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1 Introduction

In this paper we will consider a family of finite element methods for the
Reissner-Mindlin plate model, which was introduced in [18] and further an-
alyzed in [12]. The origin of the method is in a ”Galerkin-Least-Squares”
method in introduced by Hughes and Franca [9]. In this paper the shear
force was discretized independtly and locally condensed. In our paper [18] we
showed that this step is unnecessary; it is possible to formulate the stabilized
method directly in the displacement variables, the deflection and the rota-
tion vector. For lowest order methods this was firs done by Pitkäranta [15].
This stabilized method has two advantages compared to more traditional
methods. First, standard basis functions can used, i.e. no ”bubble-function”
are needed. Second, the condition number of the stiffness matrix is optimal
which open the way for using direct multigrid and other iterative solvers.

So far, there has been relatively few works on multigrid methods for
Reissner-Mindlin plate methods. The first are the work of Peisker, Rust and
Stein [14], in which Pitkärantas method is analyzed. In a subsequent paper by
Peisker [13] the Hughes-Franca method is analyzed. This work also contain
an algorithm in which the shear force is kept as an independent unknown.
This method has the disadvantage that the stiffness matrix of mixed form,
not symmetric and positively definite as the engineering community is used
to. The same holds for the multigrid methods analyzed in the paper by
Arnold, Falk and Winter [1] and Brenner [7].

2 The plate model

In order to analyze the method in connection with multigrid algorithms we
consider the plate model with a general loading. Let Ω ⊂ IR2 be the midsur-
face of the plate and suppose that the plate is clamped along the boundary Γ.
The variational formulation of Reissner-Mindlin model is: find the deflection
w ∈ H1

0 (Ω) and the rotation vector β = (βx, βy) ∈ [H1
0 (Ω)]2 such that

a(β,η)+t−2(∇w−β,∇v−η) = (f, v)+(f ,η) ∀(v,η) ∈ H1
0 (Ω)× [H1

0 (Ω)]2.
(2.1)

Here t is the thickness of the plate and f is the transverse load acting on Ω.
The bilinear form a represents bending energy and is defined as

a(β,η) =
1

6

{

(ε(β), ε(η)) +
ν

1 − ν
(div β, div η)

}

, (2.2)

where ν is the Poisson ratio, ε(·) is the small strain tensor and ”div” stands
for the divergence, viz.

ε(β) =
1

2

{

∇β + (∇β)T
}

, (2.3)

div β =
∂βx

∂x
+

∂βy

∂y
. (2.4)
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The loading in the shear equilibrium equation (se below) will be needed for
the multigrid analysis. Here and below we for D ⊂ IR2 define the Sobolev
spaces Hs(D), with s ≥ 0, in the usual way, i.e. first for integral values
s and then for nonintegral values by interpolation, cf. [10]. The norms
and seminorms will be denoted by ‖·‖s,D and |·|s,D, respectively. The L2-
inner products in L2(D), [L2(D)]2 or [L2(D)]2×2 are denoted by (·, ·)D. The
subscript D will be dropped when D = Ω.

By taking the scaled shear force

q = t−2(∇w − β) (2.5)

as an independent unknown in the space [L2(Ω)]2 one gets the following mixed
formulation: find (w,β, q) ∈ H1

0 (Ω) × [H1
0 (Ω)]2 × [L2(Ω)]2 such that

a(β,η) + (q,∇v − η) = (f, v) + (f ,η) ∀(v,η) ∈ H1
0 (Ω) × [H1

0 (Ω)]2,

(∇w − β, s) − t2(q, s) = 0 ∀s ∈ [L2(Ω)]2. (2.6)

The distributional differential equations of this system are obtained by inte-
grating by parts:

Lβ + q = f in Ω,

−div q = f in Ω,

−t2q + ∇w − β = 0 in Ω, (2.7)

w = 0, β = 0 on ∂Ω.

Here the differential operator L is defined from

Lη =
1

6
div

{

ε(η) +
ν

1 − ν
div ηI

}

(2.8)

and m is the moment tensor

m =
1

6

{

ε(β) +
ν

1 − ν
div βI

}

. (2.9)

It holds
Lβ = div m, (2.10)

where we used the notation div for the divergence operator applied to a
second order tensor:

div m = (
∂mxx

∂x
+

∂mxy

∂y
,
∂myx

∂x
+

∂myy

∂y
). (2.11)

The first two equations in (2.7) above are the local equilibrium equations
between the moment, shear force and load. The third equation represents
the constitutive relation between the shear strain and shear force.

