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1 Introduction

There are many methods developed and widely used in practice for refining
a given simplicial partition of a closed bounded polytopic domain Ω ⊂ Rd,
d ∈ {2, 3, . . .}. One of such methods is the so-called bisection algorithm,
which is very popular for its simplicity. Originally, this method was used
(and analysed) for solving systems of nonlinear equations (see e.g. [5, 19]
and relevant references therein). However, it was also found to be useful
for refinement and adaptation of simplicial computational meshes for the
finite element method. The longest-edge bisection algorithm chooses first
the midpoint of the longest edge of each simplex in a given finite element
partition. Then each simplex is bisected by a hyperplane passing through this
midpoint and all its vertices that do not belong to the chosen longest edge.
Thus, in each refining step the number of simplices is doubled. Repeating
this process, we obtain a family of nested partitions that refine the initial
partition of Ω globally.

As an analysis of the above described algorithm reduces actually to moni-
toring the behaviour of the longest-edge bisection algorithm within each sim-
plex of the initial partition, we briefly recall the classical results (convergence
and nondegeneracy) obtained when the longest-edge algorithm is applied to
a single simplex. First, Rosenberg and Stenger [18] for d = 2 showed that
no angle of no triangle tends to zero for infinitely many steps of the above-
described variant of the bisection algorithm. A somewhat stronger result has
been achieved by Stynes [20, 21] (see also Adler [1]) who showed that the
repeated bisection process yields only a finite number of similarity-distinct
subtriangles. This number is bounded when the discretization parameter h
tends to zero. In [7], Kearfott proved for the longest-edge bisection algorithm
that the largest diameter of all simplices (i.e., the discretization parameter
h) tends to zero for arbitrary dimension d.

Figure 1

However, when all simplices are bisected simultaneously then so-called
hanging nodes may appear (see the black dot in Figure 1), which is a certain
disadvantage of this method, especially if we want to use conforming finite
element discretizations over such partitions. Therefore, the above-described
algorithm will be called a nonconforming longest-edge bisection algorithm in
what follows. In order to avoid hanging nodes and at the same time to pre-
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serve the general idea and main properties of the bisection algorithm, there
were developed a few techniques, see [2, 13, 14, 15, 16, 17]. For instance,
Rivara in her series of papers started in 1984 has presented several global
and local mesh refinement algorithms which always produce conforming tri-
angular (and also tetrahedral – [17]) partitions. Each simplex that contains
a hanging node is bisected. Numerical tests presented by Rivara show that
all elements remain nondegenerating while refining partitions by any of her
algorithms. However, proofs of the nondegeneracy property were only given
for the global refinement algorithms and d = 2, i.e., for those which refine
all triangles of the current partition (see [15]). Note that Horst in [6], and
Liu and Joe in [11, 12] introduced and analyzed the generalized bisection
algorithms which do not always halve the longest edge.

In this paper, we present a different type of the longest-edge bisection
algorithm which does not produce hanging nodes. Consequently, we will call
this algorithm a conforming longest-edge bisection algorithm. It yields face-
to-face partitions and thus can be used in conforming finite element methods.
The algorithm chooses the longest edge among all edges in a given simplicial
partition (and not in each simplex separately). Using the midpoint of this
edge, we can define a locally refined partition of all simplices that surround
this edge as follows: each such simplex is bisected by a hyperplane passing
through this midpoint and all its vertices that do not belong to the chosen
longest edge. Repeating this process, we obtain a family F of nested face-
to-face (i.e., conforming) partitions as indicated in Figure 2. In Figure 3 we
observe subsequent partitions of a tetrahedron obtained by this algorithm.

Figure 2

Clearly, the family F is never uniquely defined, since during the refine-
ment process there may appear many new edges having the same length due
to the bisections. For instance, the third bisection in Figure 2 is not uniquely
determined (see the first illustration in the second line).

