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Abstract: This paper is devoted to the construction of a posteriori error
estimators for problems in linear elasticity. The error control is performed
in terms of linear (continuous) functionals, which are designed to verify the
error between the exact solution and its finite element approximation in local
subdomains of special interest with respect to certain quantities of interest
(e.g., the J-integral in fracture mechanics). The approach employed has been
analysed earlier in the author’s works [12, 13] for a class of linear elliptic
problems. It is based on the usage of an auxiliary (so-called adjoint) problem.
In the framework of this approach, the original (primal) and adjoint problems
are solved on noncoinciding meshes and averaging of gradients is used to
evaluate the term in the estimator that cannot be computed directly. In the
present paper, we consider a more difficult case of an elliptic system of partial
differential equations arising in the theory of linear elasticity. Averaging
procedures are applied to the field of strains (or stresses). Series of numerical
tests show the asymptotic convergence of the proposed estimator if the number
of nodes in the adjoint mesh grows and also demonstrate that, in many cases,
a sufficiently accurate evaluation of the error in terms of a selected linear
functional can be obtained even if the number of nodes in the adjoint mesh
is essentially less than in the primal one.
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1 Introduction

Linear elasticity problems, arising in various technical applications, are
among the most interesting engineering problems. Numerical methods de-
veloped to find approximate solutions to these problems are well known and
widely used in computational practice, see, e.g., [7, 9, 22].

However, calculations always require a reliable control of the accuracy of
approximations obtained. The development of analytical and practical tools
for such an error control is the main purpose of a posteriori error estimation
analysis. Various approaches to derive estimates for elliptic-type boundary
value problems for errors measured in the energy norm have been suggested
by many authors (see, e.g., [1, 2, 3, 4, 11, 16, 20, 22] and references therein).

In recent years, a new line in a posteriori error estimation has been ac-
tively developed. It is based on the concept of error control in terms of
special problem-oriented criteria (see, e.g., [1, 5, 11, 15, 19]) rather than (or
in addition to) error control in the global energy norm. Error estimates of
such type are strongly motivated by the needs of real-life problems, in which
analysts are often interested not in the value of the overall error, but mainly
in various local errors over certain “subdomains of special interest” or rel-
ative to some interesting characteristics (e.g. to the so-called J-integral in
fracture mechanics, see [18] and references therein). A possible way of es-
timating such errors is to introduce a (linear) functional ` associated with
the “problem-oriented criterion”, also known as the quantity of interest, and
to obtain an estimate for the value `(u − ū), where u is the exact solution
and ū is its approximation. Known methods find estimates of `(u − uh) for
a Galerkin approximation uh by employing an auxiliary (adjoint) problem,
whose right-hand side is formed by the functional `.

For linear elasticity problems, the basic example of error control via linear
functionals can be given in the most general case as follows

∫

S

Φ(s) · (u(s) − ū(s)) ds +

∫

S

∇Ψ(s) : ∇(u(s) − ū(s)) ds, (1)

where S is a certain subdomain in the problem domain Ω and ū is an ap-
proximation for the displacement field u. Further examples of error control
via functionals in linear elasticity can be found, e.g., in [18].

In the present paper, we use a new way of estimating the discretisation
error via linear functionals, as proposed in our earlier work [13] (see also
[12]) for linear scalar elliptic problems, and apply it to the case of elliptic
systems in linear elasticity theory. The approach is essentially based on two
principles: (a) original and adjoint problems are solved on non-coinciding
meshes and (b) the term presenting the product of errors arising in the primal
and adjoint problems is estimated by one of the gradient recovery techniques
widely used in various applied problems (see [6, 10, 20, 21, 22]). This makes
our approach different from others, where it is usually assumed that the
Galerkin approximations of the primal and adjoint problems are computed
in the same finite-dimensional subspaces. We analyse asymptotic convergence
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of the constructed estimator and verify its effectivity in a series of numerical
tests.

