ON AN INVERSE SUBORDINATOR STORAGE

Marina Sirviö
ON AN INVERSE SUBORDINATOR STORAGE

Marina Sirviö

Abstract: In this note we consider a storage process with an inverse subordinator input. The basic characteristics of the process are computed. The paper is a generalisation of [5].

AMS subject classifications: 60G10, 90B05, 60G51

Keywords: subordinator, stationary, storage process

Correspondence

mkozlova@abo.fi, msirvio@cc.hut.fi

ISBN 951-22-8293-3
ISSN 0784-3143

Helsinki University of Technology
Department of Engineering Physics and Mathematics
Institute of Mathematics
P.O. Box 1100, 02015 HUT, Finland
email:math@hut.fi http://www.math.hut.fi/
1 Introduction

A doubly infinite subordinator is defined as

$$X_s := \begin{cases} -X^{(1)}_{\tau(s)}, & s \leq 0, \\ X^{(2)}_s, & s \geq 0, \end{cases}$$

where $X^{(1)}$ and $X^{(2)}$ are two independent identically distributed subordinators started at zero. We call the right-continuous inverse T of X an inverse subordinator process. The paths of T are nondecreasing with flat pieces corresponding to the jumps of X. In the definition of X we can choose the initial distribution $(X^{(1)}_0, X^{(2)}_0)$ such that the inverse subordinator T has stationary increments (see Proposition 3 below).

In this paper we consider T as an input in the storage model

$$S_t = \sup_{s \leq t} \{ T_t - T_s - \mu (t - s) \}. \quad (1)$$

The storage model given by (1), where T is the local time at zero of a reflecting Brownian motion with drift was introduced by [7]. In [5] T is the local time of an arbitrary diffusion. It is known that any inverse subordinator is the local time of some Markov process. Thus, this work generalises the results in [7] and [5]. The computations of the distributions of the ends of busy and idle periods of S are similar to those in [7] and [5].

In the present paper we consider also a second storage process with the same input T and a subordinator output. For this process we study its stationary distribution and give an example when output is a stable subordinator.

This paper is organised as follows. The inverse subordinator T as the input in (1) is introduced in Section 2. In Section 3 we compute the stationary distribution of S. The distributions of the ends of the busy and idle periods are given in Section 4. The storage process with the subordinator output is considered in Section 5. Finally, in Section 6 we summarise some needed results on exponential random variables.

2 Preliminaries

Before defining the storage process with an inverse subordinator input we construct the needed two-sided subordinator such that its inverse would have stationary increments. For details on subordinators we refer to [2], [3].

Let $\hat{X} = \{ \hat{X}_t : t \geq 0 \}$ be a subordinator (i.e., an increasing Lévy process) started at 0. The Laplace transform of \hat{X} is given by

$$\mathbb{E}(e^{-\alpha \hat{X}}) = e^{-t\Phi(\alpha)} \quad (\alpha > 0).$$

The function $\Phi(\alpha)$ is expressed via the Lévy-Khintchine formula

$$\Phi(\alpha) = \int_0^{\infty} (1 - e^{-\alpha x}) \nu(dx),$$
where \(\nu \) is the Lévy measure. We assume that
\[
m := \int_0^\infty \nu(x, \infty) \, dx = \int_0^\infty x \, \nu(dx) < \infty,
\]
which is equivalent to \(\mathbb{E}(\tilde{X}_1) = m < \infty \). Assume also that \(\nu(0, \infty) = \infty \), i.e., we exclude the case of compound Poisson processes.

Let the pair \((\xi_1, \xi_2)\) be distributed as \((UV, (1-U)V)\), where \(U\) is a random variable uniformly distributed on \((0,1)\) and \(V\) is independent of \(U\) and has the distribution
\[
P(V \in dv) = \frac{1}{m} v \, \nu(dv), \quad v \geq 0.
\]
The Laplace transform of \((\xi_1, \xi_2)\) is then
\[
\mathbb{E}(e^{-\alpha \xi_1 - \beta \xi_2}) = \frac{1}{m} \frac{\Phi(\alpha) - \Phi(\beta)}{\alpha - \beta}. \tag{2}
\]
Following [6], we call a process \(X = \{X_t : t \in \mathbb{R}\}\) a stationary two-sided subordinator if

- the pair \((X_0^{(1)}, X_0^{(2)}) := (-X_0^-, X_0)\) has distribution given by the right-hand side of (2);
- the processes \(\tilde{X}^{(1)} = \{-X_{(-t)^-} + X_0^+ : t \geq 0\}\) and \(\tilde{X}^{(2)} = \{X_t - X_0 : t \geq 0\}\) are independent (and independent of \((X_0^{(1)}, X_0^{(2)})\)) copies of \(X\).

