; \int_\Omega z \, dx = 0\}, \quad H_0^0 = \{z = \text{const}\},$$

$$V = L^\infty(\Omega), \quad U = \{z \in V; \frac{k}{2} < z(x) < 1 - \frac{k}{2}\},$$

$$\Phi(u) = \int_\Omega f(u) \, dx, \quad T(u) = -2 \mathcal{J}(u), \quad l = K * 1, \quad d = 0.$$

Multiplying (1.1) by v and (1.2) by u_t, integrating over Ω and subtracting, we obtain the energy equality

$$\frac{d}{dt} F(u(t)) = \frac{d}{dt} \int_\Omega f(u(t)) - u(t)\mathcal{J}(u(t)) + u(t)l dx = -\int_\Omega \mu|\nabla v|^2 dx \quad (5.2)$$

As $u(t)$ stays bounded away from zero and one, the functional F is bounded from below and the hypotheses in Theorem 4.1 are fulfilled. Indeed, the function f is strictly convex on $(\frac{k}{2}, 1 - \frac{k}{2})$, hence (4.2) holds, and $\langle D^2 \Phi(z)z_1, z_2 \rangle = \int_\Omega f''(z)z_1 \cdot z_2 \, dx$ yields that $D^2 \Phi(z) \in L(V, W)$ is an isomorphism for all $z \in U$. Moreover, the convolution operator is compact on the corresponding spaces and $l \in W$ by (2.6).

The limit energy

$$F_\infty = \lim_{t \to \infty} F(u(t)) = F(u^*)$$

is the same for any u^* in the $\omega-$limit set of u.

The Fréchet derivative of $F(u(t))$ is represented by

$$F'(u(t)) = f'(u(t)) - 2\mathcal{J}(u(t)) + l = v(t)$$
Now, let \((u^*, v^*, w^*)\) belong to the \(\omega\)-limit set and satisfy (2.11). (Existence of such solutions was proved in [5]). Then

\[F'(u^*) = v^*, \; u^* \in U, \]

and integrating (5.2) from \(t\) to \(\infty\), we get

\[
\int_t^\infty \int_\Omega \mu|\nabla v|^2 \, dx \, ds = F(u(t)) - F_\infty = F(u(t)) - F(u^*). \tag{5.3}
\]

By virtue of Theorem 4.1, we have

\[
|F(u(t)) - F(u^*)|^{1-\theta} \leq \lambda \inf \{\|v(t) - z\|_{L^2(\Omega)}; \; z = \text{const}\} = \lambda \|v(t) - \int_\Omega (t) \, dx\|_{L^2(\Omega)}
\]

provided that

\[
\|u(t) - u^*\|_{L^2(\Omega)} \leq \delta. \tag{5.4}
\]

This, combined with (5.2) and taking into account (2.12), (3.25), (3.28), yields

\[
\frac{4}{a} \int_t^\infty \int_\Omega (\mu|\nabla v|^2) \, dx \, ds \leq \int_t^\infty \int_\Omega \mu|\nabla v|^2 \, dx \, ds
\]

\[
\leq \lambda \|v(t) - \int_\Omega (t) \, dx\|_{L^2(\Omega)}^{\frac{1}{\theta}} \leq \lambda c \|\nabla v(t)\|_{L^2(\Omega)}^{\frac{1}{\theta}}, \tag{5.5}
\]

where \(c\) depends only on the domain \(\Omega\), and \(k\) is the bound from (3.27).

At this point, we employ the following lemma, the proof of which can be found in [3].

Lemma 5.1 Let \(Z \geq 0\) be a measurable function on \((0, \infty)\) such that

\[Z \in L^2(0, \infty), \; \|Z\|_{L^2(0, \infty)} \leq Y \]

and there exist \(\alpha \in (1, 2), \; \xi > 0\) and an open set \(M \subset (0, \infty)\) such that

\[
(\int_t^\infty Z^2(s) \, ds)^\alpha \leq \xi \; Z^2(t) \text{ for a.a. } t \in M.
\]

Then \(Z \in L^1(M)\) and there exists a constant \(c = c(\xi, \alpha, Y)\) independent of \(M\) such that

\[
\int_M Z(s) \, ds \leq c.
\]
Setting $Z(t) = \|\mu|\nabla v|t\|_{L^2(\Omega)}$ in Lemma 5.1, we get
\[
\int_{\mathcal{M}} \|\mu \nabla u(t)\|_{L^2(\Omega)} ds < \infty, \tag{5.6}
\]
where
\[
\mathcal{M} = \bigcup J \{ J \mid J \text{ is an open interval where (5.4) holds} \}.
\]

