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1 Introduction

This paper is devoted to the study of asymptotic properties and convergence
to equilibria of a two-phase model involving non-local terms. Considering a
binary alloy with components A and B occupying a spatial domain Ω, and
denoting by u and 1 − u the local concentrations of A and B respectively,
Gajewski and Zacharias [5] studied a model describing also long range inter-
action of particles. This phenomenon is represented by spatial convolution
with a suitable kernel, cf. Chen and Fife [2]. The system in question reads:

ut −∇ · (µ∇v) = 0 in (0, T ) × Ω, (1.1)

v = f ′(u) +

∫

Ω

K(|x − y|)(1 − 2u(t, y))dy, (t, x) ∈ (0, T ) × Ω. (1.2)

µν · ∇v = 0 in (0, T ) × ∂Ω, (1.3)

u(0, x) = u0, u0 ∈ L∞(Ω), 0 ≤ u0(x) ≤ 1, 0 <

∫

Ω

u0 dx = uα < 1. (1.4)

Gajewski and Zacharias [5] proved global existence, uniqueness of solutions
and compactness of trajectories in the space L2(Ω) under assumptions stated
below. In particular, the (strictly convex) function f is given by f(u) =
u ln u + (1−u) ln(1−u). However, convergence of trajectories of this system
to equilibria was proved only in the case when the non-convex global interac-
tion represented by the convolution term is small compared with the strong
convexity constant of f . This condition ensures that the equilibrium state is
uniquely defined, which need not be the case in general.

The convergence of solutions of various phase-field systems to equilibria
has been proved by many authors with help of the  Lojasiewicz inequality. In
our case, we have compactness of trajectories only in the space L2(Ω). But,
in this space, the energy functional is not twice continuously differentiable,
so we have to use the non-smooth version of the Simon- Lojasiewicz theorem
which was proved in [6] and generalized in [4]. This version is formulated in
Section 4.

The boundedness of v in L∞(Ω) norm was proved in [5] on compact time
intervals provided that the initial datum u0 is bounded away from ”pure
states” 0 and 1. The aim of the present paper is to show that this holds
true on the whole positive line and, moreover, any solution with such an
initial datum stabilizes to a single stationary state. In addition, the solution
starting from u0 satisfying (1.4) separates from 0 and 1 in the sense that

max
{

‖ ln u(t)‖Lr(Ω), ‖ ln(1 − u(t))‖Lr(Ω)

}

≤ Cr2 for all t ≥ 1, r ≥ 1, (1.5)

and there is a sequence of times {tr}, tr → ∞, when r → ∞, such that

max
{

‖ ln u(t)‖Lr(Ω), ‖ ln(1 − u(t))‖Lr(Ω)

}

≤ C for all t ≥ tr. (1.6)

We will proceed as follows. First, we start with the initial value such that

c ≤ u(0, x) ≤ 1 − c for a.a. x ∈ Ω, and some 0 < c < 1, (1.7)
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and prove that u remains bounded away from 0 and 1 for all t ≥ 0. To this
end, we apply the method of Alikakos [1] in a bit different way than in [5].
Then we prove (1.5), (1.6) (Lemma 3.3, Lemma 3.5). Finally, we apply a
generalized version of the  Lojasiewicz-Simon theorem to show that the time
derivative of u belongs to L1(T, +∞; H1(Ω)∗) which in turn allows us to show
convergence of u(t) in L2(Ω), when t → ∞.

2 Assumptions and Preliminaries

We assume that Ω ⊂ R
n is a bounded domain with a smooth boundary ∂Ω.

The existence of global weak solutions of the problem (1.1)-(1.4) in the class

u ∈ C(0, T ; L∞(Ω)) ∩ L2(0, T ; H1(Ω)), ut ∈ L2(0, T ); H1(Ω)∗), (2.1)

w =

∫

Ω

K(|x − y|)(1 − 2u(t, y))dy ∈ C(0, T ; H1,∞(Ω)), (2.2)

v = f ′(u) + w, (2.3)

was proved in [5] under the following assumptions:

f(u) = u ln u + (1 − u) ln(1 − u), (2.4)

µ =
a(x, |∇v|)

f ′′(u)
, a satisfies some monotonicity conditions, (2.5)

∫

Ω

∫

Ω

|K(|x− y|)| dx dy = k0 < ∞, sup
x∈Ω

∫

Ω

|K(|x − y|)|dy = k1 < ∞, (2.6)

and the operator J defined by J z =
∫

Ω
K(|x − y|)z(y)dy satisfies

‖J z‖H1,p ≤ rp‖z‖Lp(Ω), 1 ≤ p ≤ ∞. (2.7)