Denote by \(M\) the closed range of \(X\), namely \(\{X_t : t \in \mathbb{R}\}\). The complement of \(M\), say \(M^c\), consists of countably many disjoint open intervals. For \(t \in \mathbb{R}\), define
\[
G_t := \sup\{s \leq t : s \in M\} \quad \text{and} \quad D_t := \inf\{s > t : s \in M\}.
\]
In this case, \(G_t\) and \(D_t\) are the ends of the interval of \(M^c\) straddling \(t\). Define the age and residual lifetimes by \(A_t := t - G_t\), \(R_t := D_t - t\). Before going on we need the following definitions.

Definition 1. A set \(M \subset \mathbb{R}\) is called stationary if for all \(t \in \mathbb{R}\), \(M + t = \{s + t : s \in M\}\) has the same law as \(M\).

Definition 2. A set \(M \subset \mathbb{R}\) is called regenerative if

- for all \(t \in \mathbb{R}\), \(M \cap [G_t, \infty)\) and \(M \cap (-\infty, G_t)\) are independent;
- for all \(t \in \mathbb{R}\), \(M \cap (-\infty, D_t]\) and \(M \cap [D_t, \infty)\) are independent.

The set \(M = \{X_t : t \in \mathbb{R}\}\) defined above is a stationary regenerative set (see e.g., [10], [6]).

Define the inverse subordinator process \(T = \{T_s : s \in \mathbb{R}\}\) as
\[
T_s := \inf\{t \in \mathbb{R} : X_t > s\}, \quad s \in \mathbb{R}.
\]
In terms of the two-sided subordinator X and its inverse T,

$$A_t = t - X_{T_t -}, \quad R_t = X_{T_t} - t.$$

The random set M is stationary if the process (A_t, R_t) is stationary.

The inverse processes of $\bar{X}^{(i)}$ and $X^{(i)} := \bar{X}^{(i)} + X^{(i)}_0$, $i = 1, 2$, are given by

$$\bar{T}^{(i)}_s = \inf \{ t \geq 0 : \bar{X}^{(i)}_t > s \} \quad \text{and} \quad T^{(i)}_s = \inf \{ t \geq 0 : X^{(i)}_t > s \}.$$

These processes are continuous and non-decreasing. As was mentioned before, the initial distributions $X^{(1)}_0$ and $X^{(2)}_0$ are chosen so that the process T has stationary increments.

Proposition 3. The inverse subordinator process $T = \{ T_s : s \in \mathbb{R} \}$ has stationary increments and $E(T_s) = \frac{s}{m}$, $s \in \mathbb{R}$.

Proof. 1) Fix $y \in \mathbb{R}$. By construction, $X^y = \{ X^y_t := X_{T^y_t + t} : t \geq 0 \}$ is a subordinator generating $M \cap [y, \infty)$, meaning $\{ X^y_t : t \geq 0 \}^{cl} = M \cap [y, \infty)$. Using the discussion above, the process $X^y - y$ is identical in law to $\{ X_t : t \geq 0 \}$.

Indeed, $X^y - y$ can be written as $X^y_t - y = (X_{T^y_t} - y) + X_{T^y_t + t} - X_{T^y_t}$. By stationarity and regenerativity of M, the process $\{ X_{T^y_t + t} - X_{T^y_t} : t \geq 0 \}$ has the same law as $\bar{X}^{(2)}$ and the initial distribution $(X_{T^y_t} - y)$ is identical in law to $X^{(2)}_0$ and independent of $\{ X_{T^y_t + t} - X_{T^y_t} : t \geq 0 \}$. Since $\{ T^y_{y+t} - T_y : t \geq 0 \}$ is the right-continuous inverse of $\{ X^y_t - y : t \geq 0 \}$, it follows that $T^y_{y+t} - T_y$ and T_t have the same law, that is T has stationary increments.

2) Take e.g., $s > 0$. Let ζ be an independent of X exponential random variable with parameter α. Since $P(T_s \leq t) = P(X_t > s)$, we have

$$E(T_{\zeta}) = \int_0^\infty P(T_{\zeta} > t) \, dt = \int_0^\infty P(X_t \leq \zeta) \, dt = \int_0^\infty E(e^{-\alpha X_t}) \, dt = \int_0^\infty \Phi(\alpha) \frac{e^{-\alpha s}}{m \alpha} \, dt = \frac{1}{m \alpha}.$$

Hence by the uniqueness of the Laplace transform, $E(T_s) = \frac{s}{m}$. \(\square \)

Remark 4. In the case when T is the local time of a stationary diffusion Y as in [5], Proposition 3 can be proved by conditioning at Y_0 and integrating with respect to the speed measure of Y.