In the limit t → 0 the solution (w,β) = (wt,βt) of the Reissner–Mindlin
equations converges to the Kirchhoff solution with

β0 = ∇w0. (2.12)
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The limit solution w0 satisfies the biharmonic equation in the domain Ω and
only two boundary conditions on each part of the boundary, cf. [2]. This
singularity gives rise to the boundary layers in the solution which complicates
the convergence analysis of the methods.

Throughout the rest of the paper we will assume the domain Ω to be
convex. The following regularity estimate is proved in [11].

Theorem 2.1. Let Ω be a convex polygonal domain. Denote by (w,β, q)
the Reissner–Mindlin solution for the clamped plate and let w = w0 + wr,
where w0 is the deflection obtained from the Kirchhoff model. With f ∈
H−1(Ω), tf ∈ L2(Ω) and f ∈ [L2(Ω)]2, it then holds

‖w0‖3 + t−1‖wr‖2 +‖β‖2 +‖q‖0 + t‖q‖1 ≤ C(‖f‖−1 + t‖f‖0 +‖f‖0). (2.13)

In our analysis we will utilize the following t-dependent norms.

‖(v,η)‖1,t = ‖η‖0 + inf
v=v0+vr

{

‖v0‖1 + t−1‖vr‖0

}

, (2.14)

‖(v,η)‖3,t = ‖η‖2 + inf
v=v0+vr

{

‖v0‖3 + t−1‖vr‖2

}

(2.15)

and

‖(f,f)‖−1,t = ‖f‖0 + ‖f‖−1 + t‖f‖0. (2.16)

Using these norms these the regularity estimate (2.13) gives

‖(w,β)‖3,t ≤ C‖(f,f)‖−1,t. (2.17)

Furthermore, the norms ‖(·, ·)‖−1,t and ‖(·, ·)‖1,t are dual. The following
theorem (cf. the duality of the K- and J-functional in the theory of in-
terpolation spaces [3]), where ≈ denotes equivalence of norms, is proved in
Schöberl [16, 17].

Theorem 2.2.

‖(f,f)‖−1,t ≈ sup
(v,η)

(f, v) + (f ,η)

‖(v,η)‖1,t

. (2.18)

2.1 Finite element subspaces

We will use standard notation from finite element analysis and we will assume
that the domain Ω is polygonal and let Ch be the partitioning of Ω̄ into tri-
angles or convex quadrilaterals satisfying the usual compatibility conditions.
For generality we allow a mesh consisting of both triangles and quadrilater-
als. As usual hK denotes the diameter of K ∈ Ch and h stands for the global
mesh parameter h = maxK∈Ch

hK . We define

Rm(K) =

{

Pm(K) when K is a triangle,
Qm(K) or Q′

m(K) when K is a quadrilateral.
(2.19)
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The finite element subspaces for the deflection and the rotation is then defined
as follows

Wh = {v ∈ H1
0 (Ω) | v|K ∈ Rk+1(K), ∀K ∈ Ch}, (2.20)

Vh = {η ∈ [H1
0 (Ω)]2 | η|K ∈ Rk(K), ∀K ∈ Ch}, (2.21)

with the polynomial degree k ≥ 1.
The finite element method is then defined as follows.

Method 2.1. ([18, 12]) Given the loading (f,f) ∈ L2(Ω) × [L2(Ω)]2, find
(wh,βh) ∈ Wh × Vh such that

Ah(wh,βh; v,η) = Fh(v,η) ∀(v,η) ∈ Wh × Vh, (2.22)

with the bilinear and linear forms defined as

Ah(z,φ; v,η)

= a(φ,η) −
∑

K∈Ch

αh2
K(Lφ,Lη)K (2.23)

+
∑

K∈Ch

(t2 + αh2
K)−1(∇z − φ − αh2

KLφ,∇v − η − αh2
KLη)K .

Fh(v,η) = (f, v) + (f ,η) −
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,L η)K (2.24)

−
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇v − η)K .

Here and in throughout the paper α is a positive parameter lying in the range
0 < α < CI , where CI is the constant in the following inverse inequality

CI

∑

K∈Ch

h2
K‖Lφ‖2

0,K ≤ a(φ,φ) ∀φ ∈ Vh.

