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Abstract: The electrical impedance tomography problem is to estimate an un-

known conductivity distribution of a given object from a set of static electric

measurements on the boundary. In this study, the problem is formulated in terms

of Bayesian statistics by treating the conductivity distribution within the object

as a random variable with some posterior probability distribution and by employ-

ing Markov chain Monte Carlo sampling methods for exploring the properties of

this distribution. The goal is to develop such an algorithm that finding a proper

numerical solution would necessitate as small amount of computational work as

possible. MCMC based estimates are compared to least-squares reconstructions.

Numerical experiments concentrate on a special case where a relatively small per-

turbation is sought from otherwise constant conductivity distribution. To sum-

marize the findings, it is often difficult to obtain any appropriate reconstruction

which is due to the non-linearity and the strong ill-conditioned nature of the in-

verse problem. The statistical model is preferable to the least-squares approach

only if there is accurate enough prior information available. Accuracy of both

least-squares and statistical solutions can be improved through an enhanced model

of voltage measurement errors which is based on Monte Carlo sampling of the

prior density.
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1 Introduction

The electrical impedance tomography (EIT) problem is to estimate an unknown
conductivity distribution of a given object Ω from a set of static electricmeas-
urements on the boundary ∂Ω. The problem was first introduced in a rigorous
mathematical form by A. P. Calderón in [6]. We consider in this article the com-

plete electrode model, where the voltage data is generated by injecting electrical
currents to the object through a set of contact electrodes attached on the bound-
ary and measuring the resulting voltage values on the electrodes. For a review
on EIT see [8].

Potential applications of EIT are numerous. In medical imaging [5] these
include detection and classification of tumors from breast tissue [15, 9, 22, 39, 28]
and measuring brain function [30, 10]. Industrial applications include topics such
as imaging of fluid flows and mixing in process pipelines [34, 32, 35, 17, 11] and
non-destructive testing of materials [38, 21].

In this work, the EIT problem is formulated in terms of Bayesian statistics

by treating the conductivity distribution within the object as a random vari-
able with some posterior probability distribution and by employing Markov chain

Monte Carlo (MCMC) sampling methods for exploring the properties of this
distribution. We focus on detection of a small perturbation (anomaly) from the
background conductivity distribution. The objective is to assess conditions under
which the numerical solution is feasible. We discuss also Monte Carlo schemes
that are computationally efficient. Drawing a random sample from the posterior
distribution requires solving the forward problem, which can be approximated as
a system of linear equations. Therefore, we are interested in finding an effect-
ive linear algebraic method for the forward problem. Moreover, we consider a
surrogate forward solution, i.e. a method that does not necessitate solving the
linear system, and how such a method can be applied to speed up the MCMC
sampling process. Statistical solutions are compared to least-squares reconstruc-
tions. The implemented least-squares algorithm is the regularized quasi-Newton

method. There are numerous papers that consider anomalous conductivities in
electrical impedance tomography, e.g. [1], [3] and [2]. For a review on statistical
inversion and MCMC methods in EIT see [19].

Mathematical models of the forward and the inverse problems, the quasi-
Newton method and the Bayesian formulation of the inverse problem are briefly
reviewed in section 2 by following the presentation of [19]. The end of the section
introduces the enhanced likelihood model, where the idea is to improve the model
of voltage measurement errors through MCMC integration.

Section 3 introduces MCMC methods. We describe shortly the general idea
of MCMC integration and three MCMC sampling algorithms: the Metropolis-

Hastings algorithm, random-walk metropolis and the surrogate transition method.
In section 4, we show how the forward solution can be updated by using the

Sherman-Morrison-Woodbury formula and estimate what is the corresponding
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amount of computational work.

Numerical experiments are performed in section 5. In the demonstrated prob-
lem a circular anomaly is sought from a unit disc. Quasi-Newton reconstructions
are obtained by applying a smoothness regularization technique that is based on
the finite element method (FEM) and has been developed by the authors. The
MCMC based estimation scheme is experimented by running random-walk Met-
ropolis with different prior assumptions. Feasibility of the surrogate transition
method is experimented by generating a sampling run where the posterior prob-
ability is evaluated through the surrogate forward solution. In the section 5.4,
the enhanced likelihood model is applied both to the quasi-Newton optimization
method and Monte Carlo integration based estimation.

In section 6 we discuss the results of the numerical experiments and directions
for further study.

2 The EIT problem

In stationary EIT a current pattern I = (I1, . . . , IL), that is a set of electrical
currents, is applied to the object Ω through a set of contact electrodes {e`}

L
`=1 on

its boundary ∂Ω. The resulting voltage pattern U = (U1, . . . , UL) is measured with
the same electrodes. The conductivity distribution within the object σ : Ω → R,
independent of time, is reconstructed from a number of such measurements.