Remark 5. The process $T^{(1)} = \{ T^{(1)}_s : s \geq 0 \}$ has been studied in [4], [11].
3 Stationary distribution of S

The basic object of our interest in this paper is the storage process $S = \{S_t : t \in \mathbb{R}\}$ defined via

$$S_t := \sup_{-\infty < s \leq t} \{T_t - T_s - \mu(t - s)\}.$$

Before stating the results we introduce the process

$$\tilde{S}^{(1)}_0 := \sup_{t \geq 0} \{\tilde{T}^{(1)}_t - \mu t\}.$$

Consider next a spectrally positive (i.e., without negative jumps) Lévy process $\tilde{X}^{(1)}_t - \frac{t}{\mu}$. Its Laplace transform is given by

$$E(e^{-\alpha(\tilde{X}^{(1)}_t - \frac{t}{\mu})}) = e^{-t(\Phi(\alpha) - \frac{\alpha}{\mu})} = e^{t\Psi(\alpha)}, \quad (3)$$

where $\Psi(\alpha) = \frac{\alpha}{\mu} - \Phi(\alpha)$. The following result is taken from [2] p. 190.

Lemma 6. If $E(\tilde{X}^{(1)}_1 - \frac{1}{\mu}) = (m - \frac{1}{\mu}) > 0$ then the process $\tilde{X}^{(1)}_t - \frac{t}{\mu}$ drifts to $+\infty$. Moreover, the equation

$$\Psi(\alpha) = 0$$

has one positive solution α^* and $-\inf_{t \geq 0}\{\tilde{X}^{(1)}_t - \frac{t}{\mu}\}$ is exponentially distributed with parameter α^*.

Lemma 7. (see [8]) If $\mu > \frac{1}{m^*}$ then the random variable $\tilde{S}^{(1)}_0$ is exponentially distributed with parameter $\frac{m^*}{\mu}$.

Proof: From Lemma 6, we get

$$P(\tilde{S}^{(1)}_0 > s) = P(\exists t : \tilde{T}^{(1)}_t - \mu t > s) = P(\exists t : \tilde{X}^{(1)}_t - \frac{t}{\mu} < -\frac{s}{\mu}) = P(-\inf_{t \geq 0}\{\tilde{X}^{(1)}_t - \frac{t}{\mu}\} > \frac{s}{\mu}) = e^{-\alpha^* \frac{s}{\mu}},$$

as claimed. \hfill \Box

Due to Lemma 7 in what follows we shall only consider the case $\mu > \frac{1}{m^*}$. In the next proposition we show that S_t has the exponential distribution with an atom at 0 (cf. [8], where the diffusion case is considered).

Proposition 8. The stationary distribution of S is given by

$$P(S_t > s) = \frac{1}{m\mu} e^{-\frac{\alpha^* s}{\mu}}, \quad s \geq 0. \quad (4)$$

In particular, $P(S_t = 0) = 1 - \frac{1}{m\mu}$.

6
Proof: Since S_t is stationary, it is enough to consider the case $t = 0$. Fix $s > 0$. Since $\sup_{0 \leq s < X_0^{(1)}} \{T_s^{(1)} - s\} = 0$ and $\overline{T}_s^{(1)} = \overline{T}_s^{(1)}_{s-X_0^{(1)}}$ for $s \geq X_0^{(1)}$, we have

$$S_0 = \sup_{s \geq 0} \{T_s^{(1)} - \mu s\} = \sup_{s \geq X_0^{(1)}} \{\overline{T}_s^{(1)} - \mu s\} \vee 0$$

$$= \left(\sup_{s \geq 0} \{\overline{T}_s^{(1)} - \mu s\} - \mu X_0^{(1)} \right) \vee 0$$

$$= \overline{S}_0^{(1)} - \mu X_0^{(1)} \vee 0. \quad (5)$$

Hence, using Lemma 7, we obtain for $s > 0$,

$$P(S_0 > s) = P\left(\frac{\overline{S}_0^{(1)}}{\mu} > \frac{s}{\mu} + X_0^{(1)}\right)$$

$$= e^{-\frac{s^*}{\nu}} E\left(e^{-\alpha^* X_0^{(1)}}\right)$$

$$= \frac{1}{m \mu} e^{-\frac{s^*}{\nu}},$$

where in the last step we use that

$$E\left(e^{-\alpha^* X_0^{(1)}}\right) = \frac{\Phi(\alpha^*)}{m \alpha^*} = \frac{1}{m \mu}.$$

The statement follows. \qed

4 Busy and idle periods

Replacing the process X_t with X_{t-}^ν, it is seen that we can always consider the case $\mu = 1$ and $m = E(X_1) < 1$. From now on we assume that $\mu = 1$.

