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1 Introduction

Many physical phenomena can be described by means of mathematical mo-
dels presenting boundary value problems of elliptic type [5, 14, 15]. Various
numerical techniques (such as the finite difference method, the finite ele-
ment method, the finite element volume, etc) are well developed for finding
approximate solutions for such problems, see, e.g., [9].

However, in order to be practically meaningful, computer simulations al-
ways require an accuracy verification of computed approximations. Such a
verification is the main purpose of a posteriori error estimation methods.
Several approaches for deriving various a posteriori estimates for errors mea-
sured in global energy norm ([1], [2], [3], [16], [19], [20], [23]), or in terms
of various local quantities ([4], [10], [12], [13], [20]) have been suggested (see
also references in the above mentioned works).

Most of the estimates proposed so far strongly use the fact that the com-
puted solutions are true finite element (FE) approximations which, in fact,
rarely happens in real computations, e.g., due to quadrature rules, forcibly
stopped iterative processes, various round-off errors, or even bugs in com-
puter codes.

In this paper, on the base of a model linear elliptic problem, we present
and test numerically a relatively simple technology for obtaining computable
guaranteed upper bound needed for reliable control of the overall accuracy of
computed approximations. This bound is valid for any conforming approxi-
mations independently of numerical method used to obtain them. The bound
can be made arbitrarily close to the true error. In practical calculations this
closeness only depends on resources of a concrete computer used. We shall
also discuss main issues of a realization of the proposed error estimation in
practice and present one representative numerical test.

2 Formulation of Problem

For definitions of functional spaces and finite element terminology used in
the paper we refer, e.g., to monographs [15] and [9], respectively.

Consider the following model problem: Find a function u such that

−div(A∇u) + cu = f in Ω, (1)

u = u0 on ΓD, (2)

νT · A∇u = g on ΓN , (3)

νT · A∇u + σu = h on ΓR, (4)

where Ω is a bounded domain in Rd with a Lipschitz continuous boundary
∂Ω, such that ∂Ω = ΓD ∪ ΓN ∪ ΓR, measd−1 ΓD > 0, ν is the outward
normal to the boundary, f ∈ L2(Ω), u0 ∈ H1(Ω), g ∈ L2(ΓN), h ∈ L2(ΓR),
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σ ∈ L∞(ΓR), c ∈ L∞(Ω), the matrix of coefficients A is symmetric, with
entries aij ∈ L∞(Ω), i, j = 1, . . . , d, and is such that

C2|ξ|2 ≥ A(x)ξ · ξ ≥ C1|ξ|2 ∀ξ ∈ Rd ∀x ∈ Ω. (5)

In addition, we assume that almost everywhere

c ≥ 0 in Ω, σ ≥ σ0 > 0 on ΓR, (6)

and introduce the set

Ωc := supp c = {x ∈ Ω | c(x) > 0}. (7)

The weak formulation of problem (1)–(4) reads: Find u ∈ u0 + H1
ΓD

(Ω) such
that

∫

Ω

A∇u · ∇w dx +

∫

Ω

cuw dx +

∫

ΓR

σuw ds =

=

∫

Ω

fw dx +

∫

ΓN

gw ds +

∫

ΓR

hw ds ∀w ∈ H1
ΓD

(Ω), (8)

where
H1

ΓD
(Ω) := {v ∈ H1(Ω) | v = 0 on ΓD}. (9)

Remark 2.1 Conditions (6) on c and σ provide the existence and uniqueness
of the weak solution u defined by (8).

Let us define bilinear form a(·, ·) and linear form F (·) as follows

a(v, w) :=

∫

Ω

A∇v · ∇w dx +

∫

Ω

cvw dx +

∫

ΓR

σvw ds, v, w ∈ H1(Ω), (10)

F (w) :=

∫

Ω

fw dx +

∫

ΓN

gw ds +

∫

ΓR

hw ds, w ∈ H1(Ω). (11)

Then the weak formulation (8) can be rewritten in a short form: Find
u ∈ u0 + H1

ΓD
(Ω) such that a(u,w) = F (w) ∀w ∈ H1

ΓD
(Ω).

In what follows we shall need the Friedrichs inequality

‖w‖0,Ω ≤ CΩ,ΓD
‖∇w‖0,Ω ∀w ∈ H1

ΓD
(Ω), (12)

and the inequality in the trace theorem

‖w‖0,∂Ω ≤ C∂Ω‖w‖1,Ω ∀w ∈ H1(Ω), (13)

where CΩ,ΓD
and C∂Ω are positive constants, depending only on Ω, ΓD, and

∂Ω. Proofs of the inequalities (12) and (13) can be found, e.g., in [18].
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The so-called energy functional J of problem (8)

J(w) :=
1

2
a(w,w) − F (w), w ∈ H1(Ω), (14)

the corresponding energy norm is defined as
√

a(·, ·). It is well-known that
problem (8) is equivalent to the problem of finding the minimizer of the
energy functional J over the set u0 + H1

ΓD
(Ω) and such a minimizer is the

solution of problem (8).