2.1 The forward problem

We consider a model where σ is real-valued and strictly positive function in Ω
and corresponding to each σ there is u is a scalar voltage potential in Ω satisfying
the equation

∇ · (σ∇u) = 0 (1)

and the boundary conditions

∫

e`

σ
∂u

∂n
dS = I`, 1 ≤ ` ≤ L, (2)

σ
∂u

∂n

∣∣∣
∂Ω\∪e`

= 0, (3)

u + z`σ
∂u

∂n
= U`, 1 ≤ ` ≤ L, (4)

where z = (z1, . . . , zL) is a vector containing the contact impedances between
the electrodes and the object. Additionally, the injected currents are supposed
to satisfy the charge conservation condition and the ground voltage is chosen so
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that the sum of electrode potentials is zero. Hence, the we require that

L∑

`=1

I` = 0 and
L∑

`=1

U` = 0. (5)

The forward problem is to solve the pair (u, U) from the above equations corres-
ponding to given σ, I and z.

2.2 Numerical solution of the forward problem

The forward problem is solved numerically by applying finite element method [4]
to the weak form of (1)-(5). It has been shown in [36] that the solution of the
weak form exists and is unique in H1(Ω) ⊕ RL.

Partition of Ω is obtained by decomposing its polygonal approximation into
a shape regular set of triangles Th = {T1, . . . , TM}. The subindex h indicates the
mesh size. The discrete conductivity distribution σh is assumed to be constant in
each triangle, i.e. σh ∈ span{χTm

| 1 ≤ m ≤ M }, where χTm
is the characteristic

function of Tm. Consequently, σh has as many degrees of freedom as there are
triangles in Th. In further discussion, we identify σh with a vector in RM .

Ritz-Galerkin approximation uh of the potential field u is sought from a finite-
dimensional space which is spanned by the piecewise linear nodal basis {ϕ1,
. . . , ϕn}, that is a set of piecewise linear functions where each basis function
differs from zero precisely at one of the nodes of Th.

The numerical solution of the forward problem is the pair (uh, Uh) with the
representations

uh =
n∑

i=1

αiϕi and Uh = Cβ, (6)

where α = (α1, . . . , αn)T ∈ Rn, β = (β1, . . . , βL−1)
T ∈ RL−1 and C in which the

entries Ci,i = 1 and Ci,j+1 = −1 for i, j = 1, . . . , L differ from zero. With this
choice the sum of the electrode voltages is equal to zero. Applying the Ritz-
Galerkin method to the weak form of (1)-(5) yields a system of linear equations
(see [37]): (

B C
CT G

)(
α
β

)
=

(
0

CT I

)
, (7)

where

Bi,j =

∫

Ω

σ∇ϕi · ∇ϕj dx +
L∑

`=1

1

z`

∫

e`

ϕiϕj dS, (8)

Ci,j = −
1

z1

∫

e1

ϕi dS +
1

zj+1

∫

ej+1

ϕi dS, (9)

Gi,j =

{
|e1|/z1, for i 6= j

|e1|/z1 + |ej+1|/zj+1, for i = j.
(10)
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2.3 The inverse problem

To solve the finite dimensional EIT inverse problem is to estimate the unknown
conductivity distribution on the basis of the voltage measurements on the bound-
ary.

The voltage data does not uniquely determine the unknown: in real-life ap-
plications the conductivity distribution may have infinite number of degrees of
freedom whereas the number of measurements is always finite. The inverse prob-
lem is also ill-conditioned, i.e. small changes to the measured voltages may cause
very large changes to the solution. Roughly, this is due to the fact that the equa-
tion (1) is essentially a diffusion equation where σ(x) is the diffusivity at x: a
local perturbation of σ causes only a slight but, still, global perturbation of u,
which may be hardly distinguishable on the boundary.

The measured voltages are assumed to be noisy. In our model the noise in
the measurements is additive Gaussian white noise and independent of σ, which
means that the measurements V and the true potential values on the electrodes
U are linked through formula

V = U(σ) + N,

where N is distributed as N (0, γ2
NI).

Voltage data consists of L− 1 voltage patterns V (1), . . . , V (L−1) which corres-
pond to L − 1 linearly independent current patterns I (1), . . . , I (L−1). The inde-
pendency must be required, since the right hand side of the weak form of (1)-(5)
is linear with respect to I. Again, the maximal number of linearly independent
patterns is L−1, which is due to the charge conservation constraint

∑L
`=1 I` = 0.

Matrices that contain all L − 1 voltage patterns stacked together are denoted
with the symbols

U(σ) =




U (1)(σ)
...

U (L−1)(σ)


 and V =




V (1)

...
V (L−1)


 .

