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1 Introduction

The “Andrews’ squeezing system” was first described by Giles in [Gil78] and
further studied in [Man81]. It is a planar multibody system whose topology
consists of closed kinematic loops (see Figure 1). The Andrews’ system was
promoted in [Sch90] as a benchmark problem to compare different multibody
solvers. Nowadays it is a well-known benchmark problem [HW91, MI03] for
numerical integration of differential-algebraic equations as well. The equa-
tions are of the Lagrangian form (or descriptor form, see also [Arp01])

{

f(t, y, y′, y′′, λ) = 0

g(y) = 0
(1)

where the function f describes the dynamical equations and g gives the (holo-
nomic) constraints. Here y ∈ Rn are the (generalized) position coordinates,
y′ and y′′ are the first and second derivatives, respectively, and λ is the La-
grange multiplier.

It is well known that singularities of any kind hinder solving equations
numerically [RS88, HW91, BA94, EH95]. Intuitively, a singularity is where
the (generic) number of degrees of freedom of the system changes. Math-
ematically these are the points where the rank of the Jacobian of g drops.
Hence in this paper we will not consider the actual dynamical equations and
analyse only the constraints given by g.

Most differential equation solvers include a possibility to monitor singu-
larities, and usually when proximity of a singularity is detected, the compu-
tation is best to be interrupted. But this kind of monitoring is local only,
that is, it does not tell us a priori where the singularities lie but only alert
us when it is too late to fix things, so to speak. Also, the monitoring is often
a non-negligible part of computational cost. Therefore, it would be highly
useful to know a priori where the singularities are, or to make sure that there
are no singularities, or perhaps even remove them (for the latter approach,
see [Arp01]). Locating singularities has been studied also in [McC00]. If we
cannot avoid or remove the singularities, at least knowing where they are
encountered is helpful (indeed, necessary) when planning the computation
without interruptions. One can then tune the chosen integration algorithm
such that the disturbing effect of the singularities is diminished, for example
by compensating the singularity of the Kepler problem by a local change
of variables as in [LR05] within the computation. Further techniques on
compensating singularities in multibody systems are gathered and concisely
compared in [BA94] and [EH95].

The paper is organized as follows: in the next Section we present the sit-
uation in detail and formulate the constraint equations in polynomial form.
Section 3 gathers the necessary algebraic tools. Section 4 contains the ac-
tual analysis where we show that the mechanism indeed has singularities for
certain parameter values. In Section 5 there are some numerical examples
of singular configurations, and in Section 6 we summarize and discuss the
results, and address possible future work.
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2 Andrews’ squeezing mechanism

The squeezing mechanism is given by the following equations.

g(y) =







































a1 cos(y1) − a2 cos(y1 + y2) − a3 sin(y3) − b1

a1 sin(y1) − a2 sin(y1 + y2) + a3 cos(y3) − b2

a1 cos(y1) − a2 cos(y1 + y2) − a4 sin(y4 + y5) − a5 cos(y5) − w1

a1 sin(y1) − a2 sin(y1 + y2) + a4 cos(y4 + y5) − a5 sin(y5) − w2

a1 cos(y1) − a2 cos(y1 + y2) − a6 cos(y6 + y7) − a7 sin(y7) − w1

a1 sin(y1) − a2 sin(y1 + y2) − a6 sin(y6 + y7) + a7 cos(y7) − w2

(2)
Compared to the original articles mentioned above, we have chosen the fol-
lowing notation for the parameters and angles:

a1 = rr a2 = d a3 = ss a4 = e a5 = zt a6 = zf a7 = u

b1 = xb b2 = yb w1 = xa w2 = ya

y1 = β y2 = Θ y3 = γ y4 = Φ y5 = δ y6 = Ω y7 = ε

so the positions in Cartesian coordinates of the fixed nodes A and B are
given by b = (b1, b2) and w = (w1, w2), and the lengths of the rods by
a = (a1, . . . , a7), see Figures 1 and 2.

Fixing the parameters a, b, and w, we have a map g : R7 → R6. Hence
the set of possible configurations, which is the zeroset Mg = g−1(0), is in
general a curve (or possibly empty). Our task is to analyse the singularities
of Mg, so let us state more precisely what is meant by a singularity. As
mentioned before, in a singularity the number of degrees of freedom changes.
It is well known [RS88, BA94, McC00] that this corresponds to the situation
where the rank of Jacobian drops.

Definition 2.1. Let f : Rn → Rk be any smooth map where k < n and
let df be its Jacobian matrix. Let M = f−1(0) ⊂ Rn be the zeroset of f . A
point q ∈ M is a singular point of M , if df does not have maximal rank at q.

What in fact geometrically “happens” at a singular point may be quite
complicated to determine. Typically the tangent space to M does not change
continuously in the neighbourhood of a singular point, or possibly M inter-
sects itself there. However, in all cases numerical problems occur, so it is
important to try to find all singular points.

Note that the constraint equations (2) (and hence the elements of its Jaco-
bian matrix) are not polynomials, yet our algebraic approach works only in a
polynomial setting. However, this problem is circumvented by reformulating
g(y) as polynomials in the sines and cosines of yi by using the trigonometric
identities

cos(x)2 + sin(x)2 = 1

sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)

cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)
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Setting ci = cos(yi), si = sin(yi) we get the equations

p(c, s) =



















































a1c1 − a2

(

c1c2 − s1s2

)

− a3s3 − b1 = 0

a1s1 − a2

(

s1c2 + c1s2

)

+ a3c3 − b2 = 0

a1c1 − a2

(

c1c2 − s1s2

)

− a4

(

s4c5 + c4s5

)

− a5c5 − w1 = 0

a1s1 − a2

(

s1c2 + c1s2

)

+ a4

(

c4c5 − s4s5

)

− a5s5 − w2 = 0

a1c1 − a2

(

c1c2 − s1s2

)

− a6

(

c6c7 − s6s7

)

− a7s7 − w1 = 0

a1s1 − a2

(

s1c2 + c1s2

)

− a6

(

s6c7 + c6s7

)

+ a7c7 − w2 = 0

c2
i + s2

i − 1 = 0, i = 1, . . . , 7.

(3)

We have 13 polynomial equations (pi = 0), 11 parameters (a1, . . . , a7, b1, b2, w1, w2)
and 14 variables (c1, s1, . . . , c7, s7). Note that each pi is of degree two in
ci, si. The equations p1 = 0, . . . , p6 = 0 correspond directly to the 6 orig-
inal equations g(y) = 0 with the simple substitutions above (for example
cos(y1 + y2) = c1c2 − s1s2) and the equations p7 = 0, . . . , p13 = 0 are the
extra identities due to “forgetting” the angle variables yi.

Note that this reformulation of the constraints as algebraic equations
is not just a trick which happens to work in this special case; indeed most
constraints appearing in the simulation of multibody systems are of this type.

Now the above equations define p as a map p : R14 → R13. Hence we
expect that the zeroset V = p−1(0) ⊂ R14 is a curve (or possibly empty).
Singularities are then the points of this curve where the rank of dp is not
maximal. To find these points we need now to introduce some tools from
commutative algebra.

3 Background

In this section we present briefly the necessary definitions from commuta-
tive algebra and algebraic geometry. More details can be found in [CLO92],
[GP02], [Nor76], and [Eis96]. These are roughly in the order of increasing dif-
ficulty, [CLO92] being the most accessible, but unfortunately not containing
the necessary material on the Fitting ideals.

3.1 Ideals and varieties

Let K be an algebraic field and let K[x1, . . . , xn] be the ring of polynomials
in x1, . . . , xn, with coefficients in K. A subset I ⊂ K[x1, . . . , xn] is an ideal

if it satisfies

(i) 0 ∈ I.

(ii) If f, g ∈ I, then f + g ∈ I.

(iii) If f ∈ I and h ∈ K[x1, . . . , xn], then hf ∈ I.
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Figure 1: The angles yi of the Andrews’ system.

Figure 2: The lengths ai and nodes of the Andrews’ system.
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Ideals are often given by generators. Let f1, . . . , fs ∈ K[x1, . . . , xn]. Then
the set

〈f1, . . . , fs〉 :=

{

s
∑

i=1

hifi | h1, . . . , hs ∈ K[x1, . . . , xn]

}

is an ideal generated by f1, . . . , fs. Any set of generators is called a basis.
Ideals are purely algebraic objects. The geometrical counterpart of an

ideal is its locus, or variety. Let I be an ideal in K[x1, . . . , xn]. Its corre-
sponding variety is

VF(I) = {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0 ∀f ∈ I}

where F is some field extension of K. Note that it is often natural to choose
F different from K. If the field is clear from context we will sometimes write
simply V(I).