Let ū be any function from u0 + H1
ΓD

(Ω) (e.g., computed by some nu-
merical method) considered as an approximation of u. We can easily show
that

a(u − ū, u − ū) = 2(J(ū) − J(u)), (15)

which is, probably, the natural reason for measuring the overall accuracy of
the approximations in terms of the energy norm (cf. [1], [2], [3], [23]). Thus,
the main goal of our work is to show how to effectively estimate from above
the value

a(u− ū, u− ū) =

∫

Ω

A∇(u− ū) ·∇(u− ū) dx+

∫

Ω

c(u− ū)2 dx+

∫

ΓR

σ(u− ū)2 ds.

(16)

3 Estimation of Error

Let us stand |||y|||Ω :=
√

∫

Ω

Ay · y dx for y ∈ L2(Ω,Rd) and HN,R(Ω, div) :=

{y ∈ L2(Ω,Rd) | div y ∈ L2(Ω), νT · y ∈ L2(ΓN ∪ ΓR)}. In what follows, we
shall also employ the denotation χS for a characteristic function of set S, i.e.,
χS(x) = 1 if x ∈ S, and χS(x) = 0 if x /∈ S.

Theorem 3.1 The following (upper) estimate for the error (16) holds

a(u − ū, u − ū) ≤ ‖ 1√
c
(f + div y∗ − cū)‖2

0,Ωc + ‖ 1√
σ

(h − σū − νT · y∗)‖2
0,ΓR

+(1+α)|||A−1y∗−∇ū|||2Ω+(1+
1

α
)(1+β)

C2
Ω,ΓD

C1

‖χΩ\Ωc(f+div y∗−cū)‖2
0,Ω (17)

+(1 +
1

α
)(1 +

1

β
)C2

Ω,∂Ω‖g − νT · y∗‖2
0,ΓN

,

where α and β are arbitrary positive numbers and y∗ is any function from
HN,R(Ω, div).

P r o o f : First of all, we notice that

a(u − ū, u − ū) = |||∇(u − ū)|||2Ω + ‖√c(u − ū)‖2
0,Ωc + ‖√σ(u − ū)‖2

0,ΓR
, (18)
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see (7) for the definition of set Ωc. Further, using the fact that u − ū ∈
H1

ΓD
(Ω), integral identity (8), and the Green formula, we observe (for any

function y∗ ∈ HN,R(Ω, div)) that

a(u − ū, u − ū) =

∫

Ω

f(u − ū)dx +

∫

ΓN

g(u − ū) ds +

∫

ΓR

h(u − ū) ds

−
∫

Ω

A∇ū · ∇ (u − ū) dx −
∫

Ω

cū(u − ū) dx −
∫

ΓR

σū(u − ū) ds =

=

∫

Ω

(f − cū)(u − ū) dx −
∫

Ω

(A∇ū − y∗) · ∇(u − ū) dx −
∫

Ω

y∗ · ∇(u − ū) dx

+

∫

ΓN

g(u − ū) ds +

∫

ΓR

(h − σū)(u − ū) ds = (19)

=

∫

Ω

(f + div y∗ − cū)(u − ū) dx −
∫

Ω

A(∇ū − A−1y∗) · ∇(u − ū) dx

+

∫

ΓN

g(u − ū) ds +

∫

ΓR

(h − σū)(u − ū) ds −
∫

ΓN∪ΓR

νT · y∗(u − ū) ds =

=

∫

Ω

A(A−1y∗ −∇ū) · ∇(u − ū) dx +

∫

Ω

(f + div y∗ − cū)(u − ū) dx

+

∫

ΓN

(g − νT · y∗)(u − ū) ds +

∫

ΓR

(h − σū − νT · y∗)(u − ū) ds.