Solving U(σ) numerically requires for solving the linear system (11) with respect
to each current pattern I (1), . . . , I (L−1). The problem can be formulated as

AσXσ = F, (11)

where Aσ is the matrix described in (7), (8)-(10) and the number of columns in
Xσ and F is L− 1. The ith column of F is the right hand side of (7) constructed
with respect to the ith current pattern.
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2.3.1 Current patterns

We use trigonometric current patterns which are given by the formula

I
(k)
` =

{
Imax cos(kθ`), 1 ≤ ` ≤ L, 1 ≤ k ≤ L

2
,

Imax sin((k − L/2)θ`), 1 ≤ ` ≤ L, L
2

< k ≤ L − 1,
(12)

where the constant Imax denotes the amplitude of the current. θ` = 2π`/L is
the angular location of the midpoint of electrode e` and k is the spatial fre-
quency. These are optimal current patterns [18, 7] to distinguish a centered
rotation invariant annulus from a homogenous disc with respect to the metric
dist(σ1, σ2) = ||U(σ1) − U(σ2)||/||I||.

2.4 Numerical solution of the inverse problem

We implement two complementary ways to solve the EIT inverse problem in terms
of Bayesian statistics: Markov Chain Monte Carlo integration and least-squares
approximation.

Bayesian statistics allows describing various uncertainties in the model as
probability distributions and, therefore, provides a coherent way to approach the
inverse problem. The disadvantage of Bayesian approach is that even though set-
ting up the probability model is not difficult drawing appropriate estimates from
the resulting probability distribution is often problematic and computationally
expensive.

2.4.1 The Bayesian model

Bayesian formulation of the EIT inverse problem is a simple application of the
well-known Bayes formula:

πpost(σ) = π(σ | V) = πpr(σ)πlh(V | σ),

where πpr(σ) is the prior density which contains all the prior information of
the conductivity distribution and πlh(V|σ) is the likelihood density that is the
conditional probability of measuring V. A product of these two densities is, up to
a scaling, the posterior density πpost(σ) which describes a probability distribution
for the unknown variables.

In this work, we use a simple subset constraint the prior density

πpr(σ) = χSpr
(σ)/|Spr|, (13)

where χSpr
is the characteristic function of the set Spr ⊂ RM that is chosen

based on prior knowledge of the true conductivity distribution. This is due to
the simplicity of the numerically demonstrated problem. In real-life applications
it is typically not enough just to restrict the problem to some subspace, but
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more sophisticated prior distributions have to be applied, e.g. regularizing priors
favoring anomalies of certain size.

The model of additive Gaussian white noise N = V − U(σ) implies that the
likelihood probability of measuring V is

πlh(V | σ) ∝ exp
(
−

1

2γ2
N

(U(σ) − V)T (U(σ) − V)
)
. (14)

The posterior density, which is the Bayesian solution of the present inverse
problem, is a product of (13) and (14). An estimate of the true conductivity
distribution can be found by estimating some property of the posterior distribu-
tion. In this work, we are interested in estimating the posterior expectation (or
conditional mean estimate) ∫

RM

σπpost(σ)dσ. (15)

Unfortunately, examining the posterior distribution numerically is problematic
whenever the dimension of the problem is large enough. Estimation of the pos-
terior expectation requires for evaluation of the integral (15) but it is a well-known
fact that standard numerical quadratures are infeasible for large dimensional do-
mains. Therefore, we employ Markov chain Monte Carlo integration which is an
extensively used strategy in Bayesian computations.

2.4.2 The regularized quasi-Newton method

In least-squares approximation the idea is to minimize the likelihood norm ||U(σ)−
V||2 by applying some regularization method and by linearizing the map σ →
U(σ). A typical example of a minimization method that is based on lineariza-
tion is the classical Newton’s method. Least-squares methods are popular being
typically easily implemented and computationally relatively cheap.

The following quasi-Newton algorithm employs generalized Tikhonov regular-

ization. That is, the minimized functional is

Φα(σ) =
1

2
||U(σ) − V||2W +

α

2
A(σ),

where A(σ) is the regularizing functional, α > 0 is the regularization parameter
and

||U(σ) − V||2W =
K∑

k=1

L∑

l=1

wk,l(U
(k)
` (σ) − V

(k)
` )2. (16)

W is a symmetric positive definite weight matrix. Φα(σ) is minimized through
the following iterative gradient-based optimization process

σ(i+1) = σ(i) − λ(i)
s Hα(σ(i))−1∇Φα(σ(i)), (17)

Hα(σ(i)) = DU(σ(i))T WDU(σ(i)) +
1

2
αD2A(σ(i)) (18)

∇Φα(σ(i)) = DU(σ(i))T W (U(σ(i)) − V) +
1

2
αDA(σ(i)). (19)
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where DU(σ(i)) is a differential and Hα(σ(i)) ∈ RM×M is a regularized Hessian
matrix of the map σ → U(σ), DA(σ(i)) is a differential of the map σ → A(σ)

and λ
(i)
s > 0 is a relaxation parameter controlling the step size.

