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Abstract: In this note we propose a nonstandard technique for construct-

ing global a posteriori error estimates for the stationary convection-reaction-

diffusion equation. In order to estimate the approximation error in appro-

priate weighted energy norms, which measures the overall quality of the ap-

proximations, the underlying bilinear form is decomposed into several terms

which can be directly computed or easily estimated from above using elemen-

tary tools of functional analysis. Several auxiliary parameters are introduced

to construct such a splitting and tune the resulting upper error bound. It is

demonstrated how these parameters can be chosen in some natural and con-

venient for computations way so that the weighted energy norm of the error

is almost recovered, which shows that the estimates proposed are, in fact,

quasi-sharp. The presented methodology is completely independent of numer-

ical techniques used to compute approximate solutions. In particular, it is

applicable to approximations which fail to satisfy the Galerkin orthogonality,

e.g., due to an inconsistent stabilization, flux limiting, low-order quadrature

rules, round-off and iteration errors etc. Moreover, the only constant that

appears in the proposed error estimates is of global nature and comes from

the Friedrichs-Poincaré inequality.
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1 Introduction

Mathematical models (and their numerical solution) consisting of convection-
reaction-diffusion equations with various boundary conditions present a very
important class of real-life problems [12, 16, 19]. The error incurred in the
course of discretization and iterative solution of such problems is responsible
for the defference between the computational results and the exact solutions
of the models. A posteriori error estimates quantify this difference (also
called the error) and constitute a modern reliable tool for constructing ef-
fective adaptive mesh refinement procedures aimed at reducing the error if
necessary according to main computational goals. Currently, reliable error
techniques are available, e.g., for finite element approximations of various el-
liptic problems (see [1, 3, 4, 5, 13, 21, 24, 25] and references therein). However,
the derivation of reliable error estimates for convection-diffusion equations
still represents a challenging open problem, although there exist a number of
works on this topic written during the past two decades [9, 11, 26, 27].

A crucial limitation of many a posteriori error estimation techniques is
the presence of a large set of so-called interpolation constants (see, e.g., [27])
which are extremely difficult to compute (or even to estimate, cf. [7] for a
simpler elliptic problems), especially in the case of complex domains and
unstructured computational meshes. The uncertainty involved in the com-
putation of these constants may seriously reduce the actual reliability of the
resulting estimates. Moreover, some popular methods rely on the existence
of an equivalent minimization problem or assume the Galerkin orthogonality.
For the residual to be orthogonal to the space of test functions, the discretiza-
tion must be performed by a consistent (Petrov-)Galerkin method and the
resulting algebraic equations must be solved exactly. These requirements are
never satisfied in practice because of numerical quadrature, various round-off
errors, slack tolerances for iterative solvers, programming bugs etc. The use
of upwinding [2] or flux/slope limiters [17] in finite element codes may also
violate the Galerkin orthogonality.

A very promising approach to error estimation was developed by S. Re-
pin and his coauthors [21, 22, 23] during the last 10 years in the context of
diffusion-type problems (and some other types of problems). Remarkably,
it is applicable to any conforming approximation regardless of the numerical
method used to compute it. The original derivation is based on rather sophis-
ticated tools of functional analysis (duality theory, Helmholtz decomposition)
but a simplified version was recently proposed and succesfully employed for
reaction-diffusion problems in [10, 14].

The approach from [10, 14] with several modifications was further applied
to convection-diffusion equations for the first time in the very recent work
[15], where obtained estimates involve two free parameters for tuning the
resulting bounds. However, the estimates from [15] may involve, in practice,
a good resolution of the so-called adjoint problem, which can be sometimes
unnecessary as this problem is of auxiliary nature in many situations.

In the present paper we describe another technique for constructing upper
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error estimtes for the same class of problems as in [15], which helps to get the
upper bounds for the error which are valid for any admissible approximations
without using any adjoint problems and which, in addition, hold in various
global norms. The resulting upper bounds are shown be quasi-sharp in the
sense that they almost reduce to the true error if the involved parameters
are chosen in some quite natural and convenient for practical calculations
way. Moreover, as in [15], there is just one global constant (due to the
Friedrichs-Poincaré inequality) involved into the estimates, which depends
on the geometry of the computational domain only and does not change
during mesh adaptation.