Now different ideals may have the same variety. However, if one is inter-
ested mainly in the variety then it is useful to define

√
I =

{

f ∈ K[x1, . . . , xn] | fn ∈ I for some n ≥ 1
}

.

If I is an ideal, then
√

I is the radical of I; it is the biggest ideal that has
the same variety as I and all ideals having the same variety have the same
radical. Also, always I ⊂

√
I and if I =

√
I we say that I is a radical

ideal. Some rudimentary properties among ideals and their varieties are in
the following

Lemma 3.1. Let I and J be ideals. Then

1. V(I ∪ J) = V(I) ∩ V(J).

2. V(I ∩ J) = V(I) ∪ V(J).

3. I ⊂ J if and only if V(I) ⊃ V(J).

Next we have to express the rank condition algebraically. To this end we
need

Definition 3.1. If I = 〈f1, . . . , fs〉, its Fitting ideal FI is the ideal generated
by all maximal minors of the Jacobian matrix of (f1, . . . , fs).

1

Now V(FI) corresponds to the points where the rank is not maximal.
However, the points are required also to be on V(I). Hence we conclude that
the set of singular points, S, is given by

S = V(I ∪ FI)

In analysing varieties it is often helpful to decompose them to simpler parts.
Similarly one may try to decompose a given ideal to simpler parts. This leads
to following notions.

1In general one can define Fitting ideals of minors of any given size. However, the
above definition is sufficient for purposes of the present paper.
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Definition 3.2. A variety V is irreducible if V = V1 ∪ V2 implies V = V1 or
V = V2.
An ideal I is prime if f, g ∈ K[x1, . . . , xn] and fg ∈ I imply that either f ∈ I
or g ∈ I.

There is a very close connection between prime ideals and irreducible
varieties. The precise nature of this depends on the chosen field. However,
for our purposes the following is sufficient.

Lemma 3.2. If I is prime, then V(I) is irreducible.
Any radical ideal can be written uniquely as a finite intersection of prime
ideals, √

I = I1 ∩ · · · ∩ Ir,

where Ii 6⊂ Ij for i 6= j.

This is known as the prime decomposition of
√

I and the Ii’s are called
the minimal associated primes of I. The above Lemma then immediately
gives:

Corollary 3.1.

V(I) = V(
√

I) = V(I1) ∪ · · · ∪ V(Ir),

where all V(Ii) are irreducible.

Hence our strategy in analysing varieties is to compute the minimal asso-
ciated primes of the relevant ideal, and then examine each irreducible com-
ponent separately.

3.2 Gröbner bases

An essential thing is that all the operations above, especially finding the
radical and the prime decomposition can be computed algorithmically using
the given generators of I. To do this we need to compute special bases for
ideals, called Gröbner bases. We will only briefly indicate the relevant ideas
and refer to [CLO92] and [GP02] for more details.

First we need to introduce monomial orderings. All the algorithms han-
dling the ideals are based on some orderings among the terms of the genera-
tors of the ideal.

Intuitively, an ordering Â is such that given a set of monomials (e.g.
terms of a given polynomial), Â puts them in order of importance: given any
two monomials xα := xα1

1 . . . xαn

n and xβ, where α 6= β are different multi-
indices, then either xα Â xβ or xβ Â xα. A common choice is to use degree

reversed lexicographic ordering [CLO92]. In our analysis we shall frequently
need product orders, which are formed as follows: if ÂA and ÂB are two
orderings, we shall divide the variables xi into two subsets, and use ÂA on
the first subset and ÂB on the second. This is indicated with the following
notation:

K[(x4, x5, x7), (x1, x2, x3, x6)].
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This is the same set as K[x1, . . . , x7] but now the parenthesis indicate that
we will use ÂA among the variables (x4, x5, x7), and ÂB among the variables
(x1, x2, x3, x6), and moreover all monomials where variables of the first group
appear are always bigger than monomials where there are only variables of
the second group. We will see later why this is useful.

Finally, the aforementioned Gröbner basis is a special kind of generating
set, with respect to some ordering. Given any set of generators and an
ordering, the corresponding Gröbner basis exists and can be computed. The
relevant algorithm is usually called the Buchberger algorithm. The drawback
of this algorithm is that it has a very high complexity in the worst case, and
in practice the complexity depends quite much on the chosen ordering.2

Anyway Gröbner bases have proved to be very useful in many different
applications. Nowadays there exist many different implementations and im-
provements of the Buchberger algorithm. We chose to use the well-known
program Singular [GPS05], [GP02] in all the computations in this paper.

4 Analysing singularities

4.1 Geometric description of the singularities

Now getting back to our system (3) we see that we can take the components
of p to be elements of Q(a, b, w)[c, s] where Q(a, b, w) is the field of ratio-
nal functions of a, b, and w. Hence we have an ideal J = 〈p1, . . . , p13〉 ⊂
Q(a, b, w)[c, s] and the corresponding Fitting ideal FJ . On the other hand
we may view the “parameters” a, b, and w also as variables since they
appear polynomially in the equations; hence we could also consider J ⊂
Q[a, b, w, c, s]. Taking this point of view we can give an intuitive description
of what kind of situations we can expect.

{

J ⊂ Q[a, b, w, c, s]

VR(J) ⊂ R25.

In this way VR(J) should be 12 dimensional (recall J is generated by 13
equations), i.e. a curve depending on 11 parameters. On the other hand if
we fix parameters a, b, and w we get a curve in R14 which will be denoted
by Va,b,w. In the same way we can view VR(J ∪ FJ) as a variety in R25, and
fixing the parameters we get the singular points V S

a,b,w. Obviously V S
a,b,w ⊂

Va,b,w ⊂ R14.
Then what kind of variety should VR(J ∪ FJ) be? Since the Jacobian of

p is of size 13 × 14, generically we expect to get 2 independent conditions
in order the rank to drop. That is, augmenting J with FJ should bring in 2
more equations. Hence we expect that VR(J ∪FJ) is 10 dimensional; in other
words we expect that if 11 parameters are chosen independently then V S

a,b,w

should be empty. On the other hand if a single condition among parameters
is satisfied, then V S

a,b,w should consist of isolated points.

2So far, no satisfactory theory of Gröbner basis complexity has been done.
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Further, if there are 2 conditions among parameters (i.e. 9 parameters
freely chosen), then it would be possible that V S

a,b,w were one dimensional.
But then our original constraint equations would be redundant, i.e. there
would be more than one degree of freedom.

Below we will in fact observe that if a certain condition on parameters is
satisfied, V S

a,b,w is indeed a finite set of points.

4.2 Singular variety

To study VR(J ∪ FJ) we could in principle use Gröbner basis theory in a
straightforward manner. Let G be the Gröbner basis of J ∪ FJ using the
product order Q[(c, s), (a, b, w)]. Let us denote by g1, . . . , gr the elements of
G which do not depend on c and s.

Definition 4.1. Let SJ = 〈g1, . . . , gr〉; then we say that VR(SJ) ⊂ R11 is the
singular variety associated to J .

It follows from the Gröbner basis theory that Va,b,w can have singularities
only if (a, b, w) ∈ VR(SJ). Hence theoretically, we could now find the singu-
larities of the Andrews’ system in a straightforward manner by calculating
the Gröbner basis of J ∪ FJ . But this is an enormous task, due to FJ be-
ing generated by high degree polynomials, not to mention including the 11
parameters a, b, w. We could not get the solution in a finite time using our
work station with 64GB memory.

Instead, something else needs to be done. Luckily there is another ap-
proach: noting that p1, p3, p5 have common terms, as well as p2, p4, p6, gives
us motivation to study two subsystems. One spanned by p5 − p3 and p6 − p4,
the other one spanned by p5−p1 and p6−p2 (along with the relevant trigono-
metric identities from p7, . . . , p13). These subsystems are handleable and give
useful information for the whole system as well. Proceeding in this way we
could at least determine that the singular variety is not empty and we could
compute some subvarieties of it.