Note that the logarithm of (14) coincides with (16) up to a constant with the
choice W = I. Therefore, the quasi-Newton method yields a maximum posterior

(MAP) estimate, i.e. an estimate of the location of the maximum of the posterior
density, in which the prior density is defined by the regularizing functional.

Unfortunately, implementing the quasi-Newton algorithm by applying any
regularization method favoring strongly discontinuous conductivities, such as an-
omalies of certain size and shape, is problematic. Therefore, we implement the
method by applying a regularization technique that produces smooth conduct-
ivities. Another difficulty is that least-squares algorithms do not have a strict
statistical interpretation. For that reason, estimating reliability of least-squares
reconstructions is difficult.

2.4.3 The enhanced likelihood model

Suppose that U∗(σ) is some numerical approximation of U(σ). Then, V can be
written as

V = U(σ) + N = U∗(σ) + (U(σ) − U∗(σ)) + N,

where the second term is the modeling error. Due to the fact that there is always
some approximation error in the numerically computed electrode potentials it is
evident that there must be more consistent models for the likelihood density than
(14) that does not take the approximation error into account.

Therefore, we experiment the enhanced likelihood model introduced in [20]
where U∗(σ) − V is supposed to be distributed as N (µ, Γ) where µ and Γ are
the conditional expectation and the conditional covariance of the approximation
error with respect to the prior distribution. That is,

µ =

∫
(U∗(σ) − U(σ))πpr(σ)dσ, (20)

Γ =

∫
(U∗(σ) − U(σ) − µ)(U∗(σ) − U(σ) − µ)T πpr(σ)dσ

+γ2
NI. (21)

Naturally, these integrals have to be estimated numerically, which, again, can be
done by employing MCMC methods.

Due to the fact that it is often difficult to encode prior knowledge to the reg-
ularizing functional we also experiment enhancing the performance of the quasi-
Newton method by weighing the least-squares norm (16) with the inverse of the
conditional covariance of U(σ) by choosing the weight matrix as

W−1 =

∫
(U(σ) − µ)(U(σ) − µ)T πpr(σ)dσ + γ2

NI, (22)
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where µ =
∫

U(σ)πpr(σ)dσ. With this choice exp(− 1
2
||U(σ)−V||2W ) is a Gaussian

approximation of the posterior density.

3 Markov chain Monte Carlo integration

The basic formula in MCMC integration is the Monte Carlo approximation,

1

m

m∑

i=1

f(x(i)) ≈

∫

Rn

f(x)π(x)dx, (23)

where {x(i)}∞i=1 is an ergodic Markov Chain with a transition function P : Rn ×
Rn → Rn and equilibrium distribution π. The validity of (23) is based on the law

of large numbers and the central limit theorem, the proofs of which can be found
from [29]. The law of large numbers guarantees that the estimation (23) is valid
with large m and the central limit theorem shows that the approximation error
is of order O(m−1/2) and independent of the dimensionality of the state space.
For that reason, MCMC methods are suitable for large dimensional integration
problems.

In contrast to the traditional Markov chain analysis where one is typically
given the transition function and is interested in knowing what the stationary
distribution is, in Markov chain Monte Carlo simulations, one knows the equilib-
rium distribution and is interested in prescribing an efficient transition rule so as
to reach the equiblirium. According to [25], variance of the approximation error
can be estimated as

var
{ 1

m

m∑

i=1

f(x(i)) −

∫

Rn

f(x)π(x) dx
}
≈

1

m
var{f}

(
1 + 2

∞∑

j=1

ρj

)
,

where ρj = corr{f(x(1)), f(x(j+1))}, i.e. the less there is correlation between
consecutive states of the chain the more reliable estimates are obtained. In an
optimal case, the chain would produce independent samples directly from π.
Therefore, the transition function P (x, y) should be in some sense close to π(y).
That is, the transition function should be adapted to follow the dynamics of the
equilibrium distribution and such that the ith state x(i), becomes rapidly nearly
independent of the starting state x(0) as i increases.

Due to the great success MCMC methods have achieved in solving multidi-
mensional integration and optimization problems numerous MCMC algorithms
have been developed in many different fields which include physics, statistics,
chemistry and structural biology. However, it is important to emphasize that
finding an ideal chain is more an art than a mathematically solvable problem. In
practice, one always tends to feel unsatisfied in settling down on any chain. In
this work, we introduce the well-known Metropolis-Hastings algorithm, random-
walk Metropolis and the surrogate transition method following the presentation
of [25].
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3.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [26, 16] is based on a ’trial - and - error’
strategy. It uses a proposal function T (x, y) to suggest a possible move from
x to y and then through an acceptance-rejection rule ensures that the target
distribution π is the equilibrium distribution of the resulting Markov chain.