If $S_0 = 0$ define the starting and the ending times of the on-going idle period at time zero as

$$g_i := \sup\{t < 0 : S_t > 0\}, \quad d_i := \inf\{t > 0 : S_t > 0\}.$$

If $S_0 > 0$ define the starting and the ending times of the on-going busy period at time zero as

$$g_b := \sup\{t < 0 : S_t = 0\}, \quad d_b := \inf\{t > 0 : S_t = 0\}.$$

As in [5], we consider the zero set of S. It is stationary since S is stationary. As it is shown in [5], given $d_b - g_b = v$, the random variable d_b is uniformly distributed on $(0, v)$ (and the same holds for $-g_b$). Hence it is enough to compute the marginal distribution of $-g_b$ (or d_b) and of $-g_i$ (or d_i).

7
Let $S_0 > 0$, that is there is a busy period at time zero. Consider the process S_t for $t \in [a_1, a_2]$, where

$$a_1 := \sup \{t < 0 : t - T_t = S_0\}, \quad a_2 := \inf \{t > 0 : t - T_t = S_0\}.$$

For $t \in (a_1, a_2)$, $t - T_t < S_0$ and hence

$$S_t = T_t - t + \sup_{s \leq t} \{s - T_s\} = T_t - t + S_0, \quad t \in (a_1, a_2),$$

from which it is seen that $a_1 = g_b$, $a_2 = d_b$.

The distributions of $(-g_b, d_b)$ and $(-g_i, d_i)$ can be computed similarly to [5]. The computations for $-g_b$ and d_i can be simplified using the properties of exponential random variables given in Lemma 15 in Appendix.

Theorem 9. Let η be the inverse of $\Psi(\alpha)$, $\alpha \geq \alpha^*$. Then the joint Laplace transform of $-g_b$ and d_b, given that $S_0 > 0$, is

$$\mathbb{E}\left(e^{\alpha g_b - \beta d_b} \mid S_0 > 0 \right) = \frac{\alpha^*}{\alpha - \beta} \left(\frac{\alpha}{\eta(\alpha)} - \frac{\beta}{\eta(\beta)} \right), \quad \alpha \neq \beta. \quad (6)$$

Proof: To compare, we give the computations for both $-g_b$ and d_b, which are taken with small changes from [7] and [5].

1) (Computation of the distribution of d_b)

Since d_b can be presented as

$$d_b = \tau_{(S_0 - X_0^{(2)}) \cap 0} + S_0 = \tau_{(S_0 - X_0^{(2)}) \cap 0} + (S_0 - X_0^{(2)}) + X_0^{(2)},$$

where

$$\tau := \inf \{s : \bar{X}_s^{(2)} - s > t\},$$

the crucial property in computation (cf. Corollary 3.3 in [5]) is that $S_0 - X_0^{(2)}$ is exponentially distributed and independent of $X_0^{(2)}$. In [5] this was shown using the Markov property of the diffusion Y at time zero and integrating with respect to the speed measure of Y. From (5) it follows that $\{S_0 > X_0^{(2)}\} = \{\bar{S}_0^{(1)} > X_0^{(1)} + X_0^{(2)}\}$. Since $\bar{S}_0^{(1)}$ and $(X_0^{(1)}, X_0^{(2)})$ are independent, it follows from Lemma 15(4) that given $S_0 > X_0^{(2)}$, the random variables $S_0 - X_0^{(2)}$ and $X_0^{(2)}$ are independent. Moreover, $S_0 - X_0^{(2)}$ given $S_0 > X_0^{(2)}$ is exponentially distributed with parameter α^*, and

$$\mathbb{E}\left(e^{-\alpha X_0^{(2)} \mid S_0 > X_0^{(2)}} \right) = \mathbb{E}\left(e^{-(\alpha + \alpha^*) X_0^{(2)} - \alpha^* X_0^{(1)}} \right) = 1 - \frac{\Psi(\alpha + \alpha^*)}{\alpha}. \quad (7)$$

The rest of the computation of the distribution of d_b does not differ from one in the proof of Theorem 3.1 in [5] and we omit it.