4.3 Subsystem 4567

Intuitively, the nodes and bars 4, 5, 6, 7 formulate a subsystem, see Figures 1
and 2. We suspect that when the lengths a4, . . . , a7 are such that the “4567”
system is able to become one-dimensional, hence in some sense degenerated,
there should be a singularity in the whole system (see also the net example
in [Arp01]). We will shortly see that this is indeed the case.

Define

q1 := p5 − p3 = a4

(

s4c5 + c4s5

)

+ a5c5 − a6

(

c6c7 − s6s7

)

− a7s7

q2 := p4 − p6 = a4

(

c4c5 − s4s5

)

− a5s5 + a6

(

s6c7 + c6s7

)

− a7c7

qi := pi+7 = c2

i+1 + s2

i+1 − 1, i = 3, . . . , 6.
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Note that q1, q2 contain only angles ci, si and parameters ai for i = 4, . . . , 7.
That is why we do not need the other pi’s. Let J4567 be the ideal spanned by
q1, . . . , q6. Hence we have

J4567 ⊂ Q[(c4, s4, c5, s5, c6, s6, c7, s7), (a4, a5, a6, a7)] (4)

where we have indicated the relevant product order. The Gröbner basis G
for J4567∪FJ4567

with respect to this ordering contains 191 elements (denoted
by g1, . . . , g191), out of which 3 are especially enlightening:

g5 = c6a6a7,

g16 = c4a4a5, and

g1 =
8
∏

i=1

ti, where

t1 = a4 − a5 − a6 − a7

t2 = a4 − a5 + a6 + a7

t3 = a4 + a5 + a6 + a7

t4 = a4 + a5 − a6 − a7

t5 = a4 − a5 + a6 − a7

t6 = a4 − a5 − a6 + a7

t7 = a4 + a5 − a6 + a7

t8 = a4 + a5 + a6 − a7.

Since g1 is the only generator which does not contain any variables ci and si

we conclude that

Theorem 1. The singular variety of J4567 is

SJ4567
= V(〈g1〉).

Note that the factorization of g1 gives us the prime decomposition of 〈g1〉
and hence decomposition of V(〈g1〉) into 8 linear irreducible varieties.

Our next task is to show that at least some points of the singular variety
extend to actual (physically relevant) singularities of the whole system. Re-
call that each generator gi corresponds to an equation gi = 0. Since ai > 0 in
physically relevant cases, generators g5 and g16 imply that all the singularities
of J4567 have necessarily c6 = c4 = 0 (conditions for the angles 4 and 6). In
other words, in ideal-theoretic language, we can as well study the ideal

T := 〈J4567, FJ4567
, c4, c6〉.

Now the prime decomposition of
√

T has 16 components:
√

T = T1 ∩ . . . ∩ T16. (5)

Inspecting the generators of each of Tj, it is noticed that every Tj contains
the ti’s or ai’s. Recall that a generator ai in an ideal corresponds in the
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variety to a condition ai = 0 which is non-physical. Moreover, t3 is now
a non-physical condition contradicting ai > 0∀i. Hence we discard (as in
[Arp01]) those ideals which have a non-physical generator that would imply
ai ≤ 0 for some i, and we are left with 7 ideals, whose generators are:

T1 = 〈c2

7 + s2

7 − 1, t1, s6 + 1, s5 − c7, c5 + s7, s4 + 1, c4, c6〉
T2 = 〈c2

7 + s2

7 − 1, t2, s6 + 1, s5 + c7, c5 − s7, s4 + 1, c4, c6〉
T3 = 〈c2

7 + s2

7 − 1, t4, s6 + 1, s5 + c7, c5 − s7, s4 − 1, c4, c6〉
T4 = 〈c2

7 + s2

7 − 1, t5, s6 − 1, s5 − c7, c5 + s7, s4 + 1, c4, c6〉
T5 = 〈c2

7 + s2

7 − 1, t6, s6 − 1, s5 + c7, c5 − s7, s4 + 1, c4, c6〉
T6 = 〈c2

7 + s2

7 − 1, t7, s6 − 1, s5 − c7, c5 + s7, s4 − 1, c4, c6〉
T7 = 〈c2

7 + s2

7 − 1, t8, s6 − 1, s5 + c7, c5 − s7, s4 − 1, c4, c6〉.

Especially, we see that s6 = ±1, s5 = ±c7, c5 = ±s7, and s4 = ±1. Now we
are ready to continue with the original system J ∪ FJ .

Remark 4.1. Mathematically speaking the analyses of all cases Ti are com-
pletely similar. However, on physical grounds the cases T1, T2, T6 and T7

are not so interesting. Indeed, in these cases the length of one of the rods
corresponding to a4, a5, a6 and a7 is equal to the sum of the lengths of three
others. Hence all four rods could be modelled as a single rod which would
make the whole model significantly simpler. In the remaining cases no such
reduction can be done, and we chose to examine the ideal T5 in detail. See
also remark 4.3.

The case T5 gives us conditions s4 = −1, s6 = 1, s5 = −c7, c5 = s7, and
a7 = a5 + a6 − a4 which we substitute into the original system. Next we will
show that the resulting system has real solutions. These will be the required
singular points.

The above substitutions simplify the generators of J ∪ FJ so that we get
the following ideal:

K = 〈K1 ∪ K2〉,

K1 :



















k1 = a2(−c1c2 + s1s2) + c1a1 − s3a3 − b1

k2 = a2(−s1c2 − c1s2) + s1a1 + c3a3 − b2

k3 = c2
1 + s2

1 − 1

k4 = c2
2 + s2

2 − 1,

K2 :



















k5 = s7(a4 − a5) + s3a3 + b1 − w1

k6 = c7(a5 − a4) − c3a3 + b2 − w2

k7 = c2
3 + s2

3 − 1

k8 = c2
7 + s2

7 − 1.

(6)

In K2 we have 4 equations for 4 unknowns c3, s3, c7, and s7; hence it ap-
pears reasonable that we can get a finite number of solutions. Then we can
substitute the computed values to K1 which then becomes also a system of 4
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equations for 4 unknowns c1, s1, c2, and s2. By the same reasoning we again
expect that it is possible to get some solutions for appropriate parameter
values.

We could numerically solve the variables from these equations (and, in-
deed, we will, in the numerical examples), but to analyze the situation in
more detail we need to study these further.

Then starting with the system K2 we solve the angles 3 and 7 by the
following trick. First we inspect the ideal generated by K2 in the ring

Q(b1, b2, w1, w2, a3, a4, a5)[c3, s3, c7, s7].

Calculating the Gröbner basis G̃ of 〈K2〉 with respect to the lexicographic
ordering we get 4 generators:

g̃1 = f1s
2

7 + f2s7 − f3f4

g̃2 = 2(b2 − w2)(a4 − a5)c7 − 2(b1 − w1)(a4 − a5)s7 + f5 = 0

g̃3 = a3s3 + (a4 − a5)s7 + b1 − w1 = 0

g̃4 = a3c3 + (a4 − a5)c7 + w2 − b2 = 0.

(7)

where the auxiliary expressions fi are lengthy combinations of the parameters
ai, bi (see the appendix).3

Now g̃1 contains only s7 and parameters. Note that f1 = 0 if and only if
a4 = a5. Assuming a4 6= a5 the equation g̃1 = 0 is a polynomial in s7 of degree
2, hence in order to have real solutions we need to impose the condition

f 2

2 + 4f1f3f4 ≥ 0. (8)

This condition can easily be checked when the parameters a, b, w have been
given numerical values. Once s7 is known, c7, s3, c3 can be solved from the
linear equations of G̃, provided a4 6= a5 and w2 6= b2.

The cases w2 = b2 and/or a4 = a5 can be summarized as follows:

(i) If w2 = b2 but a4 6= a5, we still get equations similar to G̃, but now s3

has a quadratic equation instead of s7.

(ii) If a4 = a5, the system typically does not have solutions. At least, a
further condition among parameters, namely |b − w| = a3, arises. We
shall not elaborate this nongeneric behaviour further. In Section 4.5.2
we consider an example of this situation.

Remark 4.2. In general, when the inequality in (8) is strict, s7 has 2 possible
values. Therefore, the tuples (s3, c3, s7, c7) have in general 2 possible values
because the other ones in the tuple are determined uniquely from s7.