Algorithm 3.1 (Metropolis-Hastings)

• Given the current state x(t) and a proposal function T (x, y) that satisfies

T (x, y) > 0 if and only if T (y, x) > 0.

• Draw y from the proposal distribution T (x(t), y).

• Draw U ∼ Uniform[0, 1] and update

x(t+1) =

{
y, ifU ≤ r(x(t), y)

x(t) otherwise

where

r(x, y) = min
{

1,
π(y)T (y, x)

π(x)T (x, y)

}
.

Apparently, choice of the proposal function has a great effect on the conver-
gence rate, which is why the Metropolis-Hastings algorithm is useful in many
connections; it does not set serious restrictions on the proposal probability.

3.1.1 Random-walk Metropolis

The random-walk Metropolis algorithm is based on perturbing the current con-
figuration x(t) by adding a random error so that the proposed candidate position
is y = x(t) + ε where ε is identically distributed for all t and such that the range
of the exploration can be controlled by the user. When one does not have much
information about the structure of the equilibrium distribution, ε is often drawn
from a spherically symmetric Gaussian distribution N (0, γ2

T I). With this choice
the algorithm is:

Algorithm 3.2 (Random-walk Metropolis)

• Given the current state x(t)

• Draw ε ∼ N (0, γ2
T I) and set y = x(t) + ε. The variance γ2

T is chosen by the

user.

• Simulate U ∼ Uniform[0, 1] and update

x(t+1) =

{
y, ifU ≤ π(y)

π(x(t))

x(t) otherwise
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It has been suggested in [33] that γ2
T should be chosen so that a 25% to 35%

acceptance rate is maintained. Despite of the fact that the Metropolis-Hastings al-
gorithm (3.1) allows one to use asymmetric proposal functions, a simple random-
walk proposal is still most frequently seen in practice, since finding a good pro-
posal transition kernel is often difficult.

3.2 The surrogate transition method

It is typical in Monte Carlo simulations that evaluation of π(x) involves expens-
ive computation, although it is cheap to obtain a relatively good approximation
π∗(x) ≈ π(x). Such is the case in the present statistical inverse problem, where
each evaluation of the posterior density requires solving the numerical forward
problem (11) but it is often sufficient to only approximate the solution through
a linearized model

U∗(σ) = U(σ0) + DU(σ0)(σ − σ0). (24)

where DU(σ) is the Jacobian matrix of the map σ → U(σ). This technique has
been successfully applied in [19]. In this work, we call (24) the surrogate forward
solution and introduce the surrogate transition method [25, 24] where the idea is
to speed up the calculations without biasing the equilibrium density by defining
a surrogate transition rule based on the approximation π∗(x).

Suppose one can conduct a reversible Markov transition S(x, y) leaving π∗ in-
variant, i.e. the detailed balance condition π∗(x)S(x, y) = π∗(y)S(y, x) is satisfied.
The surrogate transition rule can be defined by using the Metropolis-Hastings
principle on π∗:

Algorithm 3.3 (Surrogate transition method)

• Given a current sample x(t).

• Let y0 = x(t) and recursively

yi ∼ S(yi−1, ·),

for i = 1, . . . , k.

• Update x(t+1) = yk with probability

min
{

1,
π(yk)/π

∗(yk)

π(x(t))/π∗(x(t))

}

and let x(t+1) = x(t) with the remaining probability.

If π∗(x) is easily evaluated and close enough to π(x) this will arguably speed up
the sampling procedure since π∗(x) is evaluated k times more often than π(x)
during the algorithm.

12



4 Linear algebra

Since the computational cost required for evaluation of the posterior density
πpost(σ) is mainly concentrated in solving the numerical forward problem, per-
formance of the implemented MCMC algorithm depends highly on the applied
linear algebraic methods.

In this section, we show how the matrix of the linear system (11) is updated
in the sampling process and how the solution can be corrected by applying the
Sherman-Morrison-Woodbury formula [13] after each update.

4.1 Updating the system matrix

Let t be a real number and d a vector in RM such that dj`
= 1 for m indices

1 ≤ j1, . . . , jm ≤ M and dj = 0 otherwise. Suppose the conductivity distribution
σ ∈ RM is updated as σ → σ + td. This corresponds to a rank k update to the
system matrix Aσ:

Aσ+td = Aσ + tVdΛdV
T
d , (25)

where Vd = (ei1 , ei2 , . . . , eik) is formed by k canonical basis vectors (ei)j = 1
for j = i and (ei)j = 0 for i 6= j and Λd is a symmetric and positive definite
k× k-matrix satisfying (Λd)j` =

∫
Ω
∇ϕij ·∇ϕi` dx. The updated indices i1, . . . , ik

coincide with those nodes of Th that intersect with the support of the update.
Typically, k is a relatively small number. For instance, k = 3 if σ is updated only
in one triangle.