2 Model problem

Consider the stationary convection-reaction-diffusion problem
{

−ε∆u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω ⊂ R
d, d ≥ 1, is a bounded domain with a Lipschitz continuous

boundary ∂Ω. The constant diffusion coefficient ε, the velocity field b, and
the reaction rate c are supposed to satisfy the following conditions

ε > 0, b ∈ W 1
∞(Ω; Rd), c ∈ L∞(Ω). (2)

The weak formulation of the above problem reads: Find u ∈ H1
0 (Ω) such

that
a(u,w) = F (w) ∀w ∈ H1

0 (Ω), (3)

where the bilinear form a(·, ·) and the linear functional F (·) are given by

a(v, w) =

∫

Ω

ε∇v · ∇w dx +

∫

Ω

b · ∇v w dx +

∫

Ω

cvw dx, (4)

F (w) =

∫

Ω

fw dx, u, w ∈ H1
0 (Ω). (5)

It is well known that the weak solution u ∈ H1
0 (Ω) of variational problem (3)

exists and is unique provided that the following extra condition holds

c̃(x) := c(x) − 1

2
∇ · b(x) ≥ 0 (6)

almost everywhere in Ω. Indeed, under this constraint, the bilinear form
a(·, ·) is coercive

a(w,w) =

∫

Ω

ε∇w · ∇w dx +

∫

Ω

(b · ∇w) w dx +

∫

Ω

cw2 dx

= ε

∫

Ω

|∇w|2 dx +

∫

Ω

(

c − 1

2
∇ · b

)

w2 dx ≥ C‖w‖2
1,Ω, (7)
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where C is a positive constant and ‖ · ‖1,Ω denotes the standard norm in
H1(Ω). And the coercivity of the bilinear form a(·, ·) implies the unique
solvability of problem (3) due to the Lax-Milgram lemma (see, e.g., [8]).

Remark 1: Here, we mention that we have no special restrictions on the
coefficients of the problem as done, e.g., in [26, 27] (condition (A3)).

3 Error estimation technique

Let ū be some function from H1
0 (Ω) considered as an approximation of u. In

our work, we do not specify how ū has been computed, it is just an arbitrary
function from an admissible class.

The natural global measure of the error e := u − ū is the value ‖e‖1,Ω

since both, the exact solution and the approximation belong to the same
space H1

0 (Ω). However, in what follows, it is more convenient to analyse
the estimation of the error in terms of suitable global weighted energy norm
defined as follows

|||e|||2λ,µ,Ω := λ

∫

Ω

|∇e|2 dx + µ

∫

Ω

c̃ e2 dx, (8)

where the weights λ and µ are nonnegative real numbers (will be defined
later), such that λ + µ > 0. It is clear that |||e|||λ,µ,Ω is equivalent to ‖ · ‖1,Ω

under the above conditions on λ and µ.
In particular, we also have

a(e, e) = |||e|||2ε,1,Ω, (9)

which is the reason for calling error measures defined in (8) weighted energy
norms.

In order to construct a posteriori estimates for the error in certain weighted
energy norms of type (8), we first observe that

a(e, e) = a(u − ū, u − ū) =

= ε

∫

Ω

∇(u−ū)·∇(u−ū) dx+

∫

Ω

b·∇(u−ū)(u−ū) dx+

∫

Ω

c(u−ū) (u−ū) dx =

(10)

=

∫

Ω

f(u−ū) dx−ε

∫

Ω

∇ū·∇(u−ū) dx−
∫

Ω

b·∇ū (u−ū) dx−
∫

Ω

c ū (u−ū) dx,

where the integral identity (3) with w = u − ū has been used.

Further, we regroup terms in (10) and introduce a parametric vector-
function y? ∈ H(div, Ω) so that

a(u − ū, u − ū) =
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=

∫

Ω

(f −b · ∇ū− c ū)(u− ū) dx−
∫

Ω

(ε∇ū− y? + y?) · ∇(u− ū) dx = (11)

=

∫

Ω

(f−b·∇ū−c ū)(u−ū) dx−
∫

Ω

(ε∇ū−y?)·∇(u−ū) dx−
∫

Ω

y?·∇(u−ū) dx.