The use of the conforming algorithm produces partitions Th, in which all
elements have approximately the same size for a sufficiently small parameter
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h (cf. Figure 10). On the other hand, the size of elements when using the
nonconforming-like algorithms essentially depend on the size of elements from
the initial partition.

1

Figure 3

Note that the bisection algorithms are, in general, much simpler (espe-
cially for dimensions d > 2) than the popular finite element refinement of
simplicial partitions that uses yellow, red, green, and red-green subdivisions
(see e.g. [3, 9, 10]).

The structure of the paper is following. In Section 2, we analyze the be-
haviour of the proposed conforming longest-edge bisection algorithm within
a single triangle from a given triangulation and present some auxiliary re-
sults. For simplicity the term “conforming” will be often omitted later on.
In Section 3, we prove that the bisection algorithm produces a family F of
nested triangulations which is strongly regular (see [4]), i.e., the famous in-
verse inequalities from finite element theory hold. In particular, the Zlámal
minimum angle condition (see [4, 22]) is valid, i.e., all angles of all triangles
from all triangulations are bounded from below by a fixed constant α̂ > 0.
Consequently, associated finite element functions have optimal interpolation
properties in Sobolev spaces [8]. Moreover, the strong regularity of F en-
ables us to construct convergent finite element approximations. Section 4 is
devoted to numerical experiments.

We emphasize here that the proof of regularity of F while using the
algorithm presented in this paper is more difficult that the regularity proofs
given by Rivara in [15, Theorems 5 and 7] as it does not use the results of
Rosenberg, Stenger and Stynes obtained for nonconforming algorithms.

2 Auxiliary lemmas

Throughout this paper assume that angles α, β, and γ of an arbitrary given
triangle ABC are denoted so that

α ≤ β ≤ γ, (1)

and let
a ≤ b ≤ c (2)
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be lengths of the opposite sides. Now bisect the triangle by the median of
length t to the longest side c. Denote the newly generated angles by α1, β1, γ1,
and γ2 as illustrated in Figure 4. If there are two or three sides having the
maximum length, then the bisection is not uniquely determined. In this case,
we will always bisect that side whose length is denoted by c.

A D B

C

α

γ2

γ1

β

ab

c

2

c

2

α1β1

t

Figure 4

Lemma 1 Under the above notation for any triangle we have

α ≤ π

3
≤ γ, β <

π

2
, (3)

α1 ≤
π

2
≤ β1, (4)

α < α1, (5)

γ2 <
π

2
, γ2 ≤ γ1, (6)

π

6
≤ γ1. (7)

P r o o f : Absolute bounds (3) follow from (1) and the equality α+β+γ = π.
By the Cosine theorem we see that

a2 = t2 +
( c

2

)2 − tc cos α1,

b2 = t2 +
( c

2

)2 − tc cos β1.

From this and (2) we find that cos α1 ≥ cos β1. Since α1 + β1 = π and
the function cosine is decreasing on the interval [0, π], we get (4).

According to
α < α + γ2 = π − β1 = α1,

we get (5).
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By (4), we immediately see that γ2 < π− β1 ≤ π

2
, i.e., the first inequality

in (6) holds. Using (1), (3), and the Sine theorem, we find that

2 sin γ2

c
=

sin α

t
≤ sin β

t
=

2 sin γ1

c
,

which yields sin γ2 ≤ sin γ1. From this and the first inequality of (6), we
obviously get γ2 ≤ γ1, because sinus is increasing in [0, π

2
].

Finally, the absolute bound in (7) follows from (3) and (6).

Remark 1 Denote vertices of a given triangle ABC as marked in Figure 4.
Let D be the midpoint of the longest side AB and let E be such a point
that D is the midpoint of the segment CE, i.e., ACBE is a parallelogram.
Using the triangle inequality for the triangle ACE and relation (2), we get
2t < a + b ≤ 2b, i.e.,

t < b. (8)

From (2), (8), and the inequality

c

2
<

a + b

2
≤ b,

we observe that the triangle ACD (which is never acute due to (4)) will
always be bisected in the next step. Its side AC of length b will be halved.