3The algorithms actually give by default only sums of monomials instead of products
like 2(b2−w2)(a4−a5) but we have simplified these by hand. Also Singular [GPS05] could
be used to automatically factorize into products but would involve some more elaborate
programming.
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The only thing left to be done, in this J4567 subsystem case, is to solve
c1, s1, c2, s2. This is done with the ideal 〈K1〉 given in (6).

Remark 4.3. Had we used any other Ti instead of T5 above, we would have
ended up with this same ideal 〈K1〉.

We calculate the Gröbner basis Ĝ of 〈K1〉 , this time in the ring

Q(a1, a2, a3, b1, b2, c3, s3)[c1, s1, c2, s2].

Note especially that s3, c3 are here treated as parameters, due to being now
known expressions in the parameters a, b, w. We again use lexicographic
ordering and get 4 generators ĝ1, . . . , ĝ4. Analogously to s7 above, now for s2

we get the second degree polynomial equation

ĝ1 = (−4a2

1a
2

2)s
2

2 − n1n2 = 0 (9)

where

n1 = a2

1 + 2a1a2 + a2

2 − a2

3 − 2a3b1s3 + 2a3b2c3 − b2

1 − b2

2

n2 = a2

1 − 2a1a2 + a2

2 − a2

3 − 2a3b1s3 + 2a3b2c3 − b2

1 − b2

2

and linear equations for c2, s1, c1:

ĝ2 = d1c2 + d2 + d3

ĝ3 = l1s1 + l2 + l3

ĝ4 = (a2

1 − a2

2)c1 + l4

where the auxiliary expressions di, li are certain known (but lengthy) func-
tions of a, b, apart from l4 which depends on s1, s2, c2 as well. (See the
appendix.) In order to have real solutions for s2, (9) implies the condition

E := n1n2 ≤ 0. (10)

These ĝi determine s2, c2, s1, c1 provided d1 6= 0, l1 6= 0, a1 6= a2. To analyse
the cases d1 = 0, a1 = a2, and/or l1 = 0, it is helpful to define

d0 := a2

3 + 2a3b1s3 − 2a3b2c3 + b2

1 + b2

2.

It turns out that l1 = 0 ⇔ d1 = 0 ⇔ d0 = 0. After rearranging the terms
(see the appendix) it can be seen that the condition (10) is equivalent to

(a1 − a2)
2 ≤ d0 ≤ (a1 + a2)

2.

Therefore, if a1 6= a2 then d0 6= 0 and the equations above can be solved. The
case a1 = a2, d0 6= 0 does not essentially change the situation: we still have
a quadratic equation for s2, and linear ones for the others, with a different
coefficient for c1.

The remaining case a1 = a2, d0 = 0 corresponds to the situation where
the centre node coincides with the origin. This gives another singularity
(the angle y1 remains arbitrary) but is a rather special case and will not be
pursued further here.
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Theorem 2. Let us suppose that the parameters a, b, w satisfy the following
conditions: a4 6= a5 and

n1(4a1a2 − n1) ≥ 0 (10)

f 2

2 + 16(a4 − a5)
2|b − w|2f3f4 ≥ 0 (8)

Then Va,b,w contains at least 2 singular points. If the inequalities are strict
we get in general at least 4 singular points.

It may appear that we also have at most 4 singular points. However, it
is a priori possible that the other systems Ti yield more singular points with
the same parameter values.

Proof. The first part of the theorem merely collects what we have shown
above, with the simplifications n2 = n1 − 4a1a2 and f1 = 4(a4 − a5)

2|b−w|2.
The conditions are due to univariate second degree polynomial equations,
which have real solutions if and only if (8) and (10) (for s7 and s2, respec-
tively) are fulfilled. The other variables are determined from linear equations:
s4, c4, . . . , s6, c6 from T5; s3, c3, c7 from K1; s1, c1, c2 from K2.

For the number of singular configurations, note that we have second order
equations for s7, hence at most 2 values for the tuple (s3, c3, s7, c7), and s2.
So in general if there are two separate roots both for s7 and s2, we get four
different singularities.

Similar results can be presented for any Ti but we will not catalogue them
here.

4.4 Subsystem 367

Comparing to examples in [Arp01] it was perhaps intuitively clear that sub-
system J4567 produces singularities. It is a bit more surprising that there is
another subsystem producing singularities: the one formed by the nodes 3,
6, and 7.

Define

h1 := −p5 + p1 = a6

(

c6c7 − s6s7

)

+ a7s7 − a3s3 + w1 − b1

h2 := −p6 + p2 = a6

(

s6c7 + c6s7

)

− a7c7 + a3c3 + w2 − b2

h3 := p9 = c2

3 + s2

3 − 1

h4 := p12 = c2

6 + s2

6 − 1

h5 := p13 = c2

7 + s2

7 − 1.

It is important to note that h1, h2 contain only angles 3,6, and 7, therefore
only p9, p12, p13 are relevant to them. As parameters we now have not only
the lengths a3, a6, a7, but also b1, . . . , w2 i.e. the positions of the fixed nodes
A and B in Figure 2. Let J367 be the ideal generated by h1, . . . , h5. We will
proceed in a similar way as with the subsystem J4567.
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First we will consider the singularities of the subsystem J367 using the
following product order:

J367 ∪ FJ367
⊂ Q[(c3, s3, c6, s6, c7, s7), (a3, a6, a7, b1, b2, w1, w2)] (11)

The relevant Gröbner basis G contains 96 generators of which two are espe-
cially interesting:

g12 = c6a6a7

g1 =
4
∏

i=1

zi where

z1 = (a3 − a6 + a7)
2 − |b − w|2

z2 = (a3 + a6 + a7)
2 − |b − w|2

z3 = (a3 + a6 − a7)
2 − |b − w|2

z4 = (a3 − a6 − a7)
2 − |b − w|2.

(12)

The latter one gives us the singular variety SJ367
.

Theorem 3. The singular variety of J367 is

SJ367
= V(〈g1〉).

Remark 4.4. It is worth noting that, contrary to the linear constraints ti in
Theorem 1 related to J4567, the zi in Theorem 3 give quadratic constraints
zi = 0 related to J367 and have the interpretation “|a3 ± a6 ± a7| = distance
between the fixed points A and B”. Furthermore, again the factors zi give
the irreducible decomposition of the singular variety.

Since ai > 0, we get c6 = 0 from g12 = 0. This simplifies computations
considerably. Let us define

U := 〈J367, FJ367
, c6〉.

The prime decomposition of U turns out to have 8 components:
√

U = U1 ∩ · · · ∩ U8.

Inspecting the generators of each of Ui, it is noticed that the ideals Uk, k =
5 . . . 8 contain generators which imply ai = 0 for some i. Hence those are
discarded as non-physical and we are left with 4 ideals:

U1 = 〈u1, u2, c2

7 + s2

7 − 1, c6, s6 − 1, s3 + s7, c3 + c7〉
U2 = 〈u1, u2, c2

7 + s2

7 − 1, c6, s6 + 1, s3 + s7, c3 + c7〉
U3 = 〈u1, u2, c2

7 + s2

7 − 1, c6, s6 + 1, s3 − s7, c3 − c7〉
U4 = 〈u1, u2, c2

7 + s2

7 − 1, c6, s6 − 1, s3 − s7, c3 − c7〉

where

{

u1 = −s6c7a6 − c3a3 + c7a7 + b2 − w2

u2 = s6s7a6 + s3a3 − s7a7 + b1 − w1.
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With these, we continue studying the whole system J ∪ FJ . Each Ui will
lead to a different case with s6 = ±1, s3 = ±s7, c3 = ±c7. Let us look for
example the ideal U1.

4 This gives

s6 = 1,

c7 =
b2 − w2

a6 − a3 − a7

,

s7 =
b1 − w1

a3 − a6 + a7

,

c3 = −c7,

s3 = −s7.

(13)

We should expect to run into an equation zi = 0 for some i, where the
expressions zi are given in (12). Combined with c2

7 +s2
7−1 = 0 the equations

(13) give z1 = 0. Likewise, Ui implies zi = 0 for i = 2, 3, 4.

Remark 4.5. The condition z2 = 0 is physically a redundant case: it means
that the system can barely reach from A to B when the subsystem of the
rods a3, a6, a7 is fully stretched, i.e. it has no room to move. Therefore also
U2 corresponds to a rather trivial case. See also Remark 4.1.