Using the Green formula for the last term in the right-hand side of (11), we
finally get the following decomposition for the error in the standard energy
norm

a(u − ū, u − ū) =

=

∫

Ω

(f −b ·∇ū− c ū+∇·y?)(u− ū) dx+

∫

Ω

(y? − ε∇ū) ·∇(u− ū) dx. (12)

Now, we introduce another parameter, now being an arbitrary function v

from the space H1
0 (Ω). Then we can represent (12) further as follows

a(u − ū, u − ū) =

=

∫

Ω

(f − b · ∇ū − c ū + ∇ · y? − cv − b · ∇v)(u − ū) dx + (13)

+

∫

Ω

(y? − ε∇ū + ε∇v) · ∇(u − ū) dx +

+

∫

Ω

(

(c v + b · ∇v)(u − ū) − ε∇v · ∇(u − ū)
)

dx = T1 + T2 + T3.

Thus, our further goal is to effectively estimate from above the foregoing
three terms T1, T2, and T3.

First, we have

T1 ≤ ‖f − b · ∇ū − c ū + ∇ · y? − cv − b · ∇v‖0,Ω‖u − ū‖0,Ω ≤

≤ CΩ‖f − b · ∇ū − c ū + ∇ · y? − cv − b · ∇v‖0,Ω‖∇(u − ū)‖0,Ω,

where CΩ is a constant from the Friedrichs-Poincaré inequality

‖w‖0,Ω ≤ CΩ‖∇w‖0,Ω (14)

valid for all functions w ∈ H1
0 (Ω), and ‖ · ‖0,Ω denotes the standard norm in

L2(Ω). Similarly, we get the estimate

T2 ≤ ‖y? − ε∇ū + ε∇v‖0,Ω‖∇(u − ū)‖0,Ω.

In a view of a simple inequality for any α > 0

pq ≤ α

2
p2 +

1

2α
q2, (p, q ≥ 0), (15)
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we immediately get that

T1+T2 ≤
(

‖y?−ε∇ū+ε∇v‖0,Ω+CΩ‖f−b·∇ū−c ū+∇·y?−cv−b·∇v‖0,Ω

)

×

×‖∇(u − ū)‖0,Ω ≤ α

2
‖∇(u − ū)‖2

0,Ω+

1

2α

(

‖y? − ε∇ū + ε∇v‖0,Ω + CΩ‖f −b · ∇ū− c ū +∇ ·y? − cv−b · ∇v‖0,Ω

)2

,

where α is any positive number. For the second term in the right-hand side
of the above inequality we can employ the following inequality

(p + q)2 ≤ (1 + γ)p2 + (1 +
1

γ
)q2, (p, q ≥ 0), (16)

valid for any positive number γ. Finally, we get

T1 + T2 ≤
α

2
‖∇(u − ū)‖2

0,Ω +
1

2α

(

(1 + γ)‖y? − ε∇ū + ε∇v‖2
0,Ω+ (17)

+
(

1 +
1

γ

)

C2
Ω‖f − b · ∇ū − c ū + ∇ · y? − cv − b · ∇v‖2

0,Ω

)

.

Now, we shall estimate the third term T3. We observe that

T3 =

∫

Ω

(

c v(u − ū) + b · ∇v(u − ū) + ε∇v · ∇ū − ε∇v · ∇u
)

dx =

=

∫

Ω

(

c v(u − ū) + b · ∇v(u − ū) + ε∇v · ∇ū − fv + b · ∇uv + cuv
)

dx =

=

∫

Ω

(

b · ∇v (u − ū) + 2 c v (u − ū) + b · ∇(u − ū) v
)

dx+

+

∫

Ω

(

−f v + b · ∇ū v − c v (u − ū) + ε∇v · ∇ū + cuv
)

dx = (18)

=

∫

Ω

(

b·∇
(

v (u−ū)
)

+2 c v (u−ū)
)

dx+

∫

Ω

(

ε∇v·∇ū+b·∇ū v+c v ū−fv
)

dx =

=

∫

Ω

(

ε∇v · ∇ū + b · ∇ū v + c v ū− fv
)

dx + 2

∫

Ω

(c− 1

2
∇ · b) v (u− ū) dx =

= T3,1(v, ū) + T3,2(u, v, ū).

Obviously, the above term T3,1 is directly computable once we have the ap-
proximation ū computed and fix the parameter v, but we should still estimate
the term T3,2 containing the unknown exact solution u. For this purpose,
employing the definition of c̃ in (6), we further apply the obvious estimate

T3,2 ≤
1

β
‖
√

c̃(u − ū)‖2
0,Ω + β‖

√
c̃ v‖2

0,Ω, (19)
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where β is any positive number.