Lemma 2 For a nonacute triangle ABC we have

α ≤ γ2. (9)

P r o o f : By the nonacuteness of the triangle and (1) we have γ ≥ π

2
, and

therefore,

t ≤ c

2
. (10)

Using the Sine theorem, we come to

sin α

t
=

2 sin γ2

c
≤ sin γ2

t
,

which implies (9) due to (3) and (6).

Corollary 1 Let α be the smallest angle of a nonacute triangle ABC. Bi-

secting its longest side determines two triangles whose all angles are not less

than α.

P r o o f : The angles α1, β, β1, γ1, and γ2 (see Figure 4) can be estimated
from below by α due to relations (5), (1), (4), (6), and (9).

Lemma 3 For an acute triangle ABC we have

α

2
≤ γ2 < α, (11)

π

4
< β. (12)
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P r o o f : For any triangle ABC (not necessarily acute), by (2) we have

t ≤
√

3

2
c , (13)

where the equality is attained for the equilateral triangle. From (13) and the
Sine theorem for the triangle ACD, we get

2 sin α√
3c

≤ sin α

t
=

2 sin γ2

c
.

Therefore,

sin α ≤
√

3 sin γ2. (14)

Now, assume that ABC is acute. Using (6) and the fact that γ < π

2
, we

find that

γ2 <
π

4
.

Consider now two cases:
1) Let γ2 ∈ (π

6
, π

4
). Then by (3)

α

2
≤ π

6
< γ2,

and thus the first inequality of (11) holds.
2) Let γ2 ≤ π

6
. By (14) and (6),

sin α ≤
√

3 sin γ2 = 2 cos
π

6
sin γ2 ≤ 2 cos γ2 sin γ2 = sin 2γ2,

which implies that α ≤ 2γ2, i.e., the first inequality of (11) holds again.
Further, we observe that

c

2
< t, (15)

since the triangle ABC is acute. From this and the Sine theorem for the
triangle ACD we find that

2 sin γ2

c
=

sin α

t
<

2 sin α

c
.

Hence, γ2 < α and the second inequality of (11) holds for both cases 1) and
2).

Since γ < π

2
, we observe that π

2
< α + β ≤ 2β, which implies (12).

Corollary 2 Let α be the smallest angle of an acute triangle ABC. Bisecting

its longest side determines two triangles whose all angles are not less than
α

2
. The lower bound α

2
is attainable while bisecting the equilateral triangle.

Before proving that the bisection algorithm guarantees the minimum an-
gle condition, we present one more result.
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Corollary 3 Consider an acute triangle ABC such that α1 > β after one

bisection. Then the conforming longest-edge bisection algorithm yields only

a finite number of similarity distinct subtriangles inside of this triangle.

P r o o f : From (15), (4), and the Sine theorem, we see that

c

2
< t < a. (16)

Having in mind Remark 1, we find from (2) and (16) that the sides will be
bisected in the following order: c, b, a, t, c

2
, and c

2
. After that we obtain a

triangulation which consists of only two kinds of subtriangles (see Figure 5).
They are similar to the two triangles produced after the first bisection of the
original triangle ABC.

We prove one more lemma keeping the notation of Figure 4, i.e., γ2 is the
angle ACD, where D is the midpoint of the longest side AB.

Figure 5

Lemma 4 Let ABC be an acute triangle and let it be obtained by the longest-

edge bisection of a mother triangle whose minimal angle is α′. Then

γ2 ≥ min(α′,
π

13
).

P r o o f : We can distinguish the following six cases sketched in Figures 6,
7, and 8:

1. Let ABC ′ be the mother triangle and |AC ′| = 2b (see Figure 6). We
observe that the considered angle γ2 is just equal to the angle at C ′ of the
mother triangle ABC ′, i.e., α′ = γ2 due to (11).