Using U1 we can now eliminate the variables corresponding to angles 3,
6, and 7. Doing the substitutions in J ∪ FJ we are left with the following
generators.

L = 〈L1 ∪ L2〉,

L1 :



















l1 = a2(−c1c2 + s1s2) + c1a1 + s7a3 − b1

l2 = a2(−s1c2 − c1s2) + s1a1 − c7a3 − b2

l3 = c2
1 + s2

1 − 1

l4 = c2
2 + s2

2 − 1,

L2 :



















l5 = a4(s4c5 + c4s5) + c5a5 + s7(a6 − a7)

l6 = a4(c4c5 − s4s5) − s5a5 + c7(a6 − a7)

l7 = c2
4 + s2

4 − 1

l8 = c2
5 + s2

5 − 1,

(14)

where the s7, c7 are no longer variables, but known expressions from (13)
and kept here only for clarity of notation.

Remark 4.6. Before working on L1 and L2 we comment briefly on the other

4As with J4567 and T5, the other cases are completely similar and we will comment
them shortly.
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Ui cases. Introduce L3 and L4:

L3 :



















a2(−c1c2 + s1s2) + c1a1 − s7a3 − b1 = 0

a2(−s1c2 − c1s2) + s1a1 + c7a3 − b2 = 0

c2
1 + s2

1 − 1 = 0

c2
2 + s2

2 − 1 = 0

L4 :



















a4(s4c5 + c4s5) + c5a5 − s7(a6 + a7) = 0

a4(c4c5 − s4s5) − s5a5 − c7(a6 + c7) = 0

c2
4 + s2

4 − 1 = 0

c2
5 + s2

5 − 1 = 0.

Had we used U2 instead of U1, we would end up with the system L1, L4.
Likewise, U3 would give the system L3, L2, and U4 would give the system
L3, L4. Yet another point of view is, that s6 = ±1 picks between L2 and L4,
while (c3, s3) = ±(c7, s7) picks between L1 and L3. More precisely, s6 = 1
(s6 = −1) gives L2 (L4), and (c3, s3) = (−c7,−s7) gives L1. The choice
(c3, s3) = (c7, s7) would give L3.

Continuing with L1 and L2, we notice that L2 contains only the variables
c5, s5, c4, s4 (angles 4 and 5), has 4 equations and 4 variables hence is expected
to have a finite solution set and will be handled analogously to the ideal K2

in (6). Calculating its Gröbner basis G in the ring

Q(a4, a5, a6, a7)[(c4, c5, s5, c7, s7), (s4)]

we obtain 12 generators, the first one being

g1 = 2a4a5s4 + a2

4 + a2

5 − a2

6 + 2a6a7 − a2

7.

Hence s4 can be explicitly solved:

s4 =
a2

4 + a2
5 − a2

6 + 2a6a7 − a2
7

−2a4a5

. (15)

The other generators are too messy to be of much use. Then using the
formula c2

4 = 1 − s2
4 we get

c2

4 = − 1

4a2
4a

2
5

[(a4 + a5 − a6 + a7)(a4 − a5 + a6 − a7)·

· (a4 − a5 − a6 + a7)(a4 + a5 + a6 − a7)]

= −t7t5t6t8
4a2

4a
2
5

. (16)

The product term in the numerator has to be nonpositive, in order to have
any real solutions:

t5t6t7t8 ≤ 0. (17)
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After solving s4, c4 we can proceed to solve s5 and c5. For this we use the
ordering

Q(a4, a5, a6, a7)[c5, s5, c4, s4, c7, s7]

and pick the two relevant equations from the corresponding Gröbner basis:

(−a6 + a7)s5 − a4c4s7 + a4s4c7 + a5c7 = 0

(−a6 + a7)c5 − a4c4c7 − a4s4s7 − a5s7 = 0,

which are linear equations for s5, c5, provided a6 6= a7.

Remark 4.7. In the case a6 = a7 the situation is different: L2 then decom-
poses into 3 prime ideals, of which only one is physically feasible and gives a
singularity only if a4 = a5. Thence this is a rather special case and will not
be considered further here.

The subsystem L2 is now fully solved. Moving on to L1, we will see that
the analysis is very similar to that of K1 from (6). Therefore we will skip
some details. After forming the Gröbner basis of L1 in the ring

Q(b1, b2, a1, a2, a3, c7, s7)[c1, s1, c2, s2]

with respect to the lexicographic ordering, we get for s2, after simplifications,
the relation

s2

2 =
n3(4a1a2 − n3)

4a2
1a

2
2

, (18)

where n3 = |b|2 + 2a3(b2c7 − b1s7) − (a1 − a2)
2 + a2

3

Again for the real solutions the numerator has to be nonnegative

n3(4a1a2 − n3) ≥ 0 (19)

We can now solve c2, s1 and c1, provided their coefficients are nonzero, from
the linear equations

2a1a2n4c2 − 4a2

1a
2

2s
2

2 + r1 = 0,

− 2a1n4s1 + r2 + r3 = 0,

(a2

1 − a2

2)c1 + r4 = 0.

where
n4 = |b|2 + a2

3 + 2a3(b2c7 − b1s7)

and ri are lengthy, yet polynomial, expressions in the parameters, apart from
r4 which depends on s1, s2, c2 as well. (See the appendix.)

What about the cases n4 = 0 and/or a1 = a2? It can be shown, as with
d0, that the condition n3(4a1a2 − n3) ≥ 0 is equivalent to

(a1 − a2)
2 ≤ n4 ≤ (a1 + a2)

2.

Therefore, if a1 6= a2 then n4 6= 0 and the equations above are sufficient. The
case a1 = a2, n4 6= 0 does not essentially change the situation: we still have
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a quadratic equation for s2, and linear ones for the others, with a different
coefficient for c1.

The remaining case a1 = a2, n4 = 0 is analogous to the n2 = 0 case within
J4567 and likewise will not be pursued further.

Theorem 4. Let us suppose that the parameters a,b,w satisfy the following
conditions:

a6 6= a7

n4 6= 0

n3(4a1a2 − n3) ≥ 0 (20)

t7t5t6t8 ≤ 0. (21)

Then Va,b contains at least 2 singular points. If the inequalities are strict we
get in general at least 4 singular points.

Similar results can be represented for any V(Ui) but we will not catalogue
them here.

Proof. The last two conditions are due to univariate second degree polyno-
mial equations, which have real solutions if and only if (20) (for s2) and (21)
(for c4) are fulfilled. The first condition is needed for the other variables to
be determined uniquely: s3, c3, s6, c6, s7, c7 from V(U1), s4, s5, c5 from L2, and
s1, c1, c2 from L1.

For the number of singular configurations, note that we have second order
equations, hence at most 2 values, for c4 and s2. So in general if there are
two separate roots both for c4 and s2, we get four different singularities.

4.5 Two special cases with symmetry

Let us look more closely at two special cases: a4 = a6, a5 = a7, and either
a4 = a5 or a4 6= a5.

4.5.1 The case a4 6= a5

Motivated by the original benchmark values [Sch90] we give the following

Lemma 4.1. When a4 = a6 and a5 = a7, there is a relation between the
angles 4 and 6: either y6 = −y4 or y6 = y4 + π. Furthermore, if also a4 6= a5,
the angle y7 variables, i.e. c7, s7, are uniquely determined from c4, s4, c5, s5.

Proof. Looking for relations between solely angles 4 and 6, we substitute a4 =
a6 and a5 = a7 to the subsystem J4567 and formulate a suitable elimination
ideal. In ideal-theoretic language, we define

r1 := a4

(

s4c5 + c4s5

)

+ a5c5 − a4

(

c6c7 − s6s7

)

− a5s7

r2 := a4

(

c4c5 − s4s5

)

− a5s5 + a4

(

s6c7 + c6s7

)

− a5c7

ri+2 = c2

i+3 + s2

i+3 − 1, i = 1, . . . , 4,
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where ri = qi with substitutions a4 = a6 and a5 = a7, and investigate the
ideal I := 〈r1, . . . , r6〉 in the ring

Q(a4, a5, a6, a7)[(c5, s5, c7, s7), (c4, s4, c6, s6)].