2 Problem Formulation, Error Decomposition

In what follows, we denote the scalar product of vectors a, b ∈ R
d by the

dot, a · b :=
∑d

i=1 aibi. Similarly, the scalar product of symmetric tensors

τ , κ ∈ M d×d
sym is denoted by τ : κ :=

∑d
i,j=1 τijκij. The norm of a vector a is

denoted by ‖a‖, ‖a‖ := (a · a)1/2, the norm of a tensor τ is denoted by ‖τ‖
and is equal to (τ : τ )1/2.

To begin with, let us consider an elastic body occupying a bounded do-
main Ω ⊂ R

d, d = 2, 3, with a Lipschitz continuous boundary ∂Ω = Γ1 ∪ Γ2,
where Γ1 6= ∅ and Γ2 are disjoint and relatively open parts of ∂Ω. The
problem consists in finding the vector-valued function u (displacement) such
that

−div σ = f in Ω, (2)

σ = Lε, ε(u) =
1

2

(
∇u + (∇u)T

)
, (3)

u = u0 on Γ1, (4)

σ n = g on Γ2, (5)

where n is the unit outward normal to ∂Ω, f and g denote the given volume
loads and tractions, respectively, u0 is the prescribed displacement on Γ1,
σ and ε are the stress and strain tensors, respectively, and L = L(x) =
(Lijkl(x))d

i,j,k,l=1 is the fourth-order tensor of elastic moduli, which satisfies
the following symmetry condition

Ljikl = Lijkl = Lklij , i, j, k, l = 1, . . . , d , (6)

and the condition that there exists a positive constant C1 such that

L(x) τ : τ ≥ C1‖τ‖
2 ∀τ ∈ M d×d

sym (7)

holds almost everywhere in Ω. We also assume that

Lijkl ∈ L∞(Ω), f ∈ (L2(Ω))d, g ∈ (L2(Γ2))
d, u0 ∈ (H1(Ω))d. (8)

By definition, we have

Lτ : κ :=
d∑

i,j,k,l=1

Lijklτijκkl. (9)

The weak formulation of problem (2)–(5) is given below. It is called the
primal problem and denoted as PP in what follows.
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Primal Problem (PP): Find u ∈ V 0 + u0 such that

a(u,w) = F (w) ∀w ∈ V 0, (10)

where

V 0 = {v ∈ (H1(Ω))d | v = 0 on Γ1} , (11)

a(u,w) :=

∫

Ω

Lε(u) : ε(w) dx, u,w ∈ V 0, (12)

and

F (w) :=

∫

Ω

f · w dx +

∫

Γ2

g · w ds, w ∈ V 0. (13)

Since the bilinear form a defined above is continuous and coercive (due
to Korn’s inequality, see, e.g., [14]) and since the linear functional F is con-
tinuous, the primal problem (10)–(13) is uniquely solvable due to the Lax-
Milgram theorem.

Let ū ∈ V 0 + u0 be an approximation of u (e.g., obtained by some
numerical technique). Our main task is to derive an estimate for the following
quantity of interest

`(u − ū), (14)

where ` : V 0 → R is a linear continuous functional selected to control the
error. A common way to obtain an estimate for `(u − ū) is to introduce
an auxiliary problem (often called the adjoint problem AP [5, 4, 15]) in the
following way:

Adjoint Problem (AP): Find v ∈ V 0 such that

a(v,w) = `(w) ∀w ∈ V 0. (15)

Under the above assumptions (6)–(8), the adjoint problem is uniquely sol-
vable. However, in most cases, the exact (weak) solution of (AP) is not
known in analytical form and only its approximation v̄ ∈ V 0 is available.