4.1.1 The reduced system

Suppose that Xσ is known and Xσ+td is to be solved. Using the representation
(25) the linear system (11) can be written as

Xσ+td = Xσ − t(Aσ + tVdΛV T
d )−1VdΛdV

T
d Xσ. (26)

We see that Xσ+td can easily be obtained if the solution of (Aσ +tVdΛdV
T
d )Zσ,d,t =

Vd is known. The number of columns in Zσ,d,t is k whereas Xσ+td has L − 1
columns. If k is less than L − 1 it might be preferable to solve Zσ,d,t instead of
Xσ+td. The advantage is particularly notable if an iterative solver is applied to
the forward problem, since iterative methods solve a multicolumn system column
by column but we show below that Zσ,d,t is useful also if the sampler operates
only in a small subset of the object Ω.

4.2 The Sherman-Morrison-Woodbury formula

Let A be an invertible real N ×N matrix, U1, U2 be real N × k matrices and let
I + UT

2 A−1U1 be invertible. Then, a straightforward multiplication shows that

(A + U1U
T
2 )−1 = A−1 − A−1U1(I + UT

2 A−1U1)
−1UT

2 A−1, (27)
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i.e. a rank k correction to the matrix A causes a rank k correction to its inverse.
Suppose that σ is strictly positive vector and t and d are chosen so that σ+ td

is again a strictly positive vector. By choosing A = Aσ, U1 = tVdΛd and U2 = Vd

the matrices A + U1U
T
2 = Aσ + tVdΛdV

T
d and I + UT

2 A−1U1 = I + tV T
d A−1

σ VdΛd

are invertible, which can be shown as follows.
Due to the strict positiveness of σ + td, the matrix Aσ+td is positive definite.

Furthermore, we can choose s > max{−t, 0} so that σ − sd is a strictly positive
vector. Thus, we can write Aσ+td = Aσ−sd + (s + t)VdΛdV

T
d , where Aσ+td, Aσ−sd

and Λd are positive definite matrices, i.e.

xT (Λ−1
d + tV T

d A−1
σ Vd)x = xT (Λ−1

d + (t + s)VdA
−1
σ−sdVd)x

= xT Λ−1
d x + (t + s)(Vdx)T A−1

σ−sd(Vdx)

> 0,

for all x 6= 0. Since s was chosen so that s+t > 0, we see that the left hand side is
positive definite. Consequently, we can write the inverse of (I + tV T

d A−1
σ VdΛd)

−1

as a product of Λ−1
d and (Λ−1

d + tV T
d A−1

σ Vd)
−1 and the inverse of Aσ+td can be

written as

A−1
σ+td = A−1

σ − tA−1
σ VdΛd(I + tV T

d A−1
σ VdΛd)

−1V T
d A−1

σ . (28)

4.2.1 Restriction to a submatrix

Multiplying the equation (28) from right by Vd, applying the notation introduced
in section (4.1.1) and denoting Zσ,d = Zσ,d,0 yields

Zσ,d,t = Zσ,d − tZσ,d(I + tV T
d Zσ,dΛd)

−1V T
d Zσ,d.

In other words, it is easy to compute Zσ,d,t if Zσ,d is known. Furthermore, mul-
tiplying (28) from right by F results into

Xσ+td = Xσ − tZσ,d(I + tV T
d Zσ,dΛd)

−1V T
d Xσ.

and we see that by knowing Zσ,d one is able to directly correct the solution
Xσ. Suppose now that one does contiguous updates σ1 → σ1 + t1d1 = σ2 →
σ2 + t2d2 = σ3 → . . . such that the vectors di for all i are supported in some
subspace of RM which correspond to a K dimensional subset of the nodal basis
and let D = (ei1 , ei2 , . . . , eiK ) be a collection of canonical basis vectors that span
this subset. By multiplying the equation (28) from right by D and by denoting
Zσ,D = A−1

σ D we have

Zσ+td,D = Zσ,D − tZσ,d(I + tV T
d Zσ,dΛd)

−1V T
d Zσ,D. (29)

Due to the fact that D is a submatrix of an identity matrix, Zσ,D is a submatrix
of A−1

σD
. Moreover, Vd is a submatrix of D which implies that Zσ,d is submatrix

of Zσ,D. Thus, one knows each of the matrices Zσ,di
if one knows Zσ,D.

14



Briefly, it is enough to do all the computations with A−1
σ D which is a submat-

rix of A−1
σ provided that all the conductivity updates are restricted into a subset

of Ω that corresponds to D.