2) (Computation of the distribution of g_b)
To compute the distribution of g_b we write first

$$
|g_b| = \inf\{t > X_0^{(1)} : T_t^{(1)} - t = S_0\}
= \inf\{t > X_0^{(1)} : \tilde{T}_t^{(1)} - t = S_0\}
= X_0^{(1)} + \inf\{t > 0 : \tilde{T}_t^{(1)} - t = S_0^{(1)}\}
= X_0^{(1)} + \inf\{\tilde{T}^{(1)}_{t - X_0^{(1)}} : t - X_0^{(1)} = S_0^{(1)}\}
= X_0^{(1)} - S_0^{(1)} + \inf\{t : \tilde{T}_t^{(1)} - t = -S_0^{(1)} = \inf_{t \geq 0} \{\tilde{T}_t^{(1)} - t\}\} \quad (8)
$$

Denote the last term in (8) by N. As in [7] we use the result from [1] which states that the process $\{\tilde{T}^{(1)}_{t - X_0^{(1)}} - t : 0 \leq t < N\}$ is identical in law to $\{X_t^* : 0 \leq t < H_{\theta^*}\}$, where $\{X_t^* : t \geq 0\}, X_0^* = 0$, is a spectrally positive Lévy process with

$$
E(e^{-\alpha X_t^*}) = e^{\Psi(\alpha + \alpha^*)},
$$

$\theta \sim \text{Exp}(\alpha^*)$ is independent of X^*, and $H_{\theta^*}^*$ stands for the first hitting time of $-\theta$ for X^*. Let η^* be the inverse of $\Psi(\alpha + \alpha^*)$. Using Lemma 15(2), the definition of η and fact that $\alpha^* + \eta^*(\alpha) = \eta(\alpha)$, we have

$$
E(e^{-\alpha |g_b|} ; S_0 > 0) = E(e^{-\alpha (X_0^{(1)} + H_{\theta^*}^* - \theta)} ; \theta > X_0^{(1)})
= E(e^{-\alpha X_0^{(1)} - (\eta^*(\alpha) - \alpha) \theta} ; \theta > X_0^{(1)})
= \frac{\alpha^*}{\eta^*(\alpha) - \alpha + \alpha^*} E(e^{-(\alpha^* + \eta^*(\alpha)) X_0^{(1)})
= \frac{\alpha^*}{\eta(\alpha) - \alpha} \Phi(\eta(\alpha))
= \frac{\alpha^*}{(\eta(\alpha) - \alpha) m \eta(\alpha)} \left(1 - \frac{\Psi(\eta(\alpha))}{\eta(\alpha)}\right)
= \frac{\alpha^*}{\eta(\alpha) m}.
$$

The fact that given $d_b - g_b = \nu$, the random variable $|g_b|$ has uniform distribution on $(0, \nu)$ completes the proof.

\[\square\]

Remark 10. Let the process X^* be as above. Let θ be an exponentially distributed random variable with parameter α^* independent of X^*. Then

$$
E(e^{-\alpha H_{\theta^*}^*}) = \frac{\alpha^*}{\alpha^* + \theta^*(\alpha)} = \frac{\alpha^*}{\eta(\alpha)}.
$$

Theorem 11. The joint Laplace transform of $-g_i$ and d_i, given that $S_0 = 0$, is

$$
E(e^{\alpha g_i - \beta d_i} | S_0 = 0) = \frac{\alpha^* \mu}{(m - 1)(\alpha - \beta)} \left(\frac{\Psi(\alpha)}{\alpha - \alpha^*} - \frac{\Psi(\beta)}{\beta - \alpha^*}\right), \quad \alpha \neq \beta. \quad (9)
$$

9
Proof: Suppose now that \(S_0 = 0 \), i.e., there is an idle period at time zero. From (5) it follows that \(\{ S_0 = 0 \} = \{ X_0^{(1)} > S_0^{(1)} \} \). Notice that \(-X_0^{(1)} < g_i < 0\) and write

\[
|g_i| = \inf \left\{ 0 < t < X_0^{(1)} : \sup_{s \geq t} \{ T_s^{(1)} - (s-t) \} > 0 \right\}
\]

\[
= \inf \left\{ 0 < t < X_0^{(1)} : \sup_{s \geq X_0^{(1)}} \{ T_s^{(1)} - s \} + t > 0 \right\}
\]

\[
= \inf \left\{ 0 < t < X_0^{(1)} : \sup_{s \geq X_0^{(1)}} \{ \tilde{T}_{s-X_0^{(1)}}^{(1)} - (s - X_0^{(1)}) \} - X_0^{(1)} + t > 0 \right\}
\]

\[
= \inf \left\{ 0 < t < X_0^{(1)} : \tilde{S}_0^{(1)} - X_0^{(1)} + t > 0 \right\},
\]