Calculating the elimination ideal I4,6 := I ∩ Q[c4, s4, c6, s6] we get

I4,6 = 〈s4 + s6, c
2

6 + s2

6 − 1, c2

4 + s2

4 − 1〉.

Calculating the prime decomposition of
√

I4,6 we get

√

I4,6 = 〈c2

6 + s2

6 − 1, c4 − c6, s4 + s6〉 ∩ 〈c2

6 + s2

6 − 1, c4 + c6, s4 + s6〉.

Since I4,6 ⊂ I ⊂ J ⊂ J ∪ FJ , we have

V(I4,6) ⊃ V(J ∪ FJ).

From these prime ideals we can see that everywhere in V(I4,6), and therefore
in the variety of the singularities of the whole system as well, s6 = −s4

and either c6 = c4 or c6 = −c4. These translate into two possible relations
between the angles y4 and y6.

(c6, s6) = (c4,−s4) ⇔ y6 = −y4,
(c6, s6) = (−c4,−s4) ⇔ y6 = y4 + π.

(22)

This proves the first claim. If we take into account either one of the prime
ideals of

√

I4,6 in I and calculate the Gröbner bases we get ideals where c7

and s7 depend linearly on c4, s4, c5 and s5, and can be explicitely solved,
as we will show next to prove the latter claim of the lemma. For the case
(s6, c6) = (−s4,−c4) we get

{

c7 = −s5

s7 = c5

which imply y7 = y5 +
π

2
. (23)

For the case (s6, c6) = (−s4, c4) the expressions are, albeit linear, slightly
more complicated:

0 = c7

(

a2

4(s
2

4 − c2

4) − a5(2a4s4 + a5)
)

+

+ s7

(

2a4(a5 + a4c4s4)
)

− s5

(

(a2

4 + a2

5) − 2a4a5s4

)

0 = c7

(

2a2

4c4s4

)

+ s7

(

a2

4(c
2

4 − s2

4) + a2

5)
)

+ (a2

4 − a2

5)c5 − 2a4a5s5c4.

We prove that these indeed determine c7, s7: all we need to do is check that
the determinant of the coefficient matrix A of the linear equations does not
equal zero:

A :=

(

a2
4(s

2
4 − c2

4) − a5(2a4s4 + a5) 2a4(a5 + a4c4s4)
−2a2

4c4s4 a2
4(c

2
4 − s2

4) + a2
5

)

, prove det(A) 6= 0.
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Now det(A) simplifies due to c2
4 + s2

4 = 1, resulting in

det(A) = 2a4a5(a4 + a5)(a4 − a5)s4 + (a4 − a5)(a4 + a5)(a
2

4 + a2

5)

Let us then consider det(A) as a function of s4. Since s4 ∈ [−1, 1], det(A) :
[−1, 1] 7→ R. Clearly if a4 = a5, det(A) ≡ 0 so we need to assume a4 6= a5.
Set

h(s4) :=
det(A)

(a4 + a5)(a4 − a5)
= 2a4a5s4 + (a2

4 + a2

5)

and inspect when h = 0. Since a4 > 0 and a5 > 0 the linear function h has
its minimum at −1.

h(−1) = a2

4 + a2

5 − 2a4a5 = (a5 − a4)
2 > 0.

This proves h 6= 0 always, therefore under the assumption a4 6= a5 also
det(A) 6= 0 as claimed.

4.5.2 The case a4 = a5

We study the special case a4 = a5 = a6 = a7, whence the 4567-subsystem is
capable of “buckling” in more complicated ways, thereby producing further
interesting configurations. This resembles then the net example in [Arp01].

Let us see how J4567 simplifies with substitutions a4 = a5 = a6 = a7. Note
that the assumptions of Lemma 4.1 considering y7 are no longer valid. Let

I := J4567 with a4 = a5 = a6 = a7 and s6 = −s4

and compute its prime decomposition. This results in

√
I = I1 ∩ I2 ∩ I3 with generators

I1 =































s2
4 + c2

6 − 1,

c4 − c6,

c2
7 + s2

7 − 1,

s5 + c7s4 − s7c6,

c5 − c7c6 − s7s4

I2 =































c6,

s4 + 1,

c4,

c2
7 + s2

7 − 1,

c2
5 + s2

5 − 1

I3 =































s2
4 + c2

6 − 1,

c4 + c6,

c2
7 + s2

7 − 1,

s5 + c7,

c5 − s7

(24)

Each of these has a geometrical interpretation, see Figure 3. I2 corresponds
to y4 = −π/2, y6 = π/2 which means that nodes A and P2 coincide. This is
like the T5 situation. Indeed, the ideal J ∪FJ ∪ I2 turns out to be exactly T5

with the extra condition a4 = a5. Although it is not immediately apparent
but in that situation there also arises a new condition among the parameters:
a3 = |b−w|, i.e. “a3 equals the distance between A and B”. Note that here the
Fitting ideal FJ4567

has not been used at all, contrary to the T5 calculations.
I3 corresponds to y6 = y4 + π and y5 = y7 − π/2 so that now nodes P3

and P4 coincide. Then again, I1 corresponds to y6 = −y4 and y5 = y6 + y7,
which interestingly is not a singularity but merely expressing a symmetry in
the system due to a4 = a5 = a6 = a7.

22



Figure 3: The configurations corresponding to I1, I2, I3 in the case a4 = a5 =
a6 = a7.

4.6 Other subsystems

Now contemplating Figure 2 we see that it would be possible to find other
singularities by analysing still other subsystems. For example the subsystem
corresponding to rods 3, 4 and 5 is by symmetry similar to subsystem 367:
we simply exchange the roles of variables and parameters associated to rods 4
and 6, and 5 and 7. Further we could consider other subsystems formed from
different“paths”between the nodes A,B,O: i.e. subsystems J123, J1245, J1267.
Again by symmetry the system J1267 is completely similar to J1245, but cases
J123 and J1245 give new singularities. We checked that in these cases the
singular variety is not empty, and that at least for some parameter values we
get singular points.

We did not analyse these cases in detail because computations are quite
similar to those given above for subsystems J4567 and J367. Hence we did not
feel including these would give significant additional value and therefore left
them out to avoid expanding this quite a long presentation further.

5 Numerical examples

In this section we will calculate numerical examples for both types of singu-
larities. Interestingly, the explicit expressions within G̃, Ĝ, as well as in the
Gröbner bases of L1 and L2, are unstable for numerical computations. It is
better to use the original defining equations of K1, K2, L1, L2 in the compu-
tations. We shall not explore this stability issue here due to its non-relevance
for the present context.

We present 4 examples:

1. The original benchmark parameter values, see [MI03]. We show that
then the system is avoiding singularities.5

2. We explore how should a1, a2 be changed in order to have J4567 type
singularities in the system. Here we have an interpretation for the

5Thereby validating its benchmark status. That is, the numerical difficulties encoun-
tered there are indeed due to the “numerical stiffness” of the problem, not to a nearby
singularity.
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result: the lengths a1, a2 must be such that the subsystem 4567 has
room for a certain kind of “buckled” configuration.

3. We explore how should b1, a1, a2 be changed in order to have J367 type
singularities in the system.

4. A special case which shows a rational solution, that is ci, si ∈ Q for
all i. This shows unambiguously that we can find singular points be-
cause in this case there are no numerical errors related to floating point
computations.

5.1 Original values

In this example, we will use the original values for the parameters ai, bi and
show that the system then has no singularities. The original parameters used
in the benchmark tests [Sch90, HW91, MI03] are

a1 = 0.007, a2 = 0.028, a3 = 0.035, a4 = 0.020,

a5 = 0.040, a6 = 0.020, a7 = 0.040,

b1 = −0.03635, b2 = 0.03273,

w1 = −0.06934, w2 = −0.00227.

. (25)

Since a7 = a5 and a6 = a4, we have t4 = t6 = 0 (and t1 < 0, t5 < 0) so we
could have an J4567 singularity: T3 or T5.

Remark 5.1. Interpretation: both T3 and T5 describe a situation where the
4567 system has ’collapsed’ into a 1-dimensional object. The ideal K2 tells
us how a3 restricts the possible attitudes of 4567. In T5 the centre node P2

has been pushed in, in T3 it has been pulled out.