In addition, the existence of a triple (u∗, v∗, w∗) and a sequence of times
tn → ∞ such that

u(tn) → u∗ strongly in L2(Ω) (2.8)

w(tn) → w∗ strongly in H1 (2.9)

arctan(e−v(tn)/2) → arctan(e−v∗/2) strongly in H1, v∗ = const. (2.10)

with

u∗ =
1

1 + exp(w∗ − v∗)
, v∗ = const, w∗ =

∫

Ω

K(|x − y|)(1 − 2u∗(t, y))dy

(2.11)
was proved.

In what follows, for the sake of simplicity, and without loss of generality,
we will assume that

0 < a = const, |Ω| = 1. (2.12)

Then
µ =

a

f ′′(u)
= a u(1 − u), v = ln

u

1 − u
+ w. (2.13)
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3 Global boundedness

In this section, we prove that ln u(t), ln(1 − u(t)), and, consequently, v, is
globally bounded in Lr(Ω) for any 1 ≤ r < ∞. We proceed as follows. First,
we assume that

0 < c ≤ u(0, x) ≤ 1 − c, for a.a. x ∈ Ω, (3.1)

and show that ‖ ln u(t)‖L1(Ω) ≤ m1, for all t ≥ 1, where m1 depends only
on uα, the integral mean of the initial datum. The proof is based on a
comparison with a quadratic ODE. The continuous dependence on the initial
data allows us to prove boundedness of ‖ ln u(t)‖L1(Ω) for any u0 satisfying
(1.4) (Lemma 3.3). Then the iteration method of Alikakos is used to show
that ‖ ln u(t)‖Lr(Ω) remains bounded, where the bound depends on the initial
datum. It follows that it is sufficient to derive bounds for Lr-norms with a
general datum satisfying (1.4) only at some times tr to get the corresponding
estimates for t ≥ tr. The dependence on the initial datum is removed at the
cost that the estimate depends on r, again, using a comparison with a suitable
ODE. Finally, existence of a sequence tn → ∞ such that u(tn) → u∗ in L2(Ω),
‖ ln u(tn)‖L2(Ω) ≤ c, ‖ ln u∗‖L∞(Ω) ≤ c implies that also ln(u(tn)) → ln(u∗)
in L2(Ω), and the interpolation inequality enables to show that there is a
sequence of times tr → ∞ such that ‖ ln u(t)‖Lr(Ω) ≤ c for t ≥ tr (Lemma
3.4).

To begin, assume (3.1). Then, by (2.1), there is t0 > 0 such that
1
u

∈ L2(0, t0; H
1(Ω)). It follows that the time derivative of

∫

Ω
ln u dx is

an L1−function and we have

d

dt

∫

Ω

| ln u(t)| dx = − d

dt

∫

Ω

ln u(t) dx

=

∫

Ω

1

u2
∇u(t) a∇u(t) − 1

u2
∇u(t) au(1 − u)(t)∇w(t) dx

= −
∫

Ω

a|∇ ln u(t)|2 dx −
∫

Ω

a(1 − u)(t)∇ ln u(t)∇w(t) dx

≤ −1

2

∫

Ω

a|∇ ln u(t)|2 dx +
1

2

∫

Ω

a|∇w(t)|2 dx.

Similarly,

d

dt

∫

Ω

− ln(1−u) dx = −
∫

Ω

1

(1 − u)2
∇u a∇u− 1

(1 − u)2
∇u au(1−u)∇w dx

= −
∫

Ω

a|∇ ln(1 − u)|2 dx +

∫

Ω

au∇ ln(1 − u)∇w dx

≤ −1

2

∫

Ω

a|∇ ln(1 − u)|2 dx +
1

2

∫

Ω

a|∇w|2 dx.
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Denote
C1 =

a

2
ess sup

t≥0
‖|∇w(t)|‖2

∞, (3.2)

Ωt
1 = {x ∈ Ω; u(t, x) ≥ 1

2
uα}. (3.3)

Then, necessarily,

|Ωt
1| ≥

1

2
uα for all t ≥ 0. (3.4)

Indeed, if it is not the case, then we have

uα =

∫

Ω

u(t, x) dx =

∫

Ω1

+

∫

Ω\Ω1

<
uα

2
· 1 +

uα

2
|Ω\Ω1| < uα,

a contradiction.
To estimate

∫

Ω
a|∇ ln u|2 dx, we use the following lemma, which is a

particular case of Theorem 4.2.1 in [7].