Now, combining (9) and (13) with estimates (17), (18), and (19), we prove
the following theorem.

Theorem 1: Under conditions (2) and (6), for the solution u of the problem
(3) and for an arbitrary function ū ∈ H1

0 (Ω), we have the following functional
inequality

(ε − α

2
)‖∇(u − ū)‖2

0,Ω + (1 − 1

β
)‖
√

c̃(u − ū)‖2
0,Ω ≤

≤ 1

2α

(

(1 + γ)‖y? − ε∇ū + ε∇v‖2
0,Ω+ (20)

+
(

1 +
1

γ

)

C2
Ω‖f − b · ∇ū − c ū + ∇ · y? − cv − b · ∇v‖2

0,Ω

)

+

+

∫

Ω

(

ε∇v · ∇ū + b · ∇ū v + c v ū − fv
)

dx + β‖
√

c̃ v‖2
0,Ω,

which is valid for any positive numbers α, β, γ, and for any parameter-
functions y? ∈ H(div, Ω) and v ∈ H1

0 (Ω).

Let us fix the numbers α and β and introduce a short denotation

ESTα,β := EST
α,β

(γ,y?, v, ū)

for the functional on the right-hand side of the inequality (20). Now we
formulate the main result of the paper.

Theorem 2: Let α and β be fixed positive numbers such that

2ε ≥ α > 0, β ≥ 1, ε − α

2
+ 1 − 1

β
> 0. (21)

Then, in view of the inequality (20), we get the following a posteriori upper
error estimates for the error in the weighted energy norms of type (8)

|||e|||2λ,µ,Ω ≤ ESTα,β(γ,y?, v, ū), (22)

where λ := ε− α
2
, µ := 1− 1

β
, and the parameters γ, y?, and v are as defined

in Theorem 1.

Remark 2: We see that under condition (21) in Theorem 2, we have λ ≥ 0,
µ ≥ 0, and λ + µ > 0, i.e., the left-hand side of (22) really defines certain
weighted norm of type (8). Taking different values of the numbers α and β

within limits given in (21), we get the family of a posteriori error estimates
in various weighted energy norms.
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4 Final comments

4.1 On estimation of the constant CΩ

We notice that the constant CΩ that appears in the definition of the error
functional ESTα,β is global and depends solely on the geometry of the do-
main. Its usable upper estimate can be readily obtained by enclosing the
domain Ω into a rectangular box as proposed by S. Mikhlin (see [18], p. 18)

CΩ ≤ 1

π
√

1
a2
1

+ · · · + 1
a2

d

, (23)

where a1, . . . , ad are the dimensions of the box. Note that CΩ is independent
of the mesh and needs to be evaluated only once for each particular domain.

4.2 On the quality of the proposed error estimates

Let us assume that we have minimized the upper bound ESTα,β, i.e., that
we have found the optimal parametres γopt, y?

opt, vopt, and define

ESTα,β := EST(γopt,y
?
opt, vopt, ū).

In what follows, we shall demonstrate that the number ESTα,β does not give
a too pessimistic overestimation of the error in (22) in principle.

First, let us prescribe

y? := ε∇u & v := u − ū, (24)

which is really correct in a view of properties of u and ū. Then, using (3)
with w = u − ū and the Green formula, we get

ESTα,β ≤ 1

2α
4ε2(1 + γ)‖∇(u − ū)‖2

0,Ω+

+

∫

Ω

(

ε∇(u−ū)·∇ū+b·∇ū (u−ū)+c(u−ū) ū−f(u−ū)
)

dx+β‖
√

c̃ (u−ū)‖2
0,Ω =

=
2(1 + γ)ε2

α
‖∇(u − ū)‖2

0,Ω + β‖
√

c̃ (u − ū)‖2
0,Ω

−
∫

Ω

(

ε∇(u−ū)·∇(u−ū)+b·∇(u−ū) (u−ū)+c (u−ū) (u−ū)+f (u−ū)
)

dx+

+

∫

Ω

(

ε∇(u − ū) · ∇u + b · ∇u (u − ū) + c (u − ū) u
)

dx =

=
(2(1 + γ)ε2

α
− ε
)

‖∇(u − ū)‖2
0,Ω + (β − 1)‖

√
c̃ (u − ū)‖2

0,Ω.
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Thus, for the choice of parameters (24), from above we get the following
inequalities for the value of ESTα,β

|||e|||2
(ε−α

2
),(1− 1

β
),Ω

≤ ESTα,β ≤ |||e|||2(
2(1+γ)ε2

α
−ε

)

,(β−1),Ω

. (25)

Now we shall present examples on how sharp the proposed estimates are,
in principle, for several particular choices of weights in the estimates (25).