Lemma 1. The following error decomposition holds

`(u − ū) = E0(ū, v̄) + E1(ū, v̄), (16)

where

E0(ū, v̄) = F (v̄) −

∫

Ω

Lε(ū) : ε(v̄) dx, (17)

and

E1(ū, v̄) =

∫

Ω

Lε(u − ū) : ε(v − v̄) dx. (18)
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P r o o f : The decomposition (16) immediately follows from the following
obvious integral identities

`(u − ū) =

∫

Ω

Lε(v) : ε(u − ū) dx =

=

∫

Ω

Lε(v − v̄) : ε(u − ū) dx +

∫

Ω

Lε(v̄) : ε(u − ū) dx,

and ∫

Ω

Lε(v̄) : ε(u − ū) dx =

∫

Ω

L ε(u − ū) : ε(v̄) dx =

= F (v̄) −

∫

Ω

Lε(ū) : ε(v̄) dx. 2

Remark 1. We note that the term E0 is directly computable once ū and
v̄ are known, whereas the term E1 should be estimated. In Section 3, we
suggest an idea that can be used to evaluate the term E1 effectively in practical
computations.

Remark 2. The term E1(ū, v̄) can also be represented in terms of stresses
as follows:

E1(ū, v̄) =

∫

Ω

L−1 σ(u − ū) : σ(v − v̄) dx, (19)

where L−1 is the tensor of elastic compliances.

3 Construction of the Error Estimator

Let V h and V τ be two finite-dimensional subspaces of V 0, not necessarily co-
inciding, that are based on the finite element meshes Th and Tτ , respectively.
We shall use V h and V τ for the construction of finite element approximations
of the problems (PP) and (AP), respectively, i.e., we pose the following two
problems:

Problem (PPh): Find uh ∈ V h + u0 such that

a(uh,wh) = F (wh) ∀wh ∈ V h, (20)

Problem (APτ ): Find vτ ∈ V τ such that

a(vτ ,wτ ) = `(wτ ) ∀wτ ∈ V τ . (21)

Both above problems are, obviously, uniquely solvable due to the Lax-Milgram
theorem.
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Furthermore, upon setting ū = uh and v̄ = vτ in the error decomposition
(16)–(18), we obtain

`(u − uh) = E0(u
h,vτ ) + E1(u

h,vτ ). (22)

It is well known that the finite element solution of the linear elasticity
problems possesses certain superconvergence properties (see, e.g., [10]), which
makes it possible to prove that its averaged gradient often presents a good
image of the true one. This fact made a posteriori error indicators based
on gradient averaging techniques very popular. It is natural to exploit this
property in the estimation of the term E1, which contains unknown gradients
of the solutions of the primal and adjoint problems.

Thus, let
Gh,Gτ : (L∞(Ω))d → (H1(Ω))d

be some gradient averaging operators related to the meshes Th and Tτ , re-
spectively.

In the simplest case of linear finite elements, both gradient averaging
operators can be defined as a mapping of a piecewise constant gradient (∇uh

or ∇vτ ) into a tensor-valued piecewise linear function by setting each of its
nodal values as the mean (or weighted mean) value of the gradient values on
all elements than contain the corresponding nodal point (cf. [10]).

By means of Gh we may define an averaging operator for the strains (still
denoted by the symbol Gh) as follows

Gh(ε(uh)) :=
1

2

(
Gh(∇uh) + (Gh(∇uh))T

)
, (23)

and, similarly,

Gτ (ε(vτ )) :=
1

2

(
Gτ (∇vτ ) + (Gτ (∇vτ ))T

)
. (24)

Then, the term E1(u
h,vτ ) can be replaced by the explicitly computable term

Ẽ1(u
h,vτ ) =

∫

Ω

L (Gh(ε(uh)) − ε(uh)) : (Gτ (ε(vτ )) − ε(vτ )) dx , (25)

that leads to the error estimator in the form

Ẽ(uh,vτ ) := E0(u
h,vτ ) + Ẽ1(u

h,vτ ), (26)

which is directly computable once the approximations uh and vτ are defined.

Remark 3: We note that E0(u
h,vτ ) asymptotically contains the major part

of `(u−uh) as vτ → v. For the special case V h ≡ V τ , the term E0 obviously
vanishes.