Lemma 3.1 Let Ω be a connected, Lipschitz domain and suppose z ∈ H1(Ω).
If L ∈ [H1(Ω)]∗ and L(χΩ) = 1, then

‖z − L(z)‖L2(Ω) ≤ C2‖L‖‖∇z‖L2(Ω), (3.5)

where C2 = C2(Ω).

(Here we denoted by L(z) both the value of the functional and the corre-
sponding constant function). We apply Lemma 3.1 with the functional L of
the form

Lz =
1

|Ω1|

∫

Ω1

z(x) dx, where Ω1 ⊂ Ω.

Then

‖L‖ =
1

|Ω1|
,

and, with z = ln u, we have for a.a. t ≥ 0, and Ω1 = Ωt
1,

∫

Ω

|∇ ln u(t)|2 dx ≥
( |Ωt

1|
C2

(

‖ ln u(t) − L(ln u(t))‖L2(Ω)

))2

≥ |Ωt
1|2

2C2
2

(

∫

Ω

| ln u(t)| dx
)2

− |Ωt
1|

C2
2

∣

∣

∣
ln

uα

2

∣

∣

∣

2

. (3.6)

To get the second inequality we used the definition of Ωt
1, Hölder’s inequality

and the fact that |a − b|2 ≥ a2

2
− b2. It follows that

d

dt

∫

Ω

| ln u(t)| dx + β2
(

∫

Ω

| ln u(t)| dx
)2

≤ N2

where

β2 =
a

4C2
2

(uα

2

)2

, N2 =
a

2C2
2

∣

∣

∣
ln

uα

2

∣

∣

∣

2

+ C1.
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Then
∫

Ω
| ln u(t)| dx is dominated by the solution b of the equation

ḃ(t) + β2b2(t) = N2, b(0) =

∫

Ω

| ln u(0)| dx. (3.7)

The solution of this equation is bounded by N
β

if the initial value b(0) ≤ N
β

,
and it is given by

b(t) =
N

β

exp(2Nβ(t + k)) + 1

exp(2Nβ(t + k)) − 1
(3.8)

for b(0) > N
β

, where k is chosen such that the initial condition is satisfied.
We see that for t ≥ 1 and any k ≥ 0, the estimate

‖ ln u(t)‖1 ≤ m1
def
=

N

β

exp(2Nβ) + 1

exp(2Nβ) − 1
(3.9)

holds true, where m1 depends only on uα, the integral mean of u0.
If u(0) satisfies (1.4) but not (3.1), we find a sequence of functions un(0)

satisfying (3.1) such that

un(0) → u(0) in L∞(Ω),

and use the following lemma on continuous dependence of solutions on the
initial data:

Lemma 3.2 Let u1, u2 be two solutions of (1.1), (1.2). Then

‖(u1 − u2)(t)‖2
L2(Ω) ≤ C(t)‖(u1 − u2)(0)‖2

L2(Ω). (3.10)

Proof: We subtract the corresponding equations (1.1) and multiply by u1 −
u2. We get

d

dt

1

2
‖u1 − u2‖2

L2(Ω)

= −
∫

Ω

a|∇u1 −∇u2|2 − (µ1∇w1 − µ2∇w2)(∇u1 −∇u2) dx

≤ −
∫

Ω

a

2
|∇u1 −∇u2|2

+
a

2

[

u1(1 − u1)(∇w1 −∇w2) + (u1(1 − u1) − u2(1 − u2))∇w2(t)
]2

dx

≤ a

16
‖∇w1 −∇w2‖2

L2(Ω) + a‖∇w2‖2
L∞(Ω)‖u1 − u2‖2 ≤ C‖u1 − u2‖2

L2(Ω).

Hence (3.10) follows.
q.e.d.

Consequently, un(t) → u(t) in L2(Ω), for any t > 0, and also in Lr(Ω) for
any r > 0 because ‖u(t)‖L∞(Ω) ≤ 1. Moreover,

∫

Ω
| ln un(t)| dx ≤ m1 for any

n and any t > 1, which allows us to deduce
∫

Ω

| ln u(t)| dx ≤ m1, t > 1. (3.11)

The same procedure applies to
∫

Ω
| ln(1 − u)| dx, which, together with (2.7)

yields:
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Lemma 3.3 Let u0 satisfy (1.4), (u, v, w) be a solution of (1.1)-(1.4). Then

‖v(t)‖L1(Ω) ≤ m1 + r∞ for all t ≥ 1, (3.12)

‖w(t)‖H1,∞ ≤ r∞ for t ≥ 0, (3.13)

where m1, r∞ are given by (3.9), (2.7) respectively.