2. Let A′BC be the mother triangle and |A′C| = 2b (see Figure 6). Let
s be the length of the altitude on the side AC from B and let

b1 =
s

tan γ
, b2 =

s

tan α
.
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a c

C Ab b1 2

α 2α

bb A

γ 2γ

C

γ
2

s

Figure 6

Then b1 + b2 = b, b1 ≤ b2, and

tan γ2 =
s

b + b1

≥ s

b + b2

= tan α2,

where α2 is the angle at the vertex A′. Hence,

γ2 ≥ α2 = α′. (17)

3. Let AB′C be the mother triangle and |AB ′| = 2c (see Figure 7). Let
β3 stand for the angle at B ′, which is acute. Denote by u the length of the
median from B to the side AC. Then by the Cosine theorem and (2) we have

t2 =
1

4
b2 +

3

4
b2 +

1

4
c2 − bc cos α ≤ 1

4
b2 + c2 − bc cos α = u2,

i.e.,
t ≤ u.

From this, the Sine theorem, and (2) we get

2 sin β3

b
=

sin α

u
≤ sin α

t
=

2 sin γ2

c
≤ 2 sin γ2

b
,

which implies that
γ2 ≥ β3 ≥ α′.

(In fact, it is easy to find that β3 = α′.)

C

BA c B

β 3

A
3

a

α

c

α

2

3

ut

b
γ

β
c
2

c
2

Figure 7

4. Let A′BC be the mother traingle and |A′B| = 2c (see Figure 7). Then
similarly to (17), we find that β3 ≥ α3. Therefore,

γ2 ≥ β3 ≥ α3 = α′.
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5. Let AB′C be the mother triangle and |B ′C| = 2a (see Figure 8). We
observe that

2a ≥ b, (18)

since the longest side (which is of length 2a) of the mother triangle is halved.

Ca

γ2

A

BB a Ca

c b

α

Figure 8

Without loss of generality, we may set A = (0, 0) and B = (1, 0). The
shaded area in Figure 9 shows the admissible position of the vertex C. It is
bounded by:

• the circle
(

x − 1

2

)2

+ y2 =
1

4
(19)

with centre M = ( 1

2
, 0), since the triangle ABC is acute,

• the line x = 1

2
, since a ≤ b,

• the circle x2 + y2 = 1, since b ≤ c, and
• the circle

(

x − 4

3

)2

+ y2 =
4

9
, (20)

since (18) holds. Its centre is S = ( 4

3
, 0) and any point P of this circle satisfies

|AP | = 2|BP |.
The coordinates of the intersection Z of circles (19) and (20) are Z =

(4

5
, 2

5
). Therefore, the slope of the line AZ is α = arctan 1

2
. According to

(14), we find that

sin γ2 ≥
sin α√

3
>

sin α√
3

.

Therefore,

γ2 > arcsin
(sin α√

3

)

>
π

13
, (21)

where the absolute lower bound π

13
is obtained by a direct evaluation of the

middle term in (21).

6. Let ABC ′ be the mother triangle and |B ′C| = 2a (see Figure 8).
Since the longest side of the mother triangle is halved, we have 2a ≥ c, i.e.,
inequality (18) holds. Thus (21) is valid in this case, too.
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A B

α

SM

Z

Figure 9

Remark 2 From (18) we can verify that the smallest angle α′ of the triangle
AB′C sketched in Figure 8 is at vertex B ′. We can also check that γ2 < α′.
Therefore, we derived the lower bound (21).

3 Main results

Let Ω be a given closed bounded polygonal domain. It is clear that the
proposed conforming longest-edge bisection algorithm produces nested face-
to-face triangulations Th, where h denotes the largest diameter of all triangles
from Th. Now we prove that the discretization parameter h tends to zero as
the algorithm proceeds.

Theorem 1 The conforming longest-edge bisection algorithm yields a family

of nested triangulations F = {Th}, where h tends monotonically to zero.