Since $u^* \in \omega[u]$, \mathcal{M} is non-empty, and realizing that
\[
\|u_t\|_{H^1(\Omega)^*} \leq \langle \nabla \mu(t) \nabla v(t), \frac{-v(t)}{\|v(t)\|_{H^1(\Omega)}} \rangle
\]
\[
= \int_{\Omega} \mu(t) \frac{|\nabla v(t)|^2}{\|v(t)\|_{H^1(\Omega)}} dx \leq \|\mu(t) \nabla v(t)\|_{L^2(\Omega)},
\]
we get
\[
\int_{\mathcal{M}} \|u_t(t)\|_{H^1(\Omega)^*} dt < \infty. \tag{5.7}
\]

Our next goal is to show that there exists τ such that $(\tau, +\infty) \subset \mathcal{M}$. To begin, realize that from the inequality (5.3) and (3.28) we deduce that $u_t \in \mathcal{L}^2(0, +\infty; H^1(\Omega)^*)$, $|\nabla v| \in \mathcal{L}^2(0, +\infty; L^2(\Omega))$.

To any $\delta > 0$ we find $T(\delta) > 0$ such that
\[
\|u_t\|_{L^1(\mathcal{M} \cap (T(\delta), +\infty); H^1(\Omega)^*)} < \delta \tag{5.8}
\]
\[
\|u_t\|_{\mathcal{L}^2((T(\delta), +\infty); H^1(\Omega)^*)} < \delta \tag{5.9}
\]
\[
\|\nabla v\|_{\mathcal{L}^2((T(\delta), +\infty); L^2(\Omega))} < \delta \tag{5.10}
\]

Next, let $(t_1, t_2) \subset \mathcal{M}$, $t_i \geq T(\delta)$ for some $\delta < 1$. We can find $t_3 \in [t_1, t_1 + 1]$ such that
\[
\|u(t_3)\|_{H^1(\Omega)} \leq N = 1 + \frac{\sqrt{C_1}}{4\sqrt{2a}} + \frac{1}{4},
\]
where C_1 comes from (3.2). In fact,
\[
\|\nabla u(t)\|_{L^2(\Omega)} = \frac{1}{f''(u(t))} (\nabla v(t) - \nabla w(t)) \|_{L^2(\Omega)}
\]
\[
\leq \frac{1}{4} (\|\nabla v(t)\|_{L^2(\Omega)} + \|\nabla w(t)\|_{L^2(\Omega)}), \tag{5.11}
\]
and there is $t_3 \in [t_1, t_1 + 1]$ such that $\nabla v(t_3) \leq \delta < 1$, in view of (5.10). Then
\[
\|u(t_1) - u(t_2)\|_{L^2(\Omega)}^2 \leq 2 \left[\|u(t_1) - u(t_3)\|_{L^2(\Omega)}^2 + \|u(t_3) - u(t_2)\|_{L^2(\Omega)}^2 \right],
\]
and we obtain
\[\frac{1}{2} \| u(t) - u(\tau) \|^2_{L^2(\Omega)} = \int_{\tau}^{t} \langle u(s), u(t) - u(s) \rangle ds \]
\[\leq \int_{\tau}^{t} \| u(s) \|_{H^1(\Omega)^*} \left[\| u(t) \|_{H^1(\Omega)} + \| u(s) \|_{L^2(\Omega)} \right] \]
\[+ \frac{1}{4} \left(\| \nabla w(s) \|_{L^2(\Omega)} + \| \nabla v(s) \|_{L^2(\Omega)} \right) ds \]
\[\leq \| u_t \|_{L^1([\tau, t]; H^1(\Omega)^*)} \left[N + \| u \|_{L^\infty(0, +\infty; L^2(\Omega))} + \| \nabla w \|_{L^\infty(0, +\infty; L^2(\Omega))} \right] \]
\[+ \| u_t \|_{L^2(T(\delta), +\infty; H^1(\Omega)^*)} \| \nabla v \|_{L^2(T(\delta), +\infty; L^2(\Omega))} \leq \delta(2N + \delta). \]

