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1 Introduction

We shall consider canonical systems of first order differential expressions reg-
ular on the compact interval [a, b]. For a given symmetric linear relation S
in a Hilbert space H, the selfadjoint extensions of S can be characterized as
restrictions of the adjoint S∗ of S, when S is the minimal relation associated
with a formally symmetric ordinary differential expression in L2−function
space, then the restrictions involve linear combinations of the boundary val-
ues of the elements in the domain D(S∗) of S∗. When the selfadjoint exten-
sions are canonical within the space H, the coefficients of these combinations
can be taken to be constants. In the case of selfadjoint extensions in inner
product spaces larger than the given space H, they depend analytically on
a parameter, see [9], [11], and [18]. We shall prove that every generalized
resolvent R(ℓ) of S can be expressed in terms of a fixed generalized resolvent
G(ℓ) of S and the Weyl coefficients Ψ(ℓ) of R(ℓ) relative to G(ℓ) as

R(ℓ)f = G(ℓ)f + s(ℓ)Ψ(ℓ)[f, S(ℓ)], f ∈ H (1)

where s(ℓ) is a holomorphic basis for the null space v(S∗ − ℓ) see [15], [16],
and the spectrum of S can be constructed. Finally, we give examples; some in
the classical boundary value problem and the others are the general boundary
value problem.

2 Eigenfunction Expansion

Let A be a selfadjoint extension of S in a Krein space K, with nonempty
resolvent set ρ(A) = {ℓ ∈ C | (A − ℓ)−1 ∈ [K]} . By definition H ⊂ K, and
the definite and indefinite inner products on H and K, respectively, coincide
on H. In the sequel we only consider selfadjoint extensions, whose resolvent
sets are nonempty. By PH we denote the orthogonal projection of K onto H.
We say that A or K is minimal if K = c.l.s{{(A − ℓ)−1K | ℓ ∈ ρ(A)} ∪ H}
where c.l.s. stands for closed linear span. The compressed resolvent R(ℓ), ℓ ∈
ρ(A) associated with the extension A is defined by

R(ℓ) = PH(A − ℓ)−1 |H (2)

see [1], [3], [6] and [24].

Theorem 2.1 The compressed resolvent R(ℓ), defined in 2 satisfies:
(a) R(ℓ) is a holomorphic mapping with values in H and with domain of

holomorphy DR, which is symmetric with respect to the real axis, DR = D∗

R

(b) R(ℓ)∗ = R(ℓ)
(c) {R(ℓ)f, ℓR(ℓ)f + f} ∈ S∗ for all f ∈ H

Proof . Let F (ℓ) ∈ L(N) have representation (2), then for λ ∈ C\R

(RλF )(ℓ) =

∫

R

dΣ(t)f(t)

(t − ℓ)(t − λ)
, (3)
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implies that RλF ∈ L(N), λ ∈ C\R. By (2) & (3)

‖FλF‖2 = ‖f(t)/(t − λ)‖2

Σ
=

∫

R

f(t)dΣ(t)f(t)

(t − ℓ)
dΣ(t)

(
f(t)

(t − λ)

)

≤ |Imλ|−2

∫

R

f(t)∗dΣ(t)f(t)

= |Imλ|−2 ‖ f ‖2

Σ
≤ |Imλ|−2 ‖F‖2 ,

for λ ∈ C\R, which shows that Rλ is a bounded operator in L(N). This
proves (a) and (b) Combining (a) and (b), we obtain the identity Rλ −R∗

µ =
(λ − µ)R∗

µRλ, λ, µ ∈ C\R
Property (c) can be written as I ⊂ (S∗ − ℓ)R(ℓ) (with equality if S is

densely defined), where I is the identity on H. Because of (b), it is equivalent
to R(ℓ)(S − ℓ) ⊂ I . It is not difficult to verify that for each ℓ ∈ DR

S∗ = {{R(ℓ)f, ℓR(ℓ)f + f} | f ∈ H} + Mℓ(S), directsumin H2. (4)

This completes the proof.

Theorem 2.2 If R(ℓ) is the corresponding generalized resolvent, then y =
R(ℓ)f is the unique solution of the boundary value problem

Jy′ − H(t)y(t) = ℓ∆(t)y(t) + ∆(t)f(t), almost all t ∈ (a, b),

P (ℓ)y(a) + D(ℓ)y(b) = 0 (5)

Proof. According to Theorem 1, it is enough to see that the generalized
resolvent has the form:

R(ℓ)f = G(ℓ)f + Y (ℓ)Ψ(ℓ)[f, Y (ℓ)], f ∈ l2(∆dt), (6)

Ψ(ℓ) = −
1

2

(
P (ℓ) + D(ℓ)Y (b, ℓ)−1

)
(P (ℓ) − D(ℓ)Y (b, ℓ)J) (7)

One can easily check that Ψ(ℓ)∗ = Ψ(ℓ)is an analytic forℓ ∈ C+ , see [16],
[20] and [25].