P r o o f : Let an initial triangulation of Ω and an arbitrary ε > 0 be given.
Then there exists only a finite number of sides whose lengths are greater than
ε. Each of such sides of length c > ε will be bisected and one or two new
medians to this side will be constructed. The length of each of these new sides
will be less than or equal to

√
3c/2, due to (13) (or (10)). Consequently, the

discretization parameter h does not increase during refinements. Moreover,
we observe that after a finite number of steps the lengths of all sides will be
less than or equal to ε.

Definition 1 A family F = {Th}h→0 of triangulations is called regular, if
there exists a constant C > 0 such that all triangulations Th ∈ F and for all
triangles T ∈ Th we have

meas T ≥ C(diam T )2.
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It is well known (see e.g. [4]) that the regularity of F is equivalent to the
Zlámal’s minimum angle condition. Now we will provide a detailed analysis
of the validity of this angle condition for {Th}h→0.

Theorem 2 Let α0 be the minimum angle of all triangles from an initial

triangulation. Then the conforming longest-edge bisection algorithm yields

the following lower bound upon any angle ϕ of any triangle from any trian-

gulation Th ∈ F
ϕ ≥ α̂ := min

(α0

2
,

π

13

)

. (22)

P r o o f : Without loss of generality we may investigate each triangle from
the initial triangulation T0 separately. Denoting αT the minimum angle of a
particular triangle T from T0, we have

α0 = min
T∈T0

αT .

So let an arbitrary triangle T ∈ T0 be given. We keep the notation of
Figure 4 for T . After the first step of the longest-edge bisection algorithm
the minimum angle of the nonacute subtriangle ACD will be α = αT or γ2

due to (4). Hence, by Lemmas 2 and 3, all angles of ACD are not less than
αT /2 ≥ α̂.

For the subtriangle BCD we have by (5), (1), and (7) that

α1 > α, β ≥ α, γ1 ≥
π

6
,

i.e., its minimum angle is min(α, π

6
) which is not less than αT /2 due to (3).

Thus, we observe that all angles of the both subtriangles ACD and BCD
are not less than αT /2 ≥ α̂.

By Remark 1, the side b will be halved in the second bisection step. Ac-
cording to (4), the subtriangle ACD is nonacute, and therefore, by Corollary
1 all newly generated angles are again not less than αT /2.

When the second subtriangle BCD is bisected, then by Corollary 1 (if it
is nonacute) and Lemma 4 (if it is acute) all newly generated angles are not
less than α̂. Hence, the longest-edge bisection of the both subtriangles ACD
and BCD guarantees the validity of (22).

Next, we will continue by induction. Consider now an arbitrary triangle
ABC from a triangulation Th obtained by the longest-edge algorithm. As-
sume that ABC will be bisected in the next step and that it does not belong
to the initial triangulation T0. We will again keep the notation of Figure 4.
Further, assume that all angles of all triangles (including the triangle ABC)
from the considered triangulation Th and from all previous triangulations of
T are not less than α̂, i.e., (22) is valid.

First let ABC be nonacute. Then by Corollary 1, the bisection algorithm
does not change the value of the minimum angle. This implies that all angles
after bisection are not less than α̂.
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Second assume that ABC is acute. Then by (5), (12), and (7) we come
to

α1 > α, β >
π

4
, γ1 ≥

π

6
.

By the induction hypothesis, α ≥ α̂. The lower bounds for β and γ1 are also
greater than α̂. Hence, all angles of the subtriangle BCD are greater than α̂.

For the subtriangle ACD we have by the induction hypothesis and (4)
that

α ≥ α̂, β1 ≥
π

2
.

So it remains to prove that
γ2 ≥ α̂.

Since ABC is not from the initial triangulation T0, there exists exactly
one mother triangle whose longest-edge bisection produces ABC and which
belongs to some previous triangulation of T . Therefore, the induction hy-
pothesis holds also for the mother triangle. Thus all its angles are greater
than or equal to α̂. Now the use of Lemma 4 completes the proof.