from which we get \(|g_i| = X_0^{(1)} - \tilde{S}_0^{(1)} \). Thus, using Lemma 15(3), we obtain

\[
E(e^{\alpha X_0^{(1)}}; S_0 = 0) = E(e^{-\alpha (X_0^{(1)} - \tilde{S}_0^{(1)})}; X_0^{(1)} > \tilde{S}_0^{(1)})
\]

\[
= \frac{\alpha^*}{\alpha - \alpha^*} \left(E(e^{-\alpha X_0^{(1)}}) - E(e^{-\alpha \tilde{S}_0^{(1)}}) \right)
\]

\[
= \frac{\alpha^*}{\alpha - \alpha^*} \left(\Phi(\alpha^*) - \frac{\Phi(\alpha)}{m \alpha^*} \right)
\]

\[
= \frac{\alpha^* \psi(\alpha)}{(\alpha - \alpha^*) \alpha m}.
\]

\[\square\]

5 On a storage with subordinator output

Here we define a storage model with the input given in Section 3 and the output being a doubly infinite subordinator.

Let \(\bar{Z} = \{ \bar{Z}_t : t \geq 0 \} \) be a subordinator started at 0 with the Laplace transform given by

\[
E(e^{-\alpha \bar{Z}_t}) = e^{-t \varphi(\alpha)} \quad (\alpha > 0).
\]

Let \(Z = \{ Z_t : t \in \mathbb{R} \} \) be defined as

\[
Z_t := \begin{cases}
-Z^{(1)}_{(-t)-}, & t \leq 0, \\
Z^{(2)}_t, & t \geq 0,
\end{cases}
\]

where \(Z^{(1)} = \{ Z^{(1)}_t : t \geq 0 \} \) and \(Z^{(2)} = \{ Z^{(2)}_t : t \geq 0 \} \) are two independent copies of \(\bar{Z} \). We assume next that \(Z \) is independent of \(X \).

As in Section 3, we introduce

\[
S_t := \sup_{-\infty < s \leq t} \{ T_t - T_s - (Z_t - Z_s) \}
\]

and

\[
\bar{S}_0^{(1)} := \sup_{t \geq 0} \{ \tilde{T}_t^{(1)} - Z_t \}.
\]

The following analog of Proposition 8 holds.
Proposition 12. Assume that
\[E(\widetilde{X}_1) E(Z_1) = \Phi'(0) \varphi'(0) > 1. \] (10)
Then the process \(S \) is well-defined and its stationary distribution is given by
\[P(S_t > s) = K e^{-\alpha^* s}, \quad s \geq 0, \]
where \(\alpha^* \) is the unique positive solution of the equation
\[\alpha - \Phi(\varphi(\alpha)) = 0 \]
and \(K = \frac{\alpha^*}{m \varphi(\alpha^*)} \).

The following lemma will be useful for the proof of the proposition.

Lemma 13. Assume that \(\Phi'(0) \varphi'(0) > 1 \). Then \(\widetilde{S}_0^{(1)} \) is exponentially distributed with parameter \(\alpha^* \).

Proof: Consider the process \(Y = \{Y_t = \widetilde{Z}_{\widetilde{X}_t} : t \geq 0\} \). Clearly, \(Y \) is a subordinator with the Laplace transform given by
\[E(e^{-\alpha Y_t}) = e^{-t \Phi(\varphi(\alpha))} \quad (\alpha > 0). \]
The process \(Y_t - t \) is a spectrally positive Lévy process with the Laplace transform
\[E(e^{-\alpha(Y_t-t)}) = e^{t \Psi(\alpha)}, \]
where \(\Psi(\alpha) = \alpha - \Phi(\varphi(\alpha)) \). If \(\Psi'(0) = 1 - \Phi'(0) \varphi'(0) < 0 \) then (see [2] p. 190) the process \(Y_t - t \) drifts to \(+\infty\) and \(-\inf_{t \geq 0} \{Y_t - t\} \) is exponentially distributed with parameter \(\alpha^* \), where \(\alpha^* \) is the unique solution of \(\Psi(\alpha) = 0 \). Since \(\widetilde{T}^{(1)} \) is the right-continuous inverse of \(\widetilde{X}^{(1)} \) and \(Z^{(1)} \) is increasing, we write
\[P(\widetilde{S}_0^{(1)} > s) = P(\exists t : \widetilde{T}_t^{(1)} - Z_t^{(1)} > s) \]
\[= P(\exists t : t - Z_t^{(1)} > s) \]
\[= P(\exists t : Y_t - t < -s) \]
\[= P(-\inf_{t \geq 0} \{Y_t - t\} > s) \]
\[= e^{-\alpha^* s}, \]
as required.