Now, the right-hand side of equality (19) (denoted as RHS of (19) in what
follows) can be estimated, using the Caushy-Schwarz inequality, denotation
(7), and trace inequality (13), from above as follows

RHS of (19) ≤ |||A−1y∗ −∇ū|||Ω |||∇(u− ū)|||Ω + ‖g − νT · y∗‖0,ΓN
‖u− ū‖0,ΓN

+

∫

Ω

(f + div y∗ − cū)(u − ū) dx +

∫

ΓR

(h − σū − νT · y∗)(u − ū) ds ≤

≤ |||A−1y∗ −∇ū|||Ω |||∇(u − ū)|||Ω + ‖g − νT · y∗‖0,ΓN
C∂Ω‖u − ū‖1,Ω (20)

+

∫

Ωc

1√
c
(f + div y∗ − cū)

√
c(u − ū) dx +

∫

Ω\Ωc

(f + div y∗ − cū) (u − ū) dx
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+

∫

ΓR

1√
σ

(h − σū − νT · y∗)
√

σ(u − ū) ds.

Further, using the ellipticity condition (5), Friedrichs inequality (12), and
the Young inequality

2|a b| ≤ a2 + b2, (21)

we observe that

RHS of (20) ≤
(

|||A−1y∗−∇ū)|||Ω+
C∂Ω

√

1 + C2
Ω,ΓD√

C1

‖g−νT ·y∗‖0,ΓN

)

|||∇(u−ū)|||Ω

+
1

2
‖√c(u−ū)‖2

0,Ωc+
1

2
‖ 1√

c
(f+div y∗−cū)‖2

0,Ωc+

∫

Ω

χΩ\Ωc(f+div y∗−cū) (u−ū) dx

+
1

2
‖√σ(u − ū)‖2

0,ΓR
+

1

2
‖ 1√

σ
(h − σū − νT · y∗)‖2

0,ΓR
≤

≤
(

|||A−1y∗ −∇ū)|||Ω + CΩ,∂Ω‖g − νT · y∗‖0,ΓN

)

|||∇(u − ū)|||Ω (22)

+
1

2
‖√c(u−ū)‖2

0,Ωc+
1

2
‖ 1√

c
(f+div y∗−cū)‖2

0,Ωc+‖χΩ\Ωc(f+div y∗−cū)‖0,Ω ‖u−ū‖0,Ω

+
1

2
‖√σ(u − ū)‖2

0,ΓR
+

1

2
‖ 1√

σ
(h − σū − νT · y∗)‖2

0,ΓR
,

where CΩ,∂Ω :=
C∂Ω

q

1+C2
Ω,ΓD√

C1
.

Regrouping terms in RHS of (22) and using again the Young inequality
(21), we get an estimate

RHS of (22) ≤
(

|||A−1y∗ −∇ū)|||Ω + CΩ,∂Ω‖g − νT · y∗‖0,ΓN

+
CΩ,ΓD√

C1

‖χΩ\Ωc(f + div y∗ − cū)‖0,Ω

)

|||∇(u − ū)|||Ω +
1

2
‖√c(u − ū)‖2

0,Ωc

+
1

2
‖ 1√

c
(f+div y∗−cū)‖2

0,Ωc+
1

2
‖√σ(u−ū)‖2

0,ΓR
+

1

2
‖ 1√

σ
(h−σū−νT ·y∗)‖2

0,ΓR
≤

≤ 1

2

(

|||A−1y∗−∇ū)|||Ω+CΩ,∂Ω‖g−νT ·y∗‖0,ΓN
+

CΩ,ΓD√
C1

‖χΩ\Ωc(f+div y∗−cū)‖0,Ω

)2

(23)

+
1

2
|||∇(u − ū)|||2Ω +

1

2
‖√σ(u − ū)‖2

0,ΓR
+

1

2
‖√c(u − ū)‖2

0,Ωc

+
1

2
‖ 1√

c
(f + div y∗ − cū)‖2

0,Ωc +
1

2
‖ 1√

σ
(h − σū − νT · y∗)‖2

0,ΓR
.
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Using the final inequality in the above (resulting from (19)–(20) and (22)–
(23)), multiplying it by two and regroupping, we immediately get that

|||∇(u − ū)|||2Ω + ‖√c(u − ū)‖2
0,Ωc + ‖√σ(u − ū)‖2

0,ΓR
≤

≤ ‖ 1√
c
(f + div y∗ − cū)‖2

0,Ωc + ‖ 1√
σ

(h − σū − νT · y∗)‖2
0,ΓR

(24)

+
(

|||A−1y∗−∇ū|||Ω+
CΩ,ΓD√

C1

‖χΩ\Ωc(f+div y∗−cū)‖0,Ω+CΩ,∂Ω‖g−νT ·y∗‖0,ΓN

)2

.

Now using two times obvious inequality (a+b)2 ≤ (1+λ)a2+(1+ 1
λ
)b2 (λ > 0)

for the terms in the round brackets in the above inequality, we finally get (17).
¤

Remark 3.1 We notice that in Theorem 3.1 we have not used any assump-
tion that the function ū is computed by the finite element method or by some
another numerical technique. In fact, it is just any function from the set of
admissible functions u0 + H1

ΓD
(Ω).