Let us look more closely first at T5, say, and check the conditions (8) and
(10). The first one is fulfilled. For E we first need to solve c3, s3 from V(K2).
Their solutions are

(c3, s3, c7, s7) ∈
{ (0.4299535996, −0.9028509856, −0.9975812008, 0.06951077517) ,

(0.9266735994, −0.3758670513, −0.1283212011, 0.9917326602) } (26)

With these c3, s3 we can compute E. Both sets in (26) give E = O(10−5) > 0
and the condition (10) is violated, hence there are no (J4567−)singularities.
What about other singularities? This is answered by the following

Theorem 5. With the original benchmark parameter values (25), the An-
drews’ squeezing system has no singularities.

Proof. We now have a4 = a6, a5 = a7 and a4 6= a5. Lemma 4.1 implies
variables c6, s6, c7, s7, and so y6 and y7 can be explicitely solved in terms of
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c4, s4, c5, and s5. It is then possible to reduce the original system of constraint
equations, by forgetting the last two equations from (2), and consider



















a1 cos(y1) − a2 cos(y1 + y2) − a3 sin(y3) − b1 = 0

a1 sin(y1) − a2 sin(y1 + y2) + a3 cos(y3) − b2 = 0

a1 cos(y1) − a2 cos(y1 + y2) − a4 sin(y4 + y5) − a5 cos(y5) − w1 = 0

a1 sin(y1) − a2 sin(y1 + y2) + a4 cos(y4 + y5) − a5 sin(y5) − w2 = 0.

These are equivalent to


















a1 cos(y1) − a2 cos(y1 + y2) − a3 sin(y3) − b1 = 0

a1 sin(y1) − a2 sin(y1 + y2) + a3 cos(y3) − b2 = 0

−a4 sin(y4 + y5) − a5 cos(y5) + a3 sin(y3) + (b1 − w1) = 0

a4 cos(y4 + y5) − a5 sin(y5) − a3 cos(y3) + (b2 − w2) = 0

These can be again represented as polynomials.

m1 := a1c1 − a2

(

c1c2 − s1s2

)

− a3s3 − b1 = 0

m2 := a1s1 − a2

(

s1c2 + c1s2

)

+ a3c3 − b2 = 0

m3 := a1c1 − a2

(

c1c2 − s1s2

)

− a4

(

s4c5 + c4s5

)

− a5c5 − w1 = 0

m4 := a1s1 − a2

(

s1c2 + c1s2

)

+ a4

(

c4c5 − s4s5

)

− a5s5 − w2 = 0

mi+4 := c2

i + s2

i − 1 = 0, i = 1, . . . , 5.

Substituting the original parameter values (25), as rational numbers, into the
polynomials mi we form an ideal I := 〈m1, . . . ,m9〉. Let K := I ∪ FI , where
FI is the Fitting ideal of I, and inspect K in the ring

Q[(c1, s1, c2, s2), (c3, s3, c4, s4, c5, s5)].

Now it is possible to compute the Gröbner basis GK for K explicitly (unlike
for J ∪ FJ in the introduction) and results in

GK = 〈1〉.
This implies V(K) = ∅, proving that with these original parameter values
there are no singularities.

5.2 J4567 singularity: original values, apart from a1, a2

Let us see how changing a1 and/or a2 might produce J4567 type singularities.
Our analysis reveals that by suitable combinations of a1 and a2 we can get
between zero and four singularities (of type J4567, that is). The number of
singularities is determined by c3, s3, and E.

Considering E as a function of a1, a2 we plot the area where E ≤ 0. Recall
that E depends on c3 as well, and c3 has two possible values so we get two
functions: E = E1(a1, a2) (resp. E = E2(a1, a2)) corresponding to the first
(resp. second) value of c3 from (26). See Figure 4 where the areas inside the
rectangular areas are Ei < 0.
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Figure 4: The rectangular lines are E1 = 0 (thick line) and E2 = 0 (thin
line), the areas inside each Ei = 0 line are where Ei < 0. Left panel: T5 case,
right panel: T3 case.

• no singularities: E1 > 0, E2 > 0.

• 1 singularity: E1 = 0, E2 = 0, which leads (with T5) to two possible
values:

(a1 = 0.05986, a2 = 0.01035), (a1 = 0.01035, a2 = 0.05986)

• 2 singularities: one of E1, E2 is < 0, the other one > 0.

• 3 singularities: one of E1, E2 is < 0, the other one = 0.

• 4 singularities: E1 < 0, E2 < 0.

For example, let us concentrate on T5 and choose a1 = 0.03, a2 = 0.055,
say, whence the system is able to reach four singular configurations (see the
left panel of Figure 4). Now si, ci for i = 1, 2, 3, 7 are determined by V(K).
The other values, for angles 4,5,6, are determined by V(T5). The results are
in the Table 1. The corresponding configurations are visualized in Figure 5.

Doing similar tests with T3 instead of T5 yields the Ei areas in the right
hand panel of Figure 4. Singular configurations implied by T3, with choices
a1 = 0.06, a2 = 0.06 which imply 4 singularities, are in Figure 6. To save
space we have not tabulated the actual values of the angles in T3 case.

5.3 J367 singularity: original values, apart from b1, a1, a2

A necessary condition to have a J367 type singularity is at least one of the
zi’s vanishes (12). Substituting the original parameter values we notice that
none of these is zero. Let us then investigate how we should change some of
the parameters in order to have J367 type singularities. Take b1 and U1, say,
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variable singularity 1 singularity 2 singularity 3 singularity 4
c1 -0.8322 -0.4564 -0.1157 -0.1038
s1 -0.5544 0.8898 -0.9933 0.9946
c2 -0.3045 -0.3045 0.4467 0.4467
s2 0.9525 -0.9525 0.8947 -0.8947
c3 0.4300 0.4300 0.9267 0.9267
s3 -0.9029 -0.9029 -0.3759 -0.3759
c4 0 0 0 0
s4 -1 -1 -1 -1
c5 0.0695 0.0695 0.9917 0.9917
s5 0.9976 0.9976 0.1283 0.1283
c6 0 0 0 0
s6 1 1 1 1
c7 -0.9976 -0.9976 -0.1283 -0.1283
s7 0.0695 0.0695 0.9917 0.9917

Calculating the corresponding angles we get the following values.

Angle singularity 1 singularity 2 singularity 3 singularity 4
y1 -2.5539 2.0448 -1.6867 1.6747
y2 1.8802 -1.8802 1.1077 -1.1077
y3 -1.1264 -1.1264 -0.3853 -0.3853
y4 -1.5708 -1.5708 -1.5708 -1.5708
y5 1.5012 1.5012 0.1287 0.1287
y6 1.5708 1.5708 1.5708 1.5708
y7 3.0720 3.0720 1.6995 1.6995

Table 1: The singularities of J4567 type, original values apart from a1, a2.
The values are presented only with 4 decimals but were computed with 16
decimals.

and choose b1 := −0.026913593 so that z1 = 0. 6 We seek to further fulfil
the sufficient requirements by U1:

n3(4a1a2 − n3) ≥ 0 (20)

t7t5t6t8 ≤ 0, (21)

and use L1, L2 to find the actual singular configurations. With the original
parameter values t6 = 0, therefore (21) is fulfilled. Therefore we only need
to study (20). For that, we proceed analogously to Example 5.2: treat the
expression n3(4a1a2−n3) as a function of a1, a2. For that, we first need c7, s7.

6This corresponds to moving B slightly to left.
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Figure 5: Singular positions (according to J4567, T5) when a1 = 0.03, a2 =
0.055 and a3, . . . , a7 have the original values. One can see a physical expla-
nation to the singularity: the centre node P2 is ’pushed in’ so that nodes P3

and P4 coincide.

Them we get from (13)

c7 =
b2 − w2

a6 − a3 − a7

= −0.6364

s7 =
b1 − w1

a3 + a7 − a6

= 0.7714.

The region of a1, a2 plane where n3(4a1a2−n3) ≥ 0 is shown in Figure 7. We
pick a value inside the “allowed” annulus, say a1 = 0.02 and a2 = 0.055 in
order to get singularities. Then let us find the actual singular configurations:
since t6 = 0, from (16) we get c4 = 0 and from (15) s4 = −1. The other angles
are found as follows: 3 and 6 from (13) and the remaining ones 1,2,5 from
L. The results are in Table 2. The corresponding singular configurations
are drawn in Figure 8. Note that there are only two singular configurations,
instead of four, since (16) has only one (double) root c4 = 0 instead of two
separate roots.
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Figure 6: Singular positions (according to J4567, T3) when a1 = 0.06, a2 =
0.06 and a3, . . . , a7 have the original values. One can see a physical explana-
tion to the singularity: the centre node P2 is now ’pulled out’ so that nodes
P3 and P4 coincide.