From the solution (wh,βh) we then calculate the approximation for the shear
by

qh|K = (t2 + αh2
K)−1

(

∇wh − βh + αh2
K(f − Lβh)

)

|K
∀K ∈ Ch. (2.25)

Note that from (2.7) we see that the exact shear satisfies

q|K = (t2 + αh2
K)−1

(

∇w − β + αh2
K(f − Lβ)

)

|K
∀K ∈ Ch. (2.26)

Remark 2.1. For triangular elements with k = 1 it holds Lφ = 0, ∀φ ∈ Vh,
and the bilinear form is simply

Ah(z,φ; v,η) = a(φ,η) +
∑

K∈Ch

(t2 + αh2
K)−1(∇z − φ,∇v − η)K (2.27)

and, furthermore, there is no upper limit for the parameter α. This has been
first prosed by Fried and Yang [8] and analyzed by Pitkäranta [15]. This
formulation can be used for quadrilaterals as well, when k = 1.
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In our previous works [18, 12] we have analyzed the method for f = 0.
Hence, we will here prove the consistency for a general loading.

Theorem 2.3. The solution (w,β) to (2.7) satisfies the equation

Ah(w,β; v,η) = Fh(v,η) ∀(v,η) ∈ Wh × Vh. (2.28)

Proof. Recalling the first equation in (2.7), the expression (2.26), and the
variational form (2.6), we get

Ah(w,β; v,η)

= a(β,η) −
∑

K∈Ch

αh2
K(Lβ,L η)K

+
∑

K∈Ch

(t2 + αh2
K)−1(∇w − β − αh2

KLβ,∇v − η − αh2
KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q − f ,L η)K

+
∑

K∈Ch

(q − αh2
K(t2 + αh2

K)−1f ,∇v − η − αh2
KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q,L η)K −

∑

K∈Ch

αh2
K(f ,L η)K

+(q,∇v − η) −
∑

K∈Ch

αh2
K(q,L η)K

−
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η − αh2
KLη)K

= a(β,η) + (q,∇v − η) −
∑

K∈Ch

αh2
K(f ,L η)K

−
∑

K∈Ch

αKh2(t2 + αh2
K)−1(,∇v − η − αh2

K
Lη)K

= (f, v) + (f ,η) −
∑

K∈Ch

αh2
K(f ,L η)K

−
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η − αh2
KLη)K

= (f, v) + (f ,η) −
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η)K

−
∑

K∈Ch

(1 − αh2
K(t2 + αh2

K)−1)(f , αh2
KLη)K .

= (f, v) + (f ,η) −
∑

K∈Ch

αh2
K(t2 + αh2

K)−1(f ,∇v − η)K

−
∑

K∈Ch

t2(t2 + αh2
K)−1)(f , αh2

KLη)K

= Fh(v,η).

The following norms are the natural for the stability and error analysis.
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Definition 2.1. For (v,η) ∈ H1
0 (Ω) × [H1

0 (Ω)]2 we define

|‖(v,η)‖|2h = ‖v‖2
1 + ‖η‖2

1 +
∑

K∈Ch

(t2 + h2
K)−1‖∇v − η‖2

0,K , (2.29)

and for r ∈ [L2(Ω)]2

‖r‖h = (
∑

K∈Ch

(t2 + h2
K)‖r‖2

0,K)1/2. (2.30)

The stability of the method is immediate (cf. [12]).

Theorem 2.4. There is a positive constant C such that

Ah(v,η; v,η) ≥ C|‖(v,η)‖|2h ∀(v,η) ∈ Wh × Vh.

From the stability, consistency and regularity result the following error
estimate is is proved in [12] (which also contains some refined estimates).

Theorem 2.5. For the solution (wh,βh) of (2.22) it holds

|‖(w − wh,β − βh)‖|h + ‖q − qh‖h ≤ Ch‖(f,f)‖−1,t. (2.31)

For the multigrid analysis we additionally need estimates for the discrete
solution with an inconsistent right hand side given by the following method

Method 2.2. Given the loading (f,f) ∈ L2(Ω) × [L2(Ω)]2, find (w∗
h,β

∗
h) ∈

Wh × Vh such that

Ah(w
∗
h,β

∗
h; v,η) = (f, v) + (f ,η) ∀(v,η) ∈ Wh × Vh. (2.32)

For this one readily obtain the estimate.