4.2.2 Computational work

Suppose that the rank k of the update Aσ + VdΛdV
T
d is much smaller than the

number of rows N . Then, it is preferable to compute first the inverse of the
full k × k -matrix Λd(I + tV T

d A−1Vd), which is known to take not more than
O(k3) floating point operations. Taking into account that evaluating A−1

σ Vd is
equivalent to just picking k columns from A−1

σ we conclude that the product

T1

k × N

= [Λd(I + tV T
d A−1

σ VdΛd)
−1]

k × k

[V T
d A−1

σ ]

k × N

requires evaluating k2N separate multiplications of floating-point values and k(k−
1)N additions, that is, O(k(2k− 1)N) flops as a whole. Similarly, computing the
product

T2

N × N

= t [A−1
σ Vd]

N × k

[T1]

k × N

requires for O((2k − 1)N 2) operations. Finally, in the summation

(Aσ + tVdΛdV
T
d )−1

N × N

= A−1
σ

N × N

+ T2

N × N

N2 entries are added together which takes O(N 2) operations.
The computational effort of updating the inverse matrix by employing the

Sherman-Morrison-Woodbury formula (28) is, consequently, of magnitude

O(k3) + O(2k2N) + O(2kN 2) + O(N 2) ∼ O(2kN 2). (30)

Operating with the whole inverse matrix is practically never reasonable which is
due to the large number of non-zero entries. In the Sherman-Morrison-Woodbury
formula, the columns of A−1

σ are processed independently. Supposing that only
K columns are updated the computational effort (30) is decreased by the factor
K/N . For that reason, the effort of evaluating Zσ,D in (29) is of order O(2kKN)
which is small with small k and K.

5 Numerical experiments

In this section, we demonstrate how the introduced methods are applied to the
EIT problem. The idea is more to describe phenomena that occur when solving
the inverse problem numerically than to strictly simulate any real application.
Therefore, the experimental setup is as simple as possible.
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In the present experiments, the computations are performed in a polygonal
approximation of the unit disc B(0, 1). There are sixteen electrodes (L = 16)
evenly distributed along the boundary curve together covering approximately 50
% of the total length. The contact impedances and the current patterns are
normalized so that z1 = . . . = zL = 1 and I

(1)
max = . . . = I

(L−1)
max = 1.

5.1 Small perturbations

We seek a small circular perturbation (anomaly) from Ω. The exact conductivity
distribution σex ∈ A(Ω) is assumed to be of the form,

σex = σex
bg + δex, (31)

where σex
bg is the background conductivity distribution satisfying σbg(x) = 1 for

all x ∈ Ω and δex is a perturbation function that attains the value δex(x) = t in
a disc B(c, r) and is otherwise equal to zero. c = (c1, c2) ∈ R2 and r, t ∈ R are
unknown constants. Within this notation the inverse problem is simply to find
out the quadruple c1, c2, r, t. We denote

σex=̂
(

c1 c2 r t
)
. (32)

Note that this model cannot be exactly implemented. Due to the fact that the
discrete conductivity distribution is constant in each triangle the true distribution
has to be interpolated in the framework of the triangulation.

An imaginable real life application analogous to this scheme could be detecting
a tumor from breast tissue, where the background conductivity is close to a
constant.

5.1.1 Setup

The triangulation Th = {Tm}
M
m=1 that is used in the following computations

consists of 1476 nodes, 2659 triangles and 291 boundary edges (Figure 1). Due
to the fact that variation of the potential distribution is most frequent in the

Figure 1: The triangulation Th (left) and the refined mesh Th/2 (right), which is
used in generating the data V.
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vicinity of the electrodes the triangulation is refined towards the boundary with
respect to an exponential distance function .

In the present experiments, the exact conductivity distribution is

σex=̂(0.5, 0.2, 0.1,−0.9).

The potential values U(σex) are computed by solving the numerical forward prob-
lem with respect to a distribution that is a piecewise constant interpolation of
σex within a refined triangulation (Figure 1) Th/2 which is obtained simply by di-
viding each triangle in Th into four subtriangles. The applied piecewise constant
interpolation is such that the interpolation function coincides with the interpol-
ated function in the set of circumcenters of Th. The notation σex can as well be
regarded as referring to this interpolation illustrated in Figure 2. The simulated
measurements are generated by adding Gaussian white noise N ∼ N (0, 10−6I)
to the numerically computed data. That is, V = U(σex) + N. This corresponds
to a measurement error of magnitude

||N||2
||V||∞

≈ 0.2%, and
||N||2

||U(σex) − U(σex
bg )||2

≈ 5%. (33)

The data is generated in the refined mesh, since otherwise we would be likely
to find ’too good’ candidate solutions. Using the same mesh in both generating
the data and solving the inverse problem is known as committing an inverse

crime. The approximation error between the meshes Th and Th/2 is measured as

||U(σbg) − U(σex
bg )||2

||U(σex) − U(σex
bg )||2

≈ 29%. (34)

This is large compared to the error measurement error. However, the approx-
imation error is a highly correlated error term. It is also obvious that whenever
the sought anomaly is small enough the approximation error is likely be large.
In this case reducing the approximation error considerably would necessitate a
significant refinement to the triangulation.