Proof of Proposition 12: First we notice that \(S_0 \) can be written as
\[S_0 = \sup_{s \geq X_0^{(1)}} \{\widetilde{T}_s^{(1)} - Z_s^{(1)} \} \lor 0 \]
\[= \sup_{s \geq 0} \{\widetilde{T}_s^{(1)} - Z_{s+X_0^{(1)}} \} \lor 0 \]
\[= \left(\sup_{s \geq 0} \{\widetilde{T}_s^{(1)} - \widetilde{Z}_s \} - Z_{X_0^{(1)}} \right) \lor 0, \]
where \(\{ \hat{Z}_s := Z_{s+X_0^{(1)}} - Z_{X_0^{(1)}} : s \geq 0 \} \) is independent of \(Z_{X_0^{(1)}} \) and has the same law as \(\hat{Z} \). Denote \(\hat{S}_0 := \sup_{s \geq 0} \{ \hat{T}_s^{(1)} - \hat{Z}_s \} \).

Using Lemma 13, we obtain
\[
P(S_0 > s) = P(\hat{S}_0 - Z_{X_0^{(1)}} > s) = e^{-\alpha^* s} E(e^{-\alpha^* Z_{X_0^{(1)}}}) = e^{-\alpha^* s} E(e^{-\varphi(\alpha^*) X_0^{(1)}}) = e^{-\alpha^* s} \frac{\Phi(\varphi(\alpha^*))}{\alpha^* m \varphi(\alpha^*)} = e^{-\alpha^* s} \frac{\alpha^*}{m \varphi(\alpha^*)}.
\]

The statement follows. \(\square \)

Example 14. (\(Z \) is a stable subordinator)

Let \(Z^{(1)} \) and \(Z^{(2)} \) be stable subordinators with index \(\gamma \), i.e.,
\[
E(e^{-\alpha Z_i^{(i)}}) = e^{-t \alpha^*}, \quad i = 1, 2.
\]

For the stable subordinator \(\tilde{Z} \) we have the following identity in distribution:
\[
\hat{Z}_t \sim t^{\frac{1}{\gamma}} \tilde{Z}_1. \tag{11}
\]

The stationary distribution of \(S \) is given by
\[
P(S_t > s) = \frac{(\alpha^*)^{1-\gamma}}{m} e^{-\alpha^* s}, \quad s > 0,
\]
where \(\alpha^* \) is the unique positive solution of
\[
\alpha - \Phi(\alpha^*) = 0.
\]

Next we compute the distribution of \(d_i \) given \(S_0 = 0 \). Clearly \(d_i \geq X_0^{(2)} \) since for \(t \in [0, X_0^{(2)}) \),
\[
S_t = \sup_{0 \leq s \leq t} \{ Z_s \} - Z_t = 0.
\]

We write
\[
d_i = \inf \left\{ t \geq X_0^{(2)} : \sup_{0 \leq s \leq t} \{ Z_s - T_s \} + T_t - Z_t > 0 \right\} = \inf \left\{ t \geq X_0^{(2)} : \sup_{X_0^{(2)} \leq s \leq t} \{ Z_s - T_s \} + T_t - Z_t > 0 \right\} = \inf \left\{ t \geq X_0^{(2)} : Z_{X_0^{(2)}} + \sup_{X_0^{(2)} \leq s \leq t} \{ Z_{s - X_0^{(2)}} - \tilde{T}_{s - X_0^{(2)}} \} + \tilde{T}_{t - X_0^{(2)}} - Z_t - Z_{X_0^{(2)}} > 0 \right\} = X_0^{(2)} + \inf \left\{ t \geq 0 : \sup_{0 \leq s \leq t} \{ Z_s - \hat{T}_s^{(2)} \} + \hat{T}_t^{(2)} - Z_t > 0 \right\}.
\]

12
Next we use the result from [9] that
\[
P(Z_{X_t}^{(2)} < t \text{ for all sufficiently small } t > 0) = 1,
\]
from which it follows that
\[
P(Z_{t} < T_t^{(2)} \text{ for all sufficiently small } t > 0) = 1
\]
and hence \(d_t = X_t^{(2)} \). Therefore,
\[
E(e^{-ad_t} \mid S_0 = 0) = E(e^{-aX_0^{(2)} \mid \hat{S}_0 < Z_{X_0^{(1)}}}) = E(e^{-aX_0^{(2)} \mid X_0^{(1)} > \left(\frac{\hat{S}_0}{Z_1}\right)^{\gamma}}).
\]