Further, we will prove even a stronger result which, moreover, shows that
all triangles have approximately the same size for a sufficiently small value
of h (cf. Figure 10).

Definition 2 A family F = {Th}h→0 of triangulations is called strongly reg-

ular, if there exists a constant C > 0 such that all triangulations Th ∈ F and
for all triangles T ∈ Th we have

meas T ≥ Ch2.

Theorem 3 The conforming longest-edge bisection algorithm yields a strongly

regular family of triangulations F = {Th}h→0.

P r o o f : First we show that there exists a constant C > 0 such that
for a sufficiently small discretization parameter h the lengths of all sides are
bounded from below by Ch. Assume that all sides of all triangles from T0

were already halved at least one time. Denote such a triangulation by Th,
where h is the length of the longest side. Let T ∈ Th be that triangle with
the shortest side (denoted by a) in the whole triangulation Th. Since all sides
from the initial triangulation were already halved, there exists exactly one
mother triangle T ′ from a previous triangulation Th′ such that the bisection
of T ′ in the next step yields T and the diameter of T ′ is h′. Then we obtain
either h′ = 2a, or h′ = 2b, or h′ = 2c (cf. Figures 6, 7, and 8). Therefore,

2c ≥ h′ ≥ h.

Moreover, by the Sine theorem for the triangle T and Theorem 2 we see
that

a = c
sin α

sin γ
≥ c sin α ≥ c sin α̂,

14



and thus,
sin α̂

2
h ≤ a ≤ b ≤ c ≤ h.

Form this we get that

meas T =
1

2
bc sin α ≥ sin3 α̂

8
h2.

Remark 3 In a similar way as in the proof of Theorem 3 we could derive for
d ≥ 2 that the family of partitions obtained by the conforming longest-edge
bisection algorithm is regular if and only if it is strongly regular. Theorem
1 can also be easily generalized for the case d ≥ 2. However, a higher-
dimensional analogue of Theorem 2, which guarantees a nondegeneracy of all
simplices, is still an open problem.

It is clear that for d = 3 all triangles on surfaces of all tetrahedra (see
Figure 3) in the partition can be bisected in the exactly same way as for
d = 2, but we do not know yet, whether all dihedral angles of all resulting
tetrahedra are bounded from below by a positive constant.

4 Numerical experiments

In Figure 10, we observe the initial triangulation and the result of the pro-
posed conforming longest-edge bisection algorithm after 10 and 1000 refining
steps. The list of sides in computer memory is ordered according to their
lengths. Newly generated sides are included into this list by means of the
standard quick-sort algorithm, whose one step requires to perform O(log n)
operations, where n is the number of sides. Thus, the longest-edge bisec-
tion algorithm requires asymptotically less computer time than solving the
associated FE-system.

1

Figure 10

To illustrate the behaviour of the repeated bisection process we have
chosen the obtuse triangle with vertices A = (0, 0), B = (10, 0), and C =

15



(9, 3) as the initial domain. In this case the assumptions of Corollary 3 are not
valid. Nevertheless, numerical results in Figure 11 indicate that the number
of similarity-distinct subtriangles seems to be bounded when h → 0 (like
for the nonconforming algorithm analysed in [21] which produces hanging
nodes, in general). In this test we performed 1000 bisections. In Figure
12 we observe the behaviour of the maximal and minimal angles from the
interval (0◦, 180◦) during the 1000 bisections. The value of the minimal angle
does not change. It is equal to γ2 ≈ 18.5◦ obtained by the first bisection.
The maximal angle does not exceed the angle β1 ≈ 143◦ obtained by the first
bisection.

0 200 400 600 800 1000
0

2

4

6

The number of nonsimilar subtriangles

Figure 11

0 200 400 600 800 1000
0

50

100

150

Behaviour of the maximal and minimal angles

Figure 12
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