Theorem 2.6. It holds

|‖(w − w∗
h,β − β∗

h)‖|h ≤ Ch‖(f,f)‖−1,t. (2.33)

We will also need the following estimates.

Theorem 2.7. It holds

‖(w − wh,β − βh)‖1,t ≤ Ch2‖(f,f)‖−1,t. (2.34)

and
‖(w − w∗

h,β − β∗
h)‖1,t ≤ Ch2‖(f,f)‖−1,t (2.35)

Proof. Step 1. Let For (l, l) given, let (z,θ) ∈ H1
0 (Ω) × [H1

0 (Ω)]2 be the
solution to the problem

a(θ,η) + t−2(∇z − θ,∇v − η) = (l, v) + (l,η) ∀(v,η) ∈ H1
0 (Ω)× [H1

0 (Ω)]2.
(2.36)

Denoting r = t−2(∇z − θ), the regularity estimate (2.13) gives

‖(z,θ)‖3,t + ‖r‖0 ≤ C‖(l, l)‖−1,t. (2.37)
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Note also that it holds

r|K = (t2 + αh2
K)−1

(

∇z − θ + αh2
K(l − Lθ)

)

|K
∀K ∈ Ch. (2.38)

As in Theorem 2.3 we now have

Ah(z,θ; v,η) = Lh(v,η) ∀(v,η) ∈ Wh × Vh, (2.39)

with

Lh(v,η) = (l, v) + (l,η) −
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L η)K

−
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇v − η)K . (2.40)

Step 2. Next, we let z̃ ∈ Wh and θ̃ ∈ Vh be the the solution of

Ah(z̃, θ̃; v,η) = Lh(v,η) ∀(v,η) ∈ Wh × Vh, (2.41)

and define r̃ by

r̃|K = (t2 + αh2
K)−1

(

∇z̃ − θ̃ + αh2
K(l − L θ̃)

)

|K
∀K ∈ Ch. (2.42)

Hence, it holds

Ah(z − z̃,θ − θ̃; v,η) = 0 ∀(v,η) ∈ Wh × Vh, (2.43)

and

|‖(z − z̃,θ − θ̃)‖|h + ‖r − r̃‖h ≤ Ch‖(l, l)‖−1,t. (2.44)

From this it also follows that

(

∑

K∈Ch

h2
K‖L θ̃‖2

0.K

)1/2
+ ‖ r̃‖h ≤ Ch‖(l, l)‖−1,t. (2.45)

Step 3. We choose v = w − wh and η = β − βh in (2.39) and obtain

(l, w − wh) + (l,β − βh)

= Ah(z,θ; w − wh,β − βh) (2.46)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − βh))K

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh) − (β − βh))K .

From (2.22) and (2.28) we have

Ah(w − wh,β − βh; z̃, θ̃) = 0. (2.47)
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Using the symmetry of Ah we then get

(l, w − wh) + (l,β − βh)

= Ah(z − z̃,θ − θ̃; w − wh,β − βh) (2.48)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − βh))K

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh) − (β − βh))K .

The first term above we estimate using Theorem 2.5 and (2.44)

|Ah(z − z̃,θ − θ̃; w − wh,β − βh)|

≤ C|‖(z − z̃,θ − θ̃)‖|h|‖(w − wh,β − βh)‖|h (2.49)

≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.

The second term is treated as follows

|
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − βh))K |

≤ Ch‖l‖0

(

∑

K∈Ch

h2
K‖L (β − βh)‖

2
0,K

)1/2
(2.50)

≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t,

where the last step follows from Theorem 2.5 and a scaling argument. The
last term is readily estimated

|
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh) − (β − βh))K |

≤ Ch‖l‖0|‖(w − wh,β − βh)‖|h (2.51)

≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.

The estimate (2.34) now follows by combining (2.48) – (2.51).

Step 4. Finally, we turn to the estimate for (w−w∗
h,β−β∗

h). From (2.39)
we get

(l, w − w∗
h) + (l,β − β∗

h)

= Ah(z,θ; w − w∗
h,β − β∗

h) (2.52)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − β∗
h))K

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh) − (β − β∗
h))K .
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Next, adding and subtracting Ah(z̃, θ̃; w − w∗
h,β − β∗

h) gives

(l, w − w∗
h) + (l,β − β∗

h)

= Ah(z − z̃,θ − θ̃; w − w∗
h,β − β∗

h) (2.53)

+
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(l,L (β − β∗
h))K

+
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(l,∇(w − wh) − (β − β∗
h))K

+Ah(z̃, θ̃; w − w∗
h,β − β∗

h).