Next we show that \(\left(\frac{\hat{S}_0}{Z_1}\right)^{\gamma} \) is exponentially distributed. Using (11), we obtain
\[
P\left(\left(\frac{\hat{S}_0}{Z_1}\right)^{\gamma} > s\right) = P\left(\hat{S}_0 > Z_1 s^{\frac{1}{\gamma}}\right) = E\left(e^{-a s^{\frac{1}{\gamma}} Z_1}\right) = e^{(a^{*})^{\gamma} s}.
\]

Using this and Lemma 15(3) yields
\[
E(e^{-ad_t} \mid S_0 = 0) = E(e^{-aX_0^{(2)}}) - E(e^{-aX_0^{(2)} - (a^{*})^{\gamma} X_0^{(1)}}) = \Phi(\alpha) - \frac{1}{m} \left(\frac{\Phi(\alpha) - \Phi((a^{*})^{\gamma})}{\alpha - (a^{*})^{\gamma}} \right) = \frac{\alpha a^{*} - \Phi(\alpha)(a^{*})^{\gamma}}{m \alpha (\alpha - (a^{*})^{\gamma})}.
\]

6 Appendix

Well-known results dealing with exponential random variables are given in the following lemma.

Lemma 15. Let \(\tau \sim Exp(\lambda) \) and \(X, Y \geq 0 \) be two arbitrary random variables independent of \(\tau \). Then

1. \(P(X < \tau) = E(e^{-\lambda X}) \);

2. (the memoryless property) \(\tau - X \) and \(X \) are conditionally independent, given \(\tau > X \). Moreover, given \(\tau > X \), \(\tau - X \) is exponentially distributed with parameter \(\lambda \) and
\[
E(e^{-\beta X} \mid \tau > X) = E(e^{-(\lambda + \beta) X});
\]

3. \(E(e^{-a(X-\tau)} \mid \tau < X) = \frac{\lambda}{a - \lambda} \left(E(e^{-\lambda X}) - E(e^{-a X}) \right) \);
4. Given $\tau > X + Y$, the random variables X and $\tau - X - Y$ are independent. Moreover, given $\tau > X + Y$, $\tau - X - Y$ is exponentially distributed with parameter λ and

$$
\mathbf{E}(e^{-\alpha X}; \tau > X + Y) = \mathbf{E}(e^{-(\alpha + \lambda)X - \lambda Y}).
$$

The proof of Lemma 15 is straight-forward and is omitted.

References

A495 Sergey Korotov
A posteriori error estimation for linear elliptic problems with mixed boundary conditions
March 2006

A494 Antti Hannukainen, Sergey Korotov
Computational Technologies for Reliable Control of Global and Local Errors for Linear Elliptic Type Boundary Value Problems
February 2006

A493 Giovanni Formica, Stefania Fortino, Mikko Lyly
A \vartheta method–based numerical simulation of crack growth in linear elastic fracture
February 2006

A492 Beirao da Veiga Lourenco, Jarkko Niiranen, Rolf Stenberg
A posteriori error estimates for the plate bending Morley element
February 2006

A491 Lasse Leskelä
Comparison and Scaling Methods for Performance Analysis of Stochastic Networks
December 2005

A490 Anders Björn, Niko Marola
Moser iteration for (quasi)minimizers on metric spaces
September 2005

A489 Sampsa Pursiainen
A coarse-to-fine strategy for maximum a posteriori estimation in limited-angle computerized tomography
September 2005

A487 Ville Turunen
Differentiability in locally compact metric spaces
May 2005

A486 Hanna Pikkarainen
A Mathematical Model for Electrical Impedance Process Tomography
April 2005
HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are available at http://www.math.hut.fi/reports/.

A500 Outi Elina Maasalo, Anna Zatorska-Goldstein
Stability of quasiminimizers of the p–Dirichlet integral with varying p on metric spaces
April 2006

A499 Mikko Parviainen
Global higher integrability for parabolic quasiminimizers in nonsmooth domains
April 2005

A498 Marcus Ruter, Sergey Korotov, Christian Steenbock
Goal-oriented Error Estimates based on Different FE-Spaces for the Primal and the Dual Problem with Applications to Fracture Mechanics
March 2006

A497 Outi Elina Maasalo
Gehring Lemma in Metric Spaces
March 2006

A496 Jan Brandts, Sergey Korotov, Michal Krizek
Dissection of the path-simplex in \mathbb{R}^n into n path-subsimplices
March 2006

ISBN 951-22-8293-3
ISSN 0784-3143