Remark 3.2 The estimate (17) is directly computable and is sharp. Really,
if one takes y∗ = A∇u, which obviously belongs to HN,R(Ω, div), then the
last two terms in the right-hand side of (17) vanish. Further, taking α = 0,
we finally observe that (17) holds as equality with such a choice of y∗.

Remark 3.3 The estimate (17) contains only two global constants, CΩ,ΓD

and C∂Ω, which do not depend on the computational process and must be
computed only once when the problem (1)–(4) is posed. The other existing
estimation techniques (of residual-type) involve many unknown constants,
usually related to patches of computational meshes used. Those constants
are very hard to compute (or even estimate from above) and their evalua-
tion normally leads to a very big overestimation of the error even in simple
cases (see [8] for examples). Moreover, those constants have to be always re-
computed if we perform adaptive computations and change the computational
mesh. On the contrary, the constants CΩ,ΓD

and C∂Ω remain the same under
any change in meshes.

Remark 3.4 The solution u minimizes the energy functional, i.e.,

J(u) ≤ J(w) ∀w ∈ H1
ΓD

(Ω).

Using this fact, one can always try to get from (15) a lower bound for the
error as follows

a(u − ū, u − ū) ≥ 2(J(ū) − J(w)), (25)

where w is any function from u0 + H1
ΓD

(Ω). Two-sided (upper and lower)
estimates of the error in global energy norm can be employed to get bounds
for the error measured in terms of linear bounded functionals, see [10], [20]
for more detail and numerical tests on this subject.
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4 Various Choices of Boundary Conditions

Dirichlet boundary condition: In this case, ΓN = ∅ and ΓR = ∅, i.e., the
second and fifth terms in the right-hand side of estimate (17) do not exist,
and we get the following simpler variant of (17)

a(u − ū, u − ū) ≤ ‖ 1√
c
(f + div y∗ − cū)‖2

0,Ωc

+(1 + α)|||A−1y∗ −∇ū|||2Ω + (1 +
1

α
)
C2

Ω,ΓD

C1

‖χΩ\Ωc(f + div y∗ − cū)‖2
0,Ω. (26)

Remark 4.1 In the case of pure Dirichlet boundary condition we need to
estimate from above only one constant CΩ,ΓD

.

Remark 4.2 If we assume, in adition, that c ≡ 0 (i.e., Ωc = ∅), then (17)
reduces to the estimate derived in [19] (via the duality theory) and in [21]
(via the Helmholz decomposition of L2(Ω,Rd)).

Dirichlet/Neumann boundary condition: In this case, the set ΓR = ∅,
and estimate (17) takes the form

a(u − ū, u − ū) ≤ ‖ 1√
c
(f + div y∗ − cū)‖2

0,Ωc + (1 + α)|||A−1y∗ −∇ū|||2Ω

+(1+
1

α
)(1+β)

C2
Ω,ΓD

C1

‖χΩ\Ωc(f+div y∗−cū)‖2
0,Ω+(1+

1

α
)(1+

1

β
)C2

Ω,∂Ω‖g−νT ·y∗‖2
0,ΓN

.

(27)

Remark 4.3 For such mixed boundary conditions, one needs to estimate
from above already two constants CΩ,ΓD

and C∂Ω.

Remark 4.4 For the case c ≡ 0, (27) reduces to the estimate obtained in
[22] for this type of mixed boundary conditions again using tools of the duality
theory.

Dirichlet/Robin boundary condition: For such type of boundary con-
ditions, estimate (17) takes the following form (due to ΓN = ∅)

a(u − ū, u − ū) ≤ ‖ 1√
c
(f + div y∗ − cū)‖2

0,Ωc + ‖ 1√
σ

(h − σū − νT · y∗)‖2
0,ΓR

+(1 + α)|||A−1y∗ −∇ū|||2Ω + (1 +
1

α
)
C2

Ω,ΓD

C1

‖χΩ\Ωc(f + div y∗ − cū)‖2
0,Ω. (28)

Remark 4.5 In this case one has to estimate only one constant, namely,
CΩ,ΓD

, similarly to the case of pure Dirichlet boundary condition.

Remark 4.6 In the case c ≥ c0 > 0 one need not estimate any constants at
all.

Remark 4.7 To the author’s knowledge such type of mixed boundary condi-
tion has never been analysed in the context of a posteriori error estimation
so far.
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5 Practical Realization of Estimation Proce-

dure

For convenience, we denote RHS of estimate (17) by the symbol Mup(ū, y∗, α, β),
sometimes dropping the arguments in it and simply writing Mup.