Next, we derive estimates of the norm of ln u(t), also in the space Lr(Ω),
r ≥ 2.

Proposition 3.1 Let u be a solution of (1.1)-(1.4). Then there exist con-
stants B1, B2, B3, depending only on uα, and a sequence of times {tr} such
that the following estimates hold for r ≥ 1:

‖ ln u(t)‖Lr(Ω) ≤ B1‖ ln u(0)‖Lr(Ω) for all t ≥ 0, (3.14)

‖ ln u(t)‖Lr(Ω) ≤ B2r
2 for all t ≥ 1, (3.15)

‖ ln u(t)‖Lr(Ω) ≤ B3 for all t ≥ tr. (3.16)

Proof. For r ≥ 2 we denote

Mr(t) =

∫

Ω

(− ln u(t))rdx, (3.17)

and estimate its time derivative:

d

dt
Mr(t)

=
d

dt

∫

Ω

(− ln u(t))r dx = −r

∫

Ω

(− ln u)r−1

u
ut(t) dx

= r

∫

Ω

∇
((− ln u)r−1

u

)

µ∇v(t) dx

= −r

∫

Ω

(r − 1)(− ln u)r−2∇u + (− ln u)r−1∇u

u2
a(∇u + u(1 − u)∇w) dx

= −r

∫

Ω

a
[

(r − 1)(− ln u)r−2 + (− ln u)r−1
]

[

|∇ ln u|2 + ∇(ln u)(1 − u)∇w
]

dx

≤ −r

∫

Ω

a
[

(r − 1)(− ln u)r−2 + (− ln u)r−1
]

(3.18)

[1

2
|∇ ln u|2 − 1

2
(1 − u)2|∇w|2

]

dx

≤ −r

∫

Ω

a(r − 1)(− ln u)r−2 1

2
|∇ ln u|2 dx

+

∫

Ω

[

r(r − 1)(− ln u)r−2 + r(− ln u)r−1
]

C1 dx
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= −2a(r − 1)

r

∫

Ω

∣

∣

∣
∇(− ln u)

r
2

∣

∣

∣

2

dx +

+ C1

∫

Ω

r(r − 1)(− ln u)r−2 + r(− ln u)r−1 dx

≤ −2a(r − 1)

r

[

ε−1

∫

Ω

(− ln u(t))r dx − Cε
−n−2

2

(

∫

Ω

(− ln u(t))
r
2 dx

)2]

+ C1

∫

Ω

r(r − 1)(− ln u(t))r−2 + r(− ln u(t))r−1 dx,

where C1 is given by (3.2), and we used the inequality

‖ξ‖2
L2 ≤ ε‖∇ξ‖2

L2 + Cε−n/2‖ξ‖2
L1 .

With the notation (3.17) we have Ms(t) ≤ Mr(t) whenever s ≤ r and
Mr(t) ≥ 1. Then, taking ε = a

C1r2 , we arrive at

d
dt
Mr(t) ≤ −C1r(r − 2)Mr(t) + 2C1rCa−n

2 C
n
2

1 (r − 1)rn
(

M r
2
(t)

)2

≤ −2C1rMr(t) + 2C1rArn+1
(

M r
2
(t)

)2

,

(3.19)

provided that r ≥ 4 and A = Ca−n/2C
n/2
1 . This yields

Mr(t) ≤ 2 max{1, ess sup
t∈(0,t0)

Arn+1
(

M r
2
(t)

)2

, Mr(0)}. (3.20)

Consequently, choosing r = 2k, we get

M2k(t) ≤ A2k(n+2) ·
(

A2(k−1)(n+2)
)2

· · ·
(

A2(k−(k−1))(n+2)
)2k−1

·
(

M1,2k

)2k

,

(3.21)
where

M1,r = max{1, ess sup
t>0

M1(t), Mr(0)}.

The right hand side of (3.21) becomes

A2k−1
(

M1,2k

)2k

· 2[n+2][k+2(k−1)+22(k−2)+...+2k−1(k−(k−1))]

= A2k−1
(

M1,2k

)2k

· 2(n+2)(−k+2k+1−2).