The above construction suggests the following numerical strategy, includ-
ing suggestions for the relevant mesh adaptive procedure:
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(a) Define V τ taking into account the nature of the functional ` (e.g., by
putting extra trial functions in a subdomain associated with it), and
calculate vτ ,

(b) Define V h and calculate uh,

(c) Calculate E0(u
h,vτ ) directly and use post-processed values of ∇uh and

∇vτ to estimate E1(u
h,vτ ), i.e. replace the unknown strains (stresses)

by easily computable averaged strains (stresses),

(d) The estimator Ẽ is, in fact, an integral over Ω, i.e.,

Ẽ(uh,vτ ) :=
∑

T∈T
(i)

h

IT , (27)

where each contribution IT is a value of the integral taken over a partic-
ular element T of the current mesh T

(i)
h . To construct the next primal

mesh T
(i+1)

h in order to decrease the error, we propose the following
adaptive procedure. First, we find the maximum among all moduli
|IT | and, secondly, mark up those elements T which have their con-
tributions larger than the “user-given threshold” θ ∈ [0, 1] times that
maximum value. Refining the marked elements (and making the mesh

conforming), we obtain the next mesh, T (i+1)
h .

Note that computations made in the item (a) can be further used for the
estimation of discretisation errors for approximations of the primal problem
obtained on other meshes and with different f , u0, g.

4 Numerical Examples

In all numerical examples considered in this paper, we shall deal with plane
stress problems without volume forces, i.e., f = 0. The material parameters
are chosen to correspond to glass, i.e. Young’s modulus E = 64000 N/mm2

and Poisson’s ratio ν = 0.2.
In the following, we present two numerical examples, in which we study

how the technology presented above works for quantities of interest of the
type (1). In the first test, the quantity of interest is chosen as the first part
of (1), whereas in the second test, it is chosen as the second part of (1). Our
aim here is to show how the error estimate works in these two very different
situations.

To keep the focus on the estimator’s behaviour for different quantities
of interest, we have chosen the same domain and loading F = 0.5 N/mm2

for both tests. The domain is presented in Figure 1 and it corresponds to a
three point bending problem in fracture mechanics. Note that only half of
the system needs to be modelled due to symmetry conditions.

8



175 175 875 mm 

1400 mm 

3
5
0
 m

m 

F

175 

S

a
 c

ra
c
k

3
5
0
 m

m 

Figure 1: System and loading. Figure 2: Initial primal mesh with
106 nodes and 173 elements.

Figure 3: Adjoint mesh for run 1
with 47 nodes and 69 elements.

Figure 4: Adjoint mesh for run 2
with 162 nodes and 276 elements.

All calculations are preformed using Matlab and the PDE Toolbox pack-
age. For details on the practical implementation of the estimator in the
case of non-hierarchical primal and adjoint meshes we refer the reader to the
recent paper [18].

4.1 Test 1

In the first numerical example, we define the quantity of interest as the first
term in (1) with Φ = 1 and S as indicated in Figure 1. This type of functional
has previously been applied to local error control in, e.g., [12, 13].

Our first aim is to study how the choice of adjoint meshes affects the
performance of the estimator presented. This study is conducted by com-
paring the effectivity index Ieff , i.e., the ratio of the estimated error to the
true error, when the adjoint problem is solved on a series of different adjoint
meshes. These meshes are selected to contain no hierarchical structure. For
comparison, we also include an adjoint mesh identical with the primal mesh.

The effectivity index plotted in Figure 6 clearly tends to one, when the
adjoint mesh is made more dense. This behaviour can be explained by the
development of the error components E0 and Ẽ1 as visualised in Figure 5.