5.4 A rational case

Finally, let us show a rational valued singularity, that is ci, si ∈ Q. Choose

a4 = a5 = a6 = a7 = 3/20 a1 = 1/10 a2 = a3 = 1/2

b1 = −1/10 b2 = 1/5 w1 = −2/5 w2 = −1/5

and solve c, s from the generators of I2 ∪ J ∪FJ in (24). Now c5, s5, c7, s7 are
arbitrary (apart from c2

5 + s2
5 = 1, c2

7 + s2
7 = 1) and the chosen result is (see

also Figure 9)

c = (0, 3/5, 4/5, 0, 3/5, 0, 4/5)

s = (1,−4/5,−3/5,−1, 4/5, 1, 3/5).

6 Conclusion

We have studied singularities of the multibody system “Andrews’ squeezing
system”which is a well-known benchmark problem both for multibody solvers
and differential-algebraic equation solvers. Using our tools we have shown in
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0.
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Figure 8: Singular positions (according to J367, U1) when b1 =
−0.02691, a1 = 0.02, a2 = 0.055 and a3, . . . , a7 have the original values.
The physical interpretation is as in Figure 5.

Theorem 5 that the original benchmark problem is indeed void of singular-
ities, thereby assuring that whatever numerical problems in the benchmark
tests are met, they are indeed due to something else than a nearby singularity
of the system. Apparently, this non-singularity of the problem has not been
rigorously proven in the literature.

However, we have shown that with suitably chosen parameters (a, b, w),
this system can exhibit singular configurations. In fact, there are families of
values (a, b, w) that produce singularities, see Theorems 2 and 4. We provide
examples of singularities, calculated using the original benchmark parameter
values apart from b1, a1, a2. Considering a1, a2 as freely chosen parameters,
Figures 4 and 7 show the areas of a1, a2 plane where the system exhibits
singularities. For example, choosing the point (a1, a2) within the intersection
of the three areas in Figures 4 (both panels) and 7 would give a system with
10 singular configurations.
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variables singularity 1 singularity 2
c1 -0.3621 0.0127
s1 -0.9322 0.9999
c2 0.1860 0.1860
s2 0.9862 -0.9826
c3 0.6364 0.6364
s3 -0.7714 -0.7714
c4 0 0
s4 -1 -1
c5 0.7714 0.7714
s5 0.6364 0.6364
c6 0 0
s6 1 1
c7 -0.6364 -0.6364
s7 0.7714 0.7714

Expressed in angles, these are

Angles singularity 1 singularity 2
y1 -1.9413 1.5581
y2 1.3837 -1.3837
y3 -0.8810 -0.8810
y4 1.5708 1.5708
y5 0.6898 0.6898
y6 1.5708 1.5708
y7 2.2606 2.2606

Table 2: The singularities of J367 type, original values apart from b1, a1, a2.
The values are presented only with 4 decimals but were computed with 16
decimals.

A natural question that remains is, if these presented singularities are
the only possible ones? In other words are there singularities which do not
come from the singularities of some subsystem? While the Gröbner bases
techniques in principle provide a way to answer this question directly, we
could not do so in practice due to complexity problems.

31



−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Andrews’ squeezing system

B

A

O

a1

a2
a3

a4
a5

a6a7

Figure 9: A singular configuration with rational ci, si, ai, bi.

6.1 Appendix

The coefficients fi: The coefficients f1, . . . , f5 in the context of T5 are

f1 = 4(a5 − a4)
2(b2

1 − 2b1w1 + b2
2 − 2b2w2 + w2

1 + w2
2)

= 4(a5 − a4)
2|b − w|2,

f2 = 4(w1 − b1)(a4 − a5)

(−b2
1 + 2b1w1 − b2

2 + 2b2w2 − w2
1 − w2

2 + a2
3 − a2

4 + 2a4a5 − a2
5)

= 4(w1 − b1)(a4 − a5)
(

a2
3 − (a4 − a5)

2 − |b − w|2
)

,

f3 = b2
1 − 2b1w1 + b2

2 − 2b2w2 + 2b2a4 − 2b2a5+

+w2
1 + w2

2 − 2w2a4 + 2w2a5 − a2
3 + a2

4 − 2a4a5 + a2
5

= |b − w|2 + 2(b2 − w2)(a4 − a5) − a2
3 + (a4 − a5)

2,

f4 = b2
1 − 2b1w1 + b2

2 − 2b2w2 − 2b2a4 + 2b2a5+

+w2
1 + w2

2 + 2w2a4 − 2w2a5 − a2
3 + a2

4 − 2a4a5 + a2
5

= |b − w|2 − 2(b2 − w2)(a4 − a5) − a2
3 + (a4 − a5)

2,

f5 = a2
3 − a2

4 + 2a4a5 − a2
5 − b2

1 + 2b1w1 − b2
2 + 2b2w2 − w2

1 − w2
2

= a2
3 − (a4 − a5)

2 − |b − w|2.
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The coefficients di, li: The coefficients di, li in the context of K2 are

d1 = 2a1a2(a
2
3 + 2a3b1s3 − 2a3b2c3 + b2

1 + b2
2)

d2 = −4a2
1a

2
2s

2
2

d3 = −a4
1 + 2a2

1a
2
2 + a2

1a
2
3 + 2a2

1a3b1s3 − 2a2
1a3b2c3 + a2

1b
2
1

+a2
1b

2
2 − a4

2 + a2
2a

2
3 + 2a2

2a3b1s3 − 2a2
2a3b2c3 + a2

2b
2
1 + a2

2b
2
2

l1 = −2a1a2(a
2
3 + 2a3b1s3 − 2a3b2c3 + b2

1 + b2
2)

l2 = 2a1a2(a3s3 + b1)

l3 = −(a3c3 − b2)(a
2
1 − a2

2 + a2
3 + 2a3b1s3 − 2a3b2c3 + b2

1 + b2
2)

l4 = 2a1a2s1s2 − (a3s3 + b1)a2c2 + (a3c3 − b2)a2s2 − (a3s3 + b1)a1.

We can also simplify these expressions:

d0 = a2
3 + |b|2 + 2a3(b1s3 − b2c3)

d1 = 2a1a2d0

d2 = n1n2

d3 = (a2
1 + a2

2)d0 − (a2
1 − a2

2)
2

n1 = (a1 + a2)
2 − d0

n2 = (a1 − a2)
2 − d0 = 4a1a2 − n1

l1 = −d1

l3 = −(a3c3 − b2)(a
2
1 − a2

2 + d0)
l4 = −(a3s3 + b1)(a2c2 + a1) + a2s2(a3c3 − b2 + 2a1s1)
ĝ1 = −4a2

1a
2
2s

2
2 + n1(4a1a2 − n1)

ĝ2 = 2a1a2d0c2 + (a2
1 + a2

2)d0 − (a2
1 − a2

2)
2

ĝ3 = −2a1a2d0s1 + 2a1a2(a3s3 + b1) − (a3c3 − b2)(a
2
1 − a2

2 + d0)
ĝ4 = (a2

1 − a2
2)c1 + l4

The coefficients ri: The coefficients ri in the context of L1 are

r1 = (a2
1 + a2

2)|b|2 − 2b1a
2
1a3s7 − 2b1a

2
2a3s7 + 2b2a

2
1a3c7

+2b2a
2
2a3c7 − (a2

1 − a2
2)

2 + (a2
1 + a2

2)a
2
3

r2 = 2a1(b1a2 − a2a3s7)s2

r3 = b2
1b2 + b2

1a3c7 − 2b1b2a3s7 − 2b1a
2
3c7s7 + b3

2 + 3b2
2a3c7

+b2a
2
1 − b2a

2
2 + 3b2a

2
3c

2
7 + b2a

2
3s

2
7 + a2

1a3c7 − a2
2a3c7 + a3

3c7

r4 = (2a1a2)s1s2 + (−b1a2 + a2a3s7)c2

+(−b2a2 − a2a3c7)s2 + (−b1a1 + a1a3s7)
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