Taking the 1/2k power of both sides of (3.21) we obtain

‖ ln u(t)‖Lr(Ω) ≤ AM1,r · 22(n+2), r = 2k, (3.22)

which implies (3.14).

To get estimates independent of the size of the initial value ‖ ln u(0)‖Lr(Ω),
we proceed in a similar way as in the proof of Lemma 3.3. Dominating the
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equation for M
1

r
r by a quadratic differential equation, we get an estimate

which does not depend on the size of the initial datum, but it grows as r2.
It is sufficient to show (3.15) for some t0 ∈ (0, 1], and then proceed as in the
proof of (3.14) starting at t0. To get a quadratic equation, we denote

Mr(t) = M
1

r
r (t) = ‖ ln u(t)‖Lr(Ω),

and estimate its time derivative:

d

dt
Mr =

1

r
M

1

r
−1

r · d

dt
Mr.

We proceed in the same way as above but this time we need more precise
estimates, so we do not neglect the (negative) term

−ar

∫

Ω

(− ln u)r−1 1

2
|∇ ln u|2 dx = − 2a

(r + 1)2

∫

Ω

∣

∣

∣
∇(− ln u)

r+1

2

∣

∣

∣

2

dx.

Thus we have (see (3.18)):

d

dt
Mr ≤ −M

1

r
−1

r ·
∫

Ω

a
[

(r − 1)(− ln u)r−2 + (− ln u)r−1
]

[1

2
|∇ ln u|2 − 1

2
(1 − u)2|∇w|2

]

dx

≤ −2a(r − 1)

r2
M

1

r
−1

r ·
∫

Ω

∣

∣

∣
∇(− ln u)| r

2

∣

∣

∣

2

dx

− 2a

(r + 1)2
M

1

r
−1

r ·
∫

Ω

∣

∣

∣
∇(− ln u)

r+1

2

∣

∣

∣

2

dx

+ M
1

r
−1

r · C1

[

(r − 1)Mr−2 + Mr−1

]

Now, we apply Lemma 3.1 with

z = | ln u| r
2 , z = | ln u| r+1

2 ,

respectively. Taking (3.4) and (3.6) into account, we get
∫

Ω

∣

∣

∣
∇(− ln u)| r

2

∣

∣

∣

2

dx ≥ u2
α

8C2
2

Mr −
uα

C2
| ln uα

2
|r,

∫

Ω

∣

∣

∣
∇(− ln u)| r+1

2

∣

∣

∣

2

dx ≥ u2
α

8C2
2

Mr+1 −
uα

C2
| ln uα

2
|r+1.

If
1

2

u2
α

8C2
2

Mr ≤
uα

C2
| ln uα

2
|r, 1

2

u2
α

8C2
2

Mr+1 ≤
uα

C2
| ln uα

2
|r+1,

at some point t0 ∈ (0, 1) then we can start at this point and proceed as in
the proof of (i) to show that Mr(t), Mr+1(t) are bounded for all t ≥ t0. If it
is not the case, we arrive at the estimate

d

dt
Mr ≤ −au2

α

4C2
2

r − 1

r2
Mr −

au2
α

16C2
2

1

(r + 1)2
M2

r + C1((r − 1)M−1
r + 1). (3.23)
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Again, we are done if we can find a constant C3 > 0 such that Mr(t1) ≤ C3r
for some t1 ∈ (0, 1). Otherwise we have

au2
α

4C2
2

r − 1

r2
Mr ≥ C1((r − 1)M−1

r + 1)

for t ∈ (0, 1), which implies that Mr satisfies a quadratic differential inequal-
ity, and we deduce that

Mr(1) ≤ C4r
2, C4 =

32C2
2

au2
α

. (3.24)

Hence (3.15) follows.

To prove (3.16), we use (3.15), (2.8), and the interpolation inequality.
There is a sequence of times {tn)} → ∞ such that

u(tn) → u∗ strongly in L2(Ω),

and ‖ ln u(tn)‖L2(Ω) ≤ 4B2. Hence, we get

ln(utn) → ln(u∗) strongly in L2(Ω),

where, due to (2.11), and the boundedness of w,

max{‖u∗‖L∞(Ω), ‖1 − u∗‖L∞(Ω)} = m < 1

and, subsequently,

max{‖ ln u∗‖L∞(Ω), ‖ ln(1 − u∗)‖L∞(Ω) ≤ C5 = − ln m.