Using (2.44), (2.45) all except the last term are estimated as in Step 3. This
last term we treat using (2.41), (2.32) and (2.24)

Ah(z̃, θ̃; w − w∗
h,β − β∗

h) = Ah(z̃, θ̃; w,β) −Ah(z̃, θ̃; w∗
h,β

∗
h)

= Fh(z̃, θ̃) − (f, z̃) + (f , θ̃)

= −
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,L θ̃)K (2.54)

−
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇z̃ − θ̃)K .

Next, we use (2.45)

|
∑

K∈Ch

αh2
Kt2(t2 + αh2

K)−1(f ,L θ̃)K | (2.55)

≤ Ch‖f‖0

(

∑

K∈Ch

h2
K‖L θ̃‖2

0.K

)1/2
≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t.

From (2.42) and (2.45) we get

|
∑

K∈Ch

(t2 + αh2
K)−1αh2

K(f ,∇z̃ − θ̃)K |

= |
∑

K∈Ch

αh2
K

(

f , r̃ + αh2
K(t2 + αh2

K)−1(L θ̃ − l)
)

K
|

≤ Ch‖f‖0‖r̃‖h + Ch‖f‖0

(

∑

K∈Ch

h2
K‖L θ̃‖2

0,K

)1/2
+ Ch2‖f‖0‖l‖0

≤ Ch2‖(l, l)‖−1,t‖(f,f)‖−1,t. (2.56)

The asserted estimate (2.35) now follows by combining the estimates in this
step.

3 The multigrid method

In this section we prove that a simple multigrid method leads to a solver with
optimal complexity and which is robust with respect to the parameter t.
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The stabilized bilinear-form Ah depends on the underlying mesh. Thus,
the sequence of meshes lead to different operators on each level. Hence, apply
the non-nested framework from [5] and adapt the notation from [4], Section
4.

Assume that we have a sequence of hierarchically refined meshes which
we denote by C1, C2, . . . CJ . On each level k, 1 ≤ k ≤ J , we the finite element
spaces are denoted by Wk × Vk. We note that the spaces are nested, i.e.,

Wk−1 × Vk−1 ⊂ Wk × Vk

such that no special grid transfer operators have to be defined. On each level
we denote the bilinear form by

Ak : (Wk × Vk) × (Wk × Vk) → IR

in accordance to (2.23).
Since, we assume a hierarchy of meshes the are all uniform and we denote

the corresponding mesh-size with hk (or h when it is irrelevant which level is
in question).

On each level k, an inner product (·; ·)k : (Wk ×Vk)× (Wk ×Vk) → IR is
defined as

(z, δ; v,η)k := h2
k(hk + t)−2 (z, v) + h2

k (δ,η),

and ‖ · ‖k denotes the corresponding norm. We define the operator Ak :
Wk × Vk → Wk × Vk by

(Ak(z, δ); v,η)k = Ak(z, δ; v,η) ∀(v,η) ∈ Wk × Vk.

Furthermore, we define the projections Pk−1 : Wk × Vk → Wk−1 × Vk−1 and
Qk−1 : Wk × Vk → Wk−1 × Vk−1 by

Ak−1(Pk−1(z, δ); v,η) = Ak(z, δ; v,η) ∀(v,η) ∈ Wk−1 × Vk−1,

and

(Qk−1(z, δ); v,η)k−1 = (z, δ; v,η)k ∀(v,η) ∈ Wk−1 × Vk−1.

Finally, let Rk : Wk × Vk → Wk × Vk be the smoothing operator defined
by a scaled Jacobi iteration or by a Gauss-Seidel iteration. A symmetrized
smoothing iteration is defined by setting R

(l)
k = Rk if l is odd, and R

(l)
k := Rt

k

if l is even. Here, (·)t denotes the adjoint operator with respect to (·; ·)k.
We define the multigrid operator BJ by induction. Set B1 = A−1

1 . For
k = 2, . . . , J we define Bk : Wk × Vk → Wk × Vk as follows.