Computation of constants CΩ,ΓD
and C∂Ω: It follows from the above con-

siderations that for a complete error control we need a reliable estimation of
two global constants only. The constant CΩ,ΓD

= 1√
λΩ

, where λΩ is the small-
est eigenvalue the Laplacian in Ω with homogeneous boundary conditions.
Thus, computation of λΩ (or estimation of it from below) is sufficient. In the
case of homogeneous Dirichlet boundary condition this task can be solved as
proposed by S. Mikhlin in [17, p. 8] by enclosing the solution domain into
a rectangular parallelepiped, for which we can easily obtain the value of the
smallest eigenvalue which is smaller than λΩ. Namely,

CΩ,ΓD
≤ 1

π
√

1
a2
1

+ · · · + 1
a2

d

, (29)

where a1, . . . , ad are lengths of the edges of the parallelepiped.
Suitable estimates of CΩ,ΓD

for some conical domains are presented in [5].
On the contrary, estimation of the constant C∂Ω seems to be still an open
problem for a general case. However, one trick on estimation of this constant
for a quite special case is proposed in [22, Remark 3.3]. More sofisticated
techniques for estimation of CΩ,ΓD

and C∂Ω, suitable for the purposes of a
posteriori error analysis, and also another numerical tests, will be presented
in our subsequent paper [6].

Minimization of estimate (17): If the approximation ū is computed by
the finite element method, then a “coarse” upper bound can be immediately
computed using, e.g., value y∗ = Gav(∇ū), where Gav is some commonly used
gradient averaging operator [7, 11] and easy calculations of suitable values of
the other parameters α and β. However, more sharp estimates require a
real minimization of the upper bound with respect to the “free” variables
y∗, α, β, which can be performed by a direct minimization of it or by finding
the minimizer as a solution of the respective system of linear equations.

Mesh adaptation: Estimate (17) can be represented as integral over the
solution domain Ω. Thus, let us write this integral as follows

Mup :=
∑

T∈T (i)

IT ,

where each contribution IT is a value of the integral taken over a particular
element T of the current mesh T (i). To construct the next mesh T (i+1) in
order to obtain a more accurate approximation, we propose the following
adaptive procedure. First, we find the maximum among all terms IT ’s and,
secondly, mark up those elements T ’s which have their contributions larger

10



than the “user-given threshold” θ (θ ∈ [0, 1]) times that maximum value.
Refining the marked elements (and making the mesh conforming), we obtain
T (i+1).

6 Numerical Test

Consider problem (1)–(4) posed in a complicated planar domain Ω with a
reentrant corner (see Fig. 1 (left)). Let A be the unit matrix, c ≡ 0, and
f ≡ 10. For simplicity, we consider the problem with homogeneous Dirichlet
boundary condition only, i.e., ΓD ≡ ∂Ω and u0 ≡ 0. In this case CΩ,ΓD

can be estimated using Mikhlin’s idea by the constant
√

2
π

(cf. (29)). The
approximation ū is computed by the finite element method on the mesh T
having 92 nodes. We want to estimate the error in the energy norm, which is
equal to ‖∇(u− ū)‖0,Ω in our case. Since the exact solution u is unknown, we
computed the “exact error” using the so-called reference solution (obtained
by solving problem (1)–(4) on a very fine mesh, in our example – on 6 times
globally refined mesh T ) instead of the exact solution u, which approximates
the error ‖∇(u − ū)‖0,Ω by the value 1.3234. The process of minimization
of the coresponding estimate is illustrated in Fig. 1 (right): the square root
from the upper bound,

√

Mup, is monotonically decreasing from 2.1547 to
1.5634.

It is a common practice to use the so-called effectivity index

Ieff :=

√

Mup(ū, y∗, α, β)
√

a(u − ū, u − ū)
,

which serves as an indicator of the quality of the obtained error estimate.
More close it is to 1, the better estimate is. Such effectivity index Ieff

decays from 1.62 to 1.18 during the minimization process in our test, which
demonstrate a high effectivity of the approach proposed.
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Figure 1: Approximation ū computed by FEM on mesh T having 92 nodes
(left). Minimization of the estimate

√

Mup (black circles) versus the exact
error ‖∇(u − ū)‖0,Ω marked by the bold line (right).
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[13] S. Korotov, P. Neittaanmäki and S. Repin. A posteriori error estimation
of goal-oriented quantities by the superconvergence patch recovery, J.
Numer. Math. 11, 33–59 (2003).
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