Now, we find a sequence {εr} such that

εr ≤
( 1

4B2r2 + C5

)r−1

,

and a corresponding sequence of times {tr} such that

‖ ln u(tr) − ln u∗‖L2(Ω) ≤ εr.

It follows that

‖Mr(tr)‖Lr(Ω) ≤ ‖ ln u(tr) − ln u∗‖
1

r−1

L2(Ω) · ‖ ln u(tr) − ln u∗‖
r−2

r−1

L2r(Ω) + C5

≤ ε
1

r−1

r (4B2r
2 + C5) + C5 ≤ 1 + C5.

Again, starting at tr, we repeat the proof of (3.14) to get (3.16).
q.e.d.

Remark 1. This procedure applied to ‖ ln(1 − u)‖r
r yields the same esti-

mates also in this case. With Lemma 3.3 at hand, we can also deduce the
convergence of a sequence v(tn) to v∗ in L2(Ω), in addition to (2.10).
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Remark 2. Assuming that

f ′(u0) ∈ L∞(Ω), (3.25)

we can take the limit as k → ∞ of both sides of (3.22) to infer that there is
a constant B (which does not depend on time) such that

‖v(t)‖L∞(Ω) ≤ B for all t ≥ 0, (3.26)

which extends the assertion of Theorem 3.5 in [5]. We also have the L∞-
estimate for u, namely, there exists a constant 0 < k < 1 depending only on
uα such that

k ≤ u(t, x) ≤ 1 − k for a.a. x ∈ Ω, t ≥ 0, (3.27)

and, consequently,

ak2 ≤ µ ≤ a

4
for a.a. x ∈ Ω, t ≥ 0. (3.28)

4  Lojasiewicz-Simon Theorem

In this section, we state the generalized version of the  Lojasiewicz-Simon
Theorem proved in [4].

Let V and W be Banach spaces densely and continuously embedded into
the Hilbert space H and its dual H∗, respectively. Assume that the restriction
of the duality map J ∈ L(H,H∗) to V is an isomorphism from V onto
W = J(V ). Moreover, let H = H0 +H1 where H1 ⊂ V is a finite-dimensional
subspace and H0 is its orthogonal complement in H. Denote by H0

0 the
anihilator of H0:

H0
0 = {g ∈ H∗; 〈g, z〉 = 0 for all z ∈ H0}.

Let
F

def
= Φ + Ψ, (4.1)

with Φ, Ψ satisfying the following conditions:

Φ is a Fréchet differentiable functional from an open set U ⊂ V → R.
Moreover, assume that the Fréchet derivative DΦ : U → W is a real analytic
operator which satisfies

〈DΦ(z1) − DΦ(z2), z1 − z2〉 ≥ α‖z1 − z2‖2
H ,

‖DΦ(z1) − DΦ(z2)‖H∗ ≤ γ‖z1 − z2‖H ,
(4.2)

for all z1, z2 ∈ U and some constants α, γ > 0. In addition, the second
Fréchet derivative D2Φ(z) ∈ L(V,W ) is assumed to be an isomorphism for
all z ∈ U . Concerning Ψ, assume that

Ψ(z) =
1

2
〈Tz, z〉 + 〈l, z〉 + d, z ∈ H,

where T ∈ L(H,H∗) be a self-adjoint and completely continuous operator
such that its restriction to V is a completely continuous operator in L(V,W ).
l ∈ W and d ∈ R are fixed.
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Theorem 4.1 Let F be given by (4.1) and the above assumptions be satisfied.
Let (u∗, v∗) ∈ U × H0

0 satisfy DF (u∗) = v∗. Then we can find constants
δ, λ > 0, and θ ∈ (0, 1

2
] such that for all z ∈ U which satisfy z − u∗ ∈ H0

and ‖z − u∗‖H ≤ δ we have the following inequality:

|F (z) − F (u∗)|1−θ ≤ λ inf{‖DF (z) − f‖H∗ ; f ∈ H0
0}. (4.3)

5 Convergence

In this section, we prove that there is T > 0 such that ut ∈ L1(T,∞; (H1)∗),
which enables us to show convergence of the whole trajectory of u to u∗, a
stationary solution given by (2.11). We will apply Theorem 4.1 to the energy
functional associated with our system, i.e.,

F (z) =

∫

Ω

f(z) + uJ (z) + z · K ∗ 1 dx, u∗, v∗ satisfy (2.11), (5.1)

the corresponding spaces being

H = H∗ = L2(Ω), H0 = {z ∈ H;

∫

Ω

z dx = 0}, H0
0 = {z = const},

V = L∞(Ω), U = {z ∈ V ;
k

2
< z(x) < 1 − k

2
},

Φ(u) =

∫

Ω

f(u) dx, T (u) = −2J (u), l = K ∗ 1, d = 0.