Algorithm 3.1. With gk ∈ Wk × Vk we define Bkgk by the following algo-
rithm.

Initialize x0
k ∈ Wk × Vk as x0

k = 0
for l = 0 . . . mk − 1 do

12



xl+1
k := xl

k + R
(l)
k (gk − Akx

l
k)

xmk+1
k = xmk

k + Bk−1Qk−1(gk − Akx
mk
k )

for l = mk+1 . . . 2mk do

xl+1
k := xl

k + R
(l−1)
k (gk − Akx

l
k)

Bkgk := x2mk+1
k .

We assume that the number of smoothing steps depends on the level as
mk = 2J−k. This is the so called variable V-cycle multigrid algorithm.

Theorem 3.1. Assume that the Reissner Mindlin plate problem satisfies the
regularity estimate (2.13). Then the multigrid algorithm provides an optimal
preconditioner BJ , i.e.

cond(BJAJ) ≤ C.

The constant C does neither depend on the number of levels, nor on the
parameter t.

Proof. We apply Theorem 4.6 from [4]. It is easily checked that there holds
an inverse inequality

Ak(vk,ηk; vk,ηk) ≤ λk ‖(vk,ηk)‖
2
k ∀(v,η) ∈ Wk × Vk

with λk ' h−4. We have to check that the following conditions hold for all
(v,η) ∈ Wk × Vk:

• (A.4) :
(Rk(vk,ηk); vk,ηk)k ≥ ch4

k ‖(vk,ηk)‖k, (3.1)

where Rk := (I − RkAk)(I − Rt
kAk)A

−1
k is the symmetrized smoother.

• (A.10) with the choice α = 1/2:

Ak((I − Pk−1)(vk,ηk); vk,ηk) ≤ ch2
k ‖Akv‖k Ak(vk,ηk; vk,ηk)

1/2 (3.2)

for all (v,η) ∈ Wk × Vk.
These conditions are proven in Lemma 3.1 and Lemma 3.4 below.

Lemma 3.1 (Smoothing Property). Let the smoother be defined by a
properly scaled Jacobi iteration, or by the symmetrized Gauss-Seidel iteration.
Then condition (3.1) is satisfied.

Proof. We apply Theorem 5.1 and Theorem 5.2 from [4], respectively. For
this we have to show that the decomposition

(vk,ηk) =

dimWk
∑

i=1

(vi, 0) +

dimV k
∑

i=1

(0,ηi)

into the one dimensional spaces generated by the finite element basis func-
tions is stable with respect to the ‖ · ‖k-norm, i.e.,

dimWk
∑

i=1

‖(vi, 0)‖
2
k +

dimV k
∑

i=1

‖(0,ηi)‖
2
k ≤ c ‖(v,η)‖2

k.
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This holds true since both components of ‖ · ‖k are just scaled L2-norms.
Furthermore, we need that the number of overlapping finite element functions
is uniformly bounded.

Lemma 3.2 (Approximation property). Let (zk, δk) ∈ Wk×Vk be given.
Define the coarse grid functions (zk−1, δk−1) ∈ Wk−1×Vk−1 by the projection

Ak−1(zk−1, δk−1; vk−1,ηk−1) = Ak(zk, δk; vk−1,ηk−1) (3.3)

for all (vk−1,ηk−1) ∈ Wk−1 × Vk−1. Then there holds the approximation
estimate

‖(zk − zk−1, δk − δk−1)‖1,t ≤ Ch2 sup
(v,η)∈Wk×V k

Ak(zk, δk; v,η)

‖(v,η)‖1,t

.

Proof. Let (zk, δk) ∈ Wk ×Vk be given. Let Π and Π be Clément projection
operators. Define g ∈ L2(Ω) and g ∈ [L2(Ω)]2 by

(g, v) + (g,η) := Ak(zk, δk; Πv,Πη). ∀ v ∈ L2(Ω), ∀η ∈ [L2(Ω)]2. (3.4)

There holds

‖(g, g)‖−1,t := sup
(v,η)∈Wk×V k

(g, v) + (g,η)

‖(v,η)‖1,t

= sup
(v,η)∈Wk×V k

Ak(zk, δk; Πv,Πη)

‖(v,η)‖1,t

= sup
(v,η)∈Wk×V k

Ak(zk, δk; Πv,Πη)

‖(Πv,Πη)‖1,t

‖(Πv,Πη)‖1,t

‖(v,η)‖1,t

= sup
(v,η)∈Wk×V k

Ak(zk, δk; v,η)

‖(v,η)‖1,t

‖(Π,Π)‖1,t

Since Π is bounded in the L2-norm as well as in the H1-semi-norm, and Π
is bounded in L2-norm, the compound operator is bounded with respect to
‖ · ‖1,t.