Upon comparing the error components E0 and Ẽ1, we observe that the E0

term dominates over Ẽ1 for sufficiently dense adjoint meshes. This property is
well known and has a positive impact on the effectivity of the estimator. Even
if the component Ẽ1 is estimated only roughly, it has a decreasing influence
on the whole estimate as the ratio E0/Ẽ1 grows. It is important to note that
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for hierarchical primal and adjoint meshes, the Galerkin orthogonality causes
E0 to vanish and we lose this desirable property.

Our second aim is to study how the adaptive strategy presented performs
in practice. Similar studies for quantities of interest can be found, e.g., in
[12]. To take the influence into account, which the adjoint mesh has on the
estimator, the adaptive procedure is repeated for two different adjoint meshes
(Figures 3 and 4). In both runs, these adjoint meshes are kept unchanged
during the refinement process.

The reference error behaviour in adaptive mesh refinements for two dif-
ferent adjoint meshes is plotted in Figure 7 and the effectivity index for cor-
responding adaptive meshes in Figure 8. From these figures, we notice two
properties: both error developments are almost the same and both contain a
plateau, where the convergence slows down.

The existence of the plateau can be traced down to the boundary term
in the estimate. In the refinement, the boundary integral

∫
ΓN

is taken into

account by transferring its value to the element Ti by adding the term
∫

ΓN∩Ti

to the element error contribution. The boundary term does not converge
to zero and elements near the Neumann boundary always have error contri-
butions in the refinement process. However, after the plateau, elementwise
contributions are sufficiently small and the convergence is restored to optimal
speed.

4.2 Test 2

In this test, we choose our example functional from the field of linear elastic
fracture mechanics. In his field, an engineer is interested in whether or not
a pre-existing crack begins to propagate. The crack propagation can be de-
duced from the value of the J-integral as derived by Cherepanov [8] and Rice
[17]. The J-integral is nonlinear, but it can be linearised, so that the estima-
tor presented can be applied. The linearised J-integral can be described by
the second of our terms in (1), where ∇Ψ is defined as LΣ∇(qe||) with the
tensor of elastic tangent moduli associated with the so-called Newton-Eshelby
stress tensor LΣ, the direction of crack propagation e|| and a piecewise linear
function q with support S and values 1 at the crack tip as well as 0 on the
boundary of S. For further details on the derivation of the linearisation of
the J-integral we refer the reader to [18].

For this quantity of interest, the behaviour of the estimator for different
adjoint meshes is difficult to analyse due to the linearisation that depends
on the (approximate) solution of the primal problem. Therefore, we only
present results for adaptive refinement processes.

The reference error development in the adaptive refinement is presented
in Figure 9 and the associated effectivity index in Figure 10. We observe
similar phenomena as in Test 1. The plateau is again present and the same
reasons are behind its existence. The effectivity index of the estimated error
again depends on the adjoint meshes employed in the calculations.

Finally, in Figures 11 and 12 a comparison of the adaptively refined
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Figure 11: Primal mesh after 9 re-
finement steps from run 2 for Test 1.

Figure 12: Primal mesh after 9 re-
finement steps from run 2 for Test 2.

meshes as obtained by Tests 1 and 2, respectively, is visualized for approx-
imately the same number of nodes (2947 nodes for Test 1 and 3055 nodes
for Test 2). As can be observed, the meshes look quite similar although the
quantities of interest are different.

5 Conclusions

In this paper, we presented averaging-type goal-oriented a posteriori error es-
timators for the error of given goal quantities of interest within the framework
of linear elasticity. Goal-oriented error estimators are based on the solution
of an auxiliary adjoint problem which was, in this paper, solved on a differ-
ent mesh than the primal problem. Furthermore, for the error estimator we
obtain an additional term which, in turn, is always exactly computable. The
strategy proposed in this paper has the obvious advantage that the adjoint
solution does not have to be computed in every adaptive mesh refinement
step and thus reduces the computational costs considerably compared to the
common strategy to solve both the primal and the adjoint problem in each
adaptive step on the same mesh. Moreover, in the numerical examples we
obtained good numerical evidence for the effectivity of the error estimator
presented in this paper.
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