Multiplying (1.1) by v and (1.2) by ut, integrating over Ω and subtracting,
we obtain the energy equality

d

dt
F (u(t)) =

d

dt

∫

Ω

f(u(t)) − u(t)J (u(t)) + u(t)ldx = −
∫

Ω

µ|∇v|2dx (5.2)

As u(t) stays bounded away from zero and one, the functional F is
bounded from below and the hypotheses in Theorem 4.1 are fulfilled. In-
deed, the function f is strictly convex on (k

2
, 1 − k

2
), hence (4.2) holds, and

〈D2Φ(z)z1, z2〉 =
∫

Ω
f ′′(z)z1 · z2 dx yields that D2Φ(z) ∈ L(V,W ) is an iso-

morphism for all z ∈ U . Moreover, the convolution operator is compact on
the corresponding spaces and l ∈ W by (2.6).

The limit energy

F∞ = lim
t→∞

F (u(t)) = F (u∗)

is the same for any u∗ in the ω−limit set of u.
The Fréchet derivative of F (u(t)) is represented by

F ′(u(t)) = f ′(u(t)) − 2J (u(t)) + l = v(t)
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Now, let (u∗, v∗, w∗) belong to the ω-limit set and satisfy (2.11). (Exis-
tence of such solutions was proved in [5]). Then

F ′(u∗) = v∗, u∗ ∈ U,

and integrating (5.2) from t to ∞, we get

∫ ∞

t

∫

Ω

µ|∇v|2 dxds = F (u(t)) − F∞ = F (u(t)) − F (u∗). (5.3)

By virtue of Theorem 4.1, we have

|F (u(t)) − F (u∗)|1−θ

≤ λ inf{‖v(t) − z‖L2(Ω); z = const} = λ‖v(t) −
∫

Ω

(t) dx‖L2(Ω)

provided that

‖u(t) − u∗‖L2(Ω) ≤ δ. (5.4)

This, combined with (5.2) and taking into account (2.12), (3.25), (3.28),
yields

4

a

∫ ∞

t

∫

Ω

(µ|∇v|)2dxds ≤
∫ ∞

t

∫

Ω

µ|∇v|2 dxds

≤ λ‖v(t) −
∫

Ω

v(t) dx‖
1

1−θ

L2(Ω) ≤ λc‖∇v(t)‖
1

1−θ

L2(Ω)

≤ λc sup
Ω

µ− 1

1−θ ‖µ|∇v|(t)‖
1

1−θ

L2(Ω) ≤ λc
(

ak2
)

1

θ−1‖µ|∇v|(t)‖
1

1−θ

L2(Ω),

(5.5)

where c depends only on the domain Ω, and k is the bound from (3.27).

At this point, we employ the following lemma, the proof of which can be
found in [3].

Lemma 5.1 Let Z ≥ 0 be a measurable function on (0,∞) such that

Z ∈ L2(0,∞), ‖Z‖L2(0,∞) ≤ Y

and there exist α ∈ (1, 2), ξ > 0 and an open set M ⊂ (0,∞) such that

(

∫ ∞

t

Z2(s) ds)α ≤ ξ Z2(t) for a.a. t ∈ M.

Then Z ∈ L1(M) and there exists a constant c = c(ξ, α, Y ) independent of
M such that

∫

M

Z(s) ds ≤ c.
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Setting Z(t) = ‖µ|∇v|(t)‖L2(Ω) in Lemma 5.1, we get

∫

M

‖µ∇v(s)‖L2(Ω)ds < ∞, (5.6)

where
M = ∪J{J | J is an open interval where (5.4) holds}.

Since u∗ ∈ ω[u], M is non-empty, and realizing that

‖ut(t)‖H1(Ω)∗ ≤ 〈∇µ(t)∇v(t),
−v(t)

‖v(t)‖H1(Ω)

〉

=

∫

Ω

µ(t)
|∇v(t)|2

‖v(t)‖H1(Ω)

dx ≤ ‖µ(t)|∇v(t)|‖L2(Ω),

we get

∫

M

‖ut(t)‖H1(Ω)∗ dt < ∞. (5.7)

Our next goal is to show that there exists τ such that (τ, +∞) ⊂ M. To
begin, realize that from the inequality (5.3) and (3.28) we deduce that

ut ∈ L2(0, +∞; H1(Ω)∗),

|∇v| ∈ L2(0, +∞; L2(Ω)).