We pose the plate problem: find (z, δ) ∈ H1
0 (Ω) × [H1

0 (Ω)]2 such that

A(z, δ; v,η) = (g, v) + (g,η)

Using that (Π,Π) is a projection on Wk × Vk, we recast (3.4) as

Ak(zk, δk; v,η) = (g, v) + (g,η) ∀ (v,η) ∈ Wk × Vk.

This means that (zk, δk) is the finite element solution obtained by of Method
2, where the consistency terms on the right hand side were skipped. Theo-
rem 2.7 provides the estimate

‖(z − zk, δ − δk)‖1,t ≤ ch2
k ‖(g, g)‖−1,t.
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Using (3.3), we observe that

Ak−1(zk−1, δk−1; v,η) = (g, v) + (g,η) ∀ (v,η) ∈ Wk−1 × Vk−1,

and again Theorem 2.7 proves

‖(z − zk−1, δ − δk−1)‖1,t ≤ ch2
k−1 ‖(g, g)‖−1,t.

From the triangle inequality we obatin the result

‖(zk−1 − zk, δk−1 − δk)‖1,t ≤ ch2
k ‖(g, g)‖−1,t

≤ ch2
k sup

(v,η)∈Wk×V k

Ak(zk, δk; v,η)

‖(v,η)‖1,t

.

The norms ‖ · ‖k and Ak(·, ·)
1/2 can be embedded into a scale of norms.

For this we set

|||(v,η)|||0 := ‖(v,η)‖k and |||(v,η)|||2 := Ak(v,η; v,η)1/2.

Norms in between are defined by interpolation [6, Chapter 12], i.e.

|||(v,η)|||s := ‖(v,η)‖[|||·|||0,|||·|||2]s/2
s ∈ (0, 2).

Furthermore, the scale is extended by duality to the range (2, 4]

|||(v,η)|||2+s := sup
(z,δ)

Al(v,η; z, δ)

|||(z, δ)|||2−s

s ∈ (0, 2].

In particular there holds

|||(v,η)|||4 = sup
(z,δ)

Ak(v,η; z, δ)

|||(z, δ)|||0
= sup

(z,δ)

(Ak(v,η); z, δ)k

‖(z, δ)‖k

= ‖Ak(v,η)‖k.

Lemma 3.3. The discrete 1-norm and the continuous 1-norm satisfy the
following relation:

|||(v,η)|||1 ≤ C‖(v,η)‖1,t ∀ (v,η) ∈ Wk × Vk. (3.5)

Proof. Let (v,η) ∈ Wk × Vk. By the definition of the ‖ · ‖1,t norm, there
exists a decomposition v = v0 + vr such that

‖v0‖1 + t−1‖vr‖0 + ‖η‖0 ≤ ‖(v,η)‖1,t.

Although v is a finite element function, its decomposition will in general not
remain in the finite element space. To return to the finite element space, we
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define Clément-interpolation operators Π : L2(Ω) → Wk and Π : [L2(Ω)]2 →
Vk with the following approximation properties:

‖v − Πv‖s ≤ hm−s
k ‖v‖m, 0 ≤ s ≤ 1, 0 ≤ m ≤ 2, s ≤ m,

‖η − Πη‖s ≤ hm−k
k ‖η‖m, 0 ≤ s ≤ m ≤ 1.

The finite element functions are decomposed into finite element functions
as

(v,η) = (Πv0,Π∇Πv0) + (Πvr,η − Π∇Πv0). (3.6)

Applying the triangle inequality leads to

|||(v,η)|||1 ≤ |||(Πv0,Π∇Πv0)|||1 + |||(Πvr,η − Π∇Πv0)|||1. (3.7)

We estimate both terms by using that |||.|||1 is the interpolation norm of
|||·|||0 and |||·|||2 with parameter 1/2. For v0 ∈ H2

0 (Ω), the continuity and
approximation properties of Π and an inverse inequality leads us to

|||(Πv0, Π∇Πv0)|||
2
2 = ‖Π∇Πv0‖

2
1 + (h + t)−2‖(I − Π)∇Πv0‖

2
0

≤ ‖Π∇v0‖
2
1 + ‖Π∇(v0 − Πv0)‖

2
1

+(h + t)−2‖(I − Π)∇v0‖
2
0 + (h + t)−2‖(I − Π)∇(I − Π)v0‖

2
0

≤ ‖v0‖
2
2.