Remark 1 Assume that A is a selfadjoint Hilbert space extension of Tmax∩
Z∗, which takes place precisely when the kernel Kµ(ℓ, λ)is non-negative. The
Weyl coefficient: Ψ(ℓ) as given before is of the Nevanlinna class, which has
an integral representation:

Ψ(ℓ) = A + Bℓ +

∫

R

(
(t − ℓ)−1 − t(t + 1)−1

)
dΣ(t) (8)

where Σ is monotone nondecreasing function n × n on IR, and

A = A∗, ImB ≥ 0,

∫

R

(t2 + 1)−1dΣ(t) < ∞
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where

Kµ(ℓ, λ) = B +

∫

R

dΣ(t)

(t − ℓ)(t − λ)
,

Z is a finite dimensional subspace in H2,Tmin is a minimal relation defined
as in [22].

Theorem 2.3 The Fourier transformf → f̂(ℓ) =
[
f, s(ℓ)

]
takes H = L2

∆(a, b)
contractively into L2

Σ, it is isometric on H1, has as its kernel H0 and is strictly
contractive on Hz.

Proof. If A is a minimal selfadjoint extension in K ⊃ H of Tmin∩Z∗ in H,
then the Fourier transform is surjective if and only if dimKΘH = dim Hz.
The Fourier transform maps H1 onto L2

Σ; if and only if A is a canonical
selfadjoint extension of S = Tmin ∩ Z∗.

Lemma 2.1 Let µ, be a matrix function of bounded variation. Define

S =

{
{f, g} ∈ Tmin |

∫ b

a

(dµ∗)f̃ = 0

}
(9)

where f is the unique absolutely continuous representative of f . Then S =
Tmin ∩ Z∗, is true if either of the following two cases:

(a) H(t) = 0 a.e., in which case Z =span{−Jµ, 0}, t ∈ [a, b]

(b) ∆(t) = I a.e.and H ∈ L2
∆(a, b) in which case Z =span{−Jµ,HJµ}.

Proof. We just note {f, g} ∈ Tmin implies Jf ′ = Hf+∆g , so that integra-
tion by parts yields:

∫ b

a

(dµ)∗f̃ =

∫ b

a

−µ∗f̃ =

∫
(µ∗J)(Jf̃) =

∫ b

a

(µ∗)(Hf + ∆g) (10)

From this it follows that S = Tmin∩Z∗: where Z = span{−Jµ, 0} if H(t) = 0,
a.e., and where Z =span{−Jµ,HJµ} if ∆ (t) I , a.e., see[17] and[24].

Theorem 2.4 Let µ and S be defined as above, then S = Tmin ∩ Z∗ is true,
if either of the following two cases (assuming that ∆µ is defined, see the next
remark):

(a) H(t) = 0a.e. in which Z =span{−∆Jµ, 0n
k},

(b) H ∈ L2
∆(a, b) in which case Z =span{−∆Jµ,HJµ}.

Proof. It is easy to check this proof using the previous lemma.

Remark 2 When ∆ is singular we do not have such an easy solution. When
we multiply ∆ y some matrix K, we assume that R(K) ∩ v∆ = {(0)}, and
then all the information is still contained in ∆K, see [15] and [18].
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Remark 3 If s(t)is defined as before, then one can write

{s(ℓ), ℓs(ℓ)} = ({Y (ℓ), ℓY (ℓ)} : {U(ℓ) + σ, ℓ (U(ℓ) + σ)}) (11)

where Y (ℓ), U(ℓ) is defined before, {σ, τ}spanned Z, and

{U(ℓ) + σ, ℓ (U(ℓ) + σ)} (12)

= {U(ℓ), ℓU(ℓ) + ℓσ − τ}

= {G(ℓ)(−τ + ℓσ), ℓG(ℓ)(−τ + ℓσ) − τ + ℓσ}

+ {Y (ℓ), ℓY (ℓ)c(ℓ)} + {σ, τ} (13)

is a decomposition via Tmax + Z when Tmax is further decomposed as in the
above. so, we note that

s(ℓ)(a) = (I : 0)

s(ℓ)(b) =

(
Y (b, ℓ) : −

1

2
Y (b, ℓ)J [−τ + ℓσ, Y (ℓ)] + Y (b, ℓ)c(ℓ)

)

〈({Y (ℓ), ℓY (ℓ)} : {U(ℓ), ℓU(ℓ) + ℓσ − τ}) , {σ, τ}〉

=
([

U(ℓ), ℓσ − τ
]

: [U(ℓ),−τ + ℓσ] + [−τ + ℓσ, σ]
)

〈{s(ℓ), ℓs(ℓ)} , {σ0, τ0}〉

= (0 : I) (14)

hence we obtain

b(s(ℓ), s(ℓ)) = (S0, Sz) (15)

where the matrix S0, and the matrix Sz are

S0 =

(
I 0

Y (b, ℓ) −1

2
Y (b, ℓ)J [−τ + ℓσ, Y (ℓ)] + Y (b, ℓ)c(ℓ)

)
(16)