To any δ > 0 we find T (δ) > 0 such that

‖ut‖L1(M∩(T (δ),+∞);H1(Ω)∗) < δ (5.8)

‖ut‖L2((T (δ),+∞);H1(Ω)∗) < δ (5.9)

‖∇v‖L2((T (δ),+∞);L2(Ω)) < δ (5.10)

Next, let (t1, t2) ⊂ M, ti ≥ T (δ) for some δ < 1. We can find t3 ∈
[t1, t1 + 1] such that

‖u(t3)‖H1(Ω) ≤ N = 1 +

√
C1

4
√

2a
+

1

4
,

where C1 comes from (3.2). In fact,

‖∇u(t)‖L2(Ω) = ‖ 1

f ′′(u(t))
(∇v(t) −∇w(t))‖L2(Ω)

≤ 1

4
(‖∇v(t)‖L2(Ω) + ‖∇w(t)‖L2(Ω)), (5.11)

and there is t3 ∈ [t1, t1 +1] such that ∇v(t3) ≤ δ < 1, in view of (5.10). Then

‖u(t1) − u(t2)‖2
L2(Ω) ≤ 2

[

‖u(t1) − u(t3)‖2
L2(Ω) + ‖u(t3) − u(t2)‖2

L2(Ω)

]

,
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and we obtain

1

2
‖u(t1) − u(t3)‖2

L2(Ω) =

∫ t3

t1

〈ut(s), u(t3) − u(s)〉ds

≤
∫ t3

t1

‖ut(s)‖H1(Ω)∗

[

‖u(t3)‖H1(Ω) + ‖u(s)‖L2(Ω)

+
1

4
(‖∇w(s)‖L2(Ω) + ‖∇v(s)‖L2(Ω))

]

ds

≤ ‖ut‖L1((t1,t1+1);H1(Ω)∗)

[

N + ‖u‖L∞(0,+∞;L2(Ω)) + ‖∇w‖L∞(0,+∞;L2(Ω))

]

+ ‖ut‖L2(T (δ),+∞;H1(Ω)∗)‖∇v‖L2(T (δ),+∞;L2(Ω)) ≤ δ(2N + δ).

The same estimate holds for ‖u(t3) − u(t2)‖L2(Ω) provided that t3 ≥ t2,
and also for t3 < t2, where we use (5.8). Summing up, we have

‖u(t1) − u(t2)‖2
L2(Ω) ≤ 8δ(2N + δ) (5.12)

and we can find δ and the corresponding T (δ) = τ such that

‖u(t1) − u(t2)‖L2(Ω) < ε
3

whenever

‖u(t) − u∗‖L2(Ω) < ε for all t ∈ (t1, t2) where τ ≤ t1 < t2.























(5.13)

Since u∗ ∈ ω[u], a large τ can be chosen so that

‖u(τ) − u∗‖L2(Ω) <
ε

3
, (5.14)

and then (5.13) yields [τ,∞) ⊂ M . Indeed, taking

t = inf{t > τ | ‖u(t) − u∗‖L2(Ω) ≥ ε},
we have t > τ and

‖u(t) − u∗‖L2(Ω) ≥ ε if t is finite. (5.15)

On the other hand, by virtue of (5.13), (5.14),

‖u(t)−u∗‖L2(Ω) ≤ ‖u(t)−u(τ)‖L2(Ω) +‖u(τ)−u∗‖L2(Ω) <
2

3
ε for all τ ≤ t < t

which, together with (5.15), yields t = ∞.
We have proved the following result.

Theorem 5.1 Let (u, v, w) be a solution of the problem (1.1)-(1.4) with the
data given by (2.4),(2.6),(2.7),(2.12), and let (3.25) hold. Then there is
(u∗, v∗, w∗) satisfying (2.11) such that,

u(t) → u∗ strongly in L2(Ω),

v(t) → v∗ strongly in L2(Ω),

w(t) → w∗ strongly in H1(Ω),

as time goes to infinity.
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Remark 3. It is still an open question whether any solution with the
initial datum u0 satisfying (1.4) stabilizes to a single stationary state as time
tends to infinity even in the case that there is a continuum of equilibria.
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