
Abstract: We study differentiability in locally compact metric spaces, using point derivations of Lipschitz functions. The classical Riemannian manifold case can be generalized to those locally compact metric spaces \((M, (x, y) \mapsto |xy|)\) for which there are local Cauchy–Schwarz-like inequalities

\[|wx \cdot yz| \leq C |wx| |yz|, \]

where \(C < \infty\) is a constant and \(wx \cdot yz \in \mathbb{R}\) is defined by

\[wx \cdot yz := \frac{1}{2} (|wz|^2 + |xy|^2 - |wy|^2 - |xz|^2). \]

These Cauchy–Schwarz spaces behave well with respect to elementary operations, e.g. under Gromov–Hausdorff limits. The dot product \(wx \cdot yz\) can be thought as a discrete analogue of the Riemannian metric tensor. Examples of good and bad spaces in this respect are given. Moreover, we get new interpretations of concepts like Gromov hyperbolicity, comparison angles, Aleksandrov spaces of non-positive curvature and Reshetnyak’s quadruple comparison.

AMS subject classifications: 51K05, 53C45, 53C70, 54E40.

Keywords: Metric space, dot product, comparison angles, Cauchy–Schwarz, curvature, Lipschitz functions, tangents, differentiability.

Correspondence

Ville.Turunen@hut.fi

ISBN 951-22-7683-6
ISSN 0784-3143

Helsinki University of Technology
Department of Engineering Physics and Mathematics
Institute of Mathematics
P.O. Box 1100, 02015 HUT, Finland
email:math@hut.fi http://www.math.hut.fi/