Example 1: Let α := ε and β := 1. Then we observe that

|||e|||2ε
2
,0,Ω ≤ ESTα,β ≤ |||e|||2ε(1+2γ),0,Ω. (26)

Since γ can be taken arbitrarily small, we see that in this case ESTα,β can
overestimate the error (which is, in fact, the L2-norm of the difference u− ū)

|||e|||2ε
2
,0,Ω =

ε

2
‖∇(u − ū)‖2

0,Ω

at most twice, which is quite aceptable for the error control in real compu-
tation.

Example 2: Let now α := ε and β := 2. In this case, we get the same result
as in Example 1, but now for another global error, which is nothing else, but
the halved standard energy norm of the error

ε

2
‖∇(u − ū)‖2

0,Ω +
1

2
‖
√

c̃(u − ū)‖2
0,Ω.

Example 3: Let us now take α := 2ε and β := 2. Then we have

|||e|||2
0, 1

2
,Ω

≤ ESTα,β ≤ |||e|||2εγ,1,Ω. (27)

Since γ can be taken arbitrarily small, we see that in this case ESTα,β =

EST2ε,2 can overestimate the value 1
2
‖
√

c̃(u − ū)‖2
0,Ω at most twice, too. It

is worth noting that the number ‖
√

c̃(u − ū)‖0,Ω can also serve as a global
measure for the error if, for example, we have

0 < c0 ≤ c̃(x) ≤ c1

valid almost everywhere in Ω with positive constants c0 and c1.

Remark 3: All three above examples demonstrate that the global a priori
error estimates proposed in the paper are, in principle, quasi-sharp. More-
over, theoretically there still exists a possibility that for the better choice of
parametres y? and v, different from that one propose in (24), we can prove
that the estimates perform, in fact, even better.

Remark 4: Situations with another choices of weights α and β can be also
considered if required by real calculations following some more specific goal.
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4.3 On choice of parameters in computations

A very comprehensive analysis on how to choose the optimal values for various
parameters involved in the definition of the estimates of type (20) is the
subject of our subsequent paper, see also [15, Sect. 5] for some relevant ideas.

However, for completeness we propose here one simple way of usage of
our estimates in the situations when computations are performed on a series
of meshes, which is a quite typical situation in the engineering practice. Let
us have a sequence of computational meshes T h1 , T h2 , . . . , T hk (k ≥ 2) with
corresponding computed approximate solutions uh1 , uh2 , . . . , uhk .

Assume that we want to control the error ei = u−uhi , i = 1, . . . , k. Then
as immediate candidates for the parameter v to be employed in our estimates
we can take easily computable functions vi,j = uhi − uhj , i, j = 1, . . . , k, and
use functions εGhi

(∇uhi
), i = 1, . . . , k as values for the parameter y?. Here,

Ghi
denotes some gradient averaging operator (see [6, 20] and references

therein) for concrete definitions.

4.4 On mesh adaptive strategy

It is also natural to ask how we could use our estimates for the mesh adap-
tation purposes. Here, we describe a general strategy for such a goal. The
upper estimate (20) is, in fact, an integral over the solution domain Ω. Thus,
we can represent the value of this integral as the following sum

∑

T∈T (i)

IT ,

where each contribution IT is a value of the total domain integral taken over
a particular element T of the current mesh T (i). To construct the next mesh
T (i+1) in order to obtain a more accurate approximation, we could use the
following scheme. First, we find the maximum among all terms |IT | and,
secondly, mark up those elements T which have their contributions larger
than the “user-given threshold” θ (θ ∈ [0, 1]) times that maximum value.
Refining the marked elements (and making the mesh conforming), we obtain
the next mesh T (i+1).
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[16] M. Kř́ıžek and P. Neittaanmäki. Finite Element Approximation of Vari-

ational Problems and Applications. Longman Scientific & Technical, Har-
low, 1990.
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