Sz =

(
[Y (ℓ), ℓσ − τ ] [U(ℓ), ℓσ − τ ] + [−τ + ℓσ, σ]
0 I

)
(17)

In order to calculate the Weyl coefficient Ψ, we note that for the given self-
adjoint extension A, we have on the one hand the following theorem:

Theorem 2.5

T (ℓ) = {{f, g} ∈ S∗ | U(ℓ)b({f, g})} = 0,

where U(ℓ) = (U0(ℓ) : Uz(ℓ) : in terms of Q−1
0 , Q−1

z , but on the other hand,

T (ℓ) = {{R(ℓ)f, (I + ℓR(ℓ))f}|/f ∈ H} (18)

for the definition of see [19], [21] and [23]
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Proof. So for all f ∈ H, we must have:

U(ℓ)b({R(ℓ)f, (I + ℓR(ℓ))f})

= U(ℓ)(b({G(ℓ)f, (ℓG(ℓ))f}) + b({s(ℓ), ℓs(ℓ)})Ψ(ℓ)[f, s(ℓ)]) = 0(19)

With the usual decomposition U(ℓ) = (U0(ℓ) : Uz(ℓ)), we obtain for all
f ∈ H.

(U0(ℓ)G0(ℓ) + Uz(ℓ)Gz(ℓ)) [f, s(ℓ)] + (U0(ℓ)s0(ℓ) +

+ Uz(ℓ)sz(ℓ)) Ψ(ℓ)[f, s(ℓ)] = 0
(20)

Theorem 2.6 The Weyl coefficient Ψ(ℓ) relative to the bounded right inverse
G(ℓ) is given by:

Ψ(ℓ) = − (U0(ℓ)s0(ℓ) + Uz(ℓ)sz(ℓ))
−1 (U0(ℓ)G0(ℓ) + Uz(ℓ)Gz(ℓ)) (21)

where all of these matrices as defined before.

Proof. Just note that for a fixed, the mapping f → [f, s(ℓ)] from H to
C2k+2ris surjective.

Theorem 2.7 Let A be a selfadjoint extension of Tmin ∩ Z∗, with a finite
dimensional extending space. Then the relation:

T (ℓ) = {{f, g} ∈ Tmin + Z | U(ℓ)b({f, g}) = 0} , (22)

also holds for ℓ ∈ R.

In this case the spectrum is discrete, and the eigenvalues, i.e., those values
of for which v[T (ℓ) − ℓI] |= {0}, are precisely the values of ℓ, for which the
matrix U0(ℓ)S0(ℓ) + Uz(ℓ)Sz(ℓ) is not invertible, see[8] and[9].

3 Examples

Example(3.1): Consider the second order system in the form

− y
′′

+ qy = ℓry, (q, r ∈ R, C, ℓ ∈ C\R) (23)

which is equivalent to

(
y
y′

)′

=

(
y

′

qy
′

− ℓry

)
=

(
0 1
q 0

)(
y
y

′

)
− ℓ

(
0 1
r 0

) (
y
y

′

)
,

(
0 −1
1 0

)(
y
y′

)′

=

(
−q 0
0 1

)(
y
y

′

)
+ ℓ

(
r 0
0 0

) (
y
y

′

)
,

which can be written in the form Jz′ = ℓ∆z + Hz,

J =

(
0 −1
1 0

)
, H =

(
−q 0
0 1

)
, ∆ =

(
r 0
0 0

)
, Z =

(
y
y

′

)
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In this simple example, one can write the boundary conditions in the form
which have been repeated several times in the past, see[2],[3],[4],[5]and[16].

Now we shall consider the general case in a very simple way as one-
dimensional vector case, and as we said in the research the coefficients which
appear in the differential equations depend on the parameter which is in the
lower or in the upper half plane. Let us consider this simple example and
construct in each subcase the Nevanlinna function, see[7],[10]and[14].

iy′ − ℓy − ℓσ{P1y(0) + Q1y(1)} = g

P2y(0) + Q2y(1) − iρ

∫ 1

0

yd σ = 0 (24)

We shall assume that the coefficients P1, P2, Q1 and Q2 all are real. further-
more, we put ρ = ℓ fixed in each case.

Example (3.2): Assume ρ = 0. We get this system

iy
′

− ℓy = g

P2y(0) + Q2y(1) = 0 (25)

We assume the solution of this system (the fundamental solution) in the form:

y(t) = c(t)e−iℓt, c(t)

is a constant vector in

Ck, ℓ ∈ C±, t ∈ [0, 1].

By simple calculation we get the solution and we can construct the Nevan-
linna function, from it and even more we may study several cases and in each
one construct the Nevanlinna function, see [12], [13] and [25].
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