The same estimate holds for \(\| u(t_3) - u(t_2) \|_{L^2(\Omega)} \) provided that \(t_3 \geq t_2 \), and also for \(t_3 < t_2 \), where we use (5.8). Summing up, we have
\[\| u(t_1) - u(t_2) \|^2_{L^2(\Omega)} \leq 8\delta(2N + \delta) \quad (5.12) \]
and we can find \(\delta \) and the corresponding \(T(\delta) = \tau \) such that
\[\| u(t_1) - u(t_2) \|_{L^2(\Omega)} < \frac{\varepsilon}{3} \] whenever
\[\| u(t) - u^* \|_{L^2(\Omega)} < \varepsilon \text{ for all } t \in (t_1, t_2) \text{ where } \tau \leq t < \tau. \]

Since \(u^* \in \omega[u] \), a large \(\tau \) can be chosen so that
\[\| u(\tau) - u^* \|_{L^2(\Omega)} < \frac{\varepsilon}{3}, \quad (5.14) \]
and then (5.13) yields \([\tau, \infty) \subset M \). Indeed, taking
\[\bar{t} = \inf \{ t > \tau \mid \| u(t) - u^* \|_{L^2(\Omega)} \geq \varepsilon \}, \]
we have \(\bar{t} > \tau \) and
\[\| u(\bar{t}) - u^* \|_{L^2(\Omega)} \geq \varepsilon \text{ if } \bar{t} \text{ is finite.} \]

On the other hand, by virtue of (5.13), (5.14),
\[\| u(t) - u^* \|_{L^2(\Omega)} \leq \| u(t) - u(\tau) \|_{L^2(\Omega)} + \| u(\tau) - u^* \|_{L^2(\Omega)} < \frac{2}{3} \varepsilon \text{ for all } \tau \leq t < \bar{t} \]
which, together with (5.15), yields \(\bar{t} = \infty \).

We have proved the following result.

Theorem 5.1 Let \((u, v, w) \) be a solution of the problem (1.1)-(1.4) with the data given by (2.4), (2.6), (2.7), (2.12), and let (3.25) hold. Then there is \((u^*, v^*, w^*) \) satisfying (2.11) such that,
\[u(t) \to u^* \text{ strongly in } L^2(\Omega), \]
\[v(t) \to v^* \text{ strongly in } L^2(\Omega), \]
\[w(t) \to w^* \text{ strongly in } H^1(\Omega), \]
as time goes to infinity.
Remark 3. It is still an open question whether any solution with the initial datum u_0 satisfying (1.4) stabilizes to a single stationary state as time tends to infinity even in the case that there is a continuum of equilibria.

References

A538 Aly A. El-Sabbagh, F.A. Abd El Salam, K. El Nagaar
On the Existence of the selfadjoint Extension of the Symmetric Relation in Hilbert Space
December 2007

A537 Teijo Arponen, Samuli Piipponen, Jukka Tuomela
Kinematic analysis of Bricard's mechanism
November 2007

A536 Toni Lassila
Optimal damping set of a membrane and topology discovering shape optimization
November 2007

A535 Esko Valkeila
On the approximation of geometric fractional Brownian motion
October 2007

A534 Jarkko Niiranen
A priori and a posteriori error analysis of finite element methods for plate models
October 2007

A533 Heikki J. Tikanmäki
Edgeworth expansion for the one dimensional distribution of a Lévy process
September 2007

A532 Tuomo T. Kuusi
Harnack estimates for supersolutions to a nonlinear degenerate equation
September 2007

A531 Mika Juntunen, Rolf Stenberg
An unconditionally stable mixed discontinuous Galerkin method
November 2007

A530 Mika Juntunen, Rolf Stenberg
Nitsches Method for General Boundary Conditions
October 2007
HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The reports are available at http://math.tkk.fi/reports/.
The list of reports is continued inside the back cover.

A543 Outi Elina Maasalo
Self-improving phenomena in the calculus of variations on metric spaces
February 2008

A542 Vladimir M. Miklyukov, Antti Rasila, Matti Vuorinen
Stagnation zones for A-harmonic functions on canonical domains
February 2008

A541 Teemu Lukkari
Nonlinear potential theory of elliptic equations with nonstandard growth
February 2008

A540 Riikka Korte
Geometric properties of metric measure spaces and Sobolev-type inequalities
January 2008

A539 Aly A. El-Sabbagh, F.A. Abd El Salam, K. El Nagaar
On the Spectrum of the Symmetric Relations for The Canonical Systems of Differential Equations in Hilbert Space
December 2007

ISBN 978-951-22-9281-3 (PDF)
ISBN 978-951-22-9280-6 (print)
ISSN 0784-3143