With an inverse inequalities and L2-continuity we obtain

|||(Πv0, Π∇Πv0)|||
2
0 = h2‖Π∇Πv0‖

2
0 + h2(h + t)−2‖Πv0‖

2
0

≤ ‖v0‖
2
0.

The interpolation space [L2(Ω), H2
0 (Ω)]1/2 is H1

0 (Ω). Thus, we can apply
operator interpolation to the linear operator v 7→ (Πv,Π∇Πv) and obtain
that

|||(Πv0,Π∇Πv0)|||1 ≤ ‖v0‖1 ≤ ‖(v,η)‖2
1,t. (3.8)

We continue with the second term of (3.7). From

|||(Πvr,η − Π∇Πv0)|||
2
2

= ‖(η − Π∇Πv0)‖
2
1 + (h + t)−2‖∇Πvr − η + Π∇Πv0‖

2
0

≤ h−2{‖η‖2
0 + ‖v0‖

2
1} + (h + t)−2{h−2‖vr‖

2
0 + ‖η‖2

0 + ‖v0‖
2
1}

≤ h−2{‖v0‖
2
1 + t−2‖vr‖

2
0 + ‖η‖2

0}

≤ h−2‖(v,η)‖2
1,t

and

|||(Πvr,η − Π∇Πv0)|||
2
0 = h2‖η − Π∇Πv0‖

2
0 + h2(h + t)−2‖Πvr‖

2
0

≤ h2 {‖η‖2
0 + t−2‖vr‖

2
0 + ‖v0‖

2
1}

≤ h2 ‖(v,η)‖2
1,t

we can conclude that

|||(Πvr,η − Π∇Πv0)|||
2
1 ≤ ‖(v,η)‖2

1,t.
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Lemma 3.4. The approximation property (3.2) holds.

Proof. Applying Lemma 3.3 twice and Lemma 3.2 we obtain

|||(wk − wk−1,βk − βk−1)|||1 ≤ c ‖(wk − wk−1,βk − βk−1)‖1,t

≤ ch2 sup
(v,η)

Ak(wk,βk; v; η)

‖(v,η)‖1,t

≤ ch2 sup
(v,η)

Ak(wk,βk; v; η)

|||(v,η)|||1

= ch2 |||(wk,βk)|||3.

This combined with

Ak(wk − wk−1,βk − βk−1; wk,βk)

≤ |||(wk − wk−1,βk − βk−1)|||1 |||(wk,βk)|||3

≤ ch2 |||(wk,βk)|||
2
3

≤ ch2 |||(wk,βk)|||2 |||(wk,βk)|||4

= ch2 Ak(wk,βk; wk,βk)
1/2 ‖Ak(wk,βk)‖k

gives the asserted estimate (3.2).

4 Computational results

We applied the proposed multigrid algorithm to a unit-square model prob-
lem. The plate is fully clamped on the boundary. The right hand side is the
uniform load f = 1. The first C1 mesh consists of two triangles; the subse-
quent meshes C2, . . . , CJ are obtained by regular refinement of one triangle
into four.

We applied a conjugate gradient iteration with a multigrid precondi-
tioner. We used the variable V-cycle with 2k−J alternating Gauss-Seidel
presmoothing and postsmoothing steps on the kth level. Furthermore, we
have computed the condition number of the preconditioned system matrix
by the Lanczos algorithm.

Table 1 shows the condition number, and the required number of cg itera-
tions for relative reduction of the error by a factor 10−8. The error reduction
was measured in the norm (Br, r)1/2. We clearly see that the condition num-
bers and iteration numbers are bounded uniformly with respect to h and t.
Note that the condition number of the matrix A behaves like h−2(h + t)−2

which was as high as 109.
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t = 0.1 t = 0.0001
Level Elements cond.numb. cg cond.numb. cg
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Table 1: Computational results
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