5.2 The quasi-Newton reconstruction

So as to get some idea of the solutions that can be obtained through the least-
squares approach, we compute a least-squares reconstruction by performing one
step of the quasi-Newton iteration using the background conductivity σbg as an
initial guess. The weight matrix in (16) is chosen to be the identity matrix. In
general, taking more steps seldom leads to considerably better estimates. In this
connection, taking one step seems to be enough.
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Figure 2: The piecewise constant interpolation of σex=̂(0.5, 0.2, 0.1,−0.9) in Th/2.
The red circle denotes the right size and location of the anomaly.

5.2.1 Computation of the Jacobian Matrix

The Jacobian matrix Ji,j = ∂U (i)

∂σj
is computed by differentiating both sides of the

equation (11) with respect to mth component which yields ∂Aσ

∂σm
F + Aσ

∂F
∂σm

= 0.

Using the relation Xσ = A−1
σ F , we obtain

∂F

∂σm

= −A−1 ∂A

∂σm

F and
∂A

∂σm

=

(
−σ2

mKTm
0

0 0

)
, (35)

where KTm
is the stiffness matrix with respect to the triangle Tm, i.e. (KTm

)ij =∫
χm∇ϕi·∇ϕj dxdy. The kth voltage pattern U (k) is obtained as U (k) = (0, C)F (k).

Differentiating this and using (35) yields

∂U (k)

∂σm

= −
(

0 C
)
A−1

σ

∂Aσ

∂σm

F (k). (36)

Since there is no sense in evaluating a whole inverse matrix the Jacobian is com-
puted by first evaluating the products A−1

σ

(
0 CT

)
and A−1

σ F after which the
partial derivatives are given by (36).

5.2.2 Smoothness regularization

In the quasi-Newton method regularization techniques favoring smooth conduct-
ivities are often the most successful ones. We apply a regularizing functional of

Figure 3: The set of circumcenters of the triangulation Th (left) and the corres-
ponding Delaunay triangulation T d

h .
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Figure 4: Four realizations of W (1th row) and the realizations of X = K−k/2W
corresponding to k = 2 (2nd row), k = 4 (3rd row).

the form

Ψ(σ) = ||σ||2Kk = σT Kkσ, (37)

where Kk, is the kth exponent of the stiffness matrix K ∈ RM×M ,

(K)ij =

{∫
Ω
∇ϕd

i · ∇ϕd
j dxdy, dist(supp{ϕd

i + ϕd
j}, ∂Ω) ≥ ε

δij, otherwise,

where δij is the Kronecker’s delta and {ϕd
1, . . . , ϕ

d
M} is the piecewise linear nodal

basis of a Delaunay triangulation T d
h ( i.e. a set of triangles such that no data

points are contained in any triangle’s circumcircle ) that is generated with respect
to the nodal basis formed by the set of circumcenters of the triangulation Th. This
is illustrated in Figure 3. The submatrix of K that corresponds to the circum-
centres close to the boundary is an identity matrix, which is a zero boundary
condition for σ and verifies that K is positive definite. The boundary condition
is added because the measured voltages are much less sensitive to the values of
σ in the central parts of Ω than to the values close to the boundary ∂Ω. In other
words, sensitivity to the measurement noise increases when moving towards the
center of Ω. Achieving feasible results with high noise levels seems to necessitate
increasing ’stiffness’ of the regularization in the vicinity of the electrodes.

A matrix similar to K is obtained as a result of FEM discretion of Laplace’s
equation with Dirichlet boundary condition. For that reason, we should have
||∇σ|| ∼ ||σ||K ; that is, the regularization method should favor smooth structured
conductivities. This is indeed true and can be verified as follows.

Due to the fact that K is positive definite there is a constant of ellipticity α sat-
isfying σT Kσ = α||σ||2. Each σ has an uniquely determined piecewise linear coun-
terpart σd =

∑M
m=1 σd

mϕd
m such that σ−σd vanishes in the set of circumcenters of

Th. By identifying σ and σd as vectors in RM we have (σ1, . . . , σM) = (σd
1 , . . . , σ

d
M)
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Figure 5: Quasi-Newton reconstructions corresponding to α = 10−1 (1st from
left) and α = 10−5 (3rd). In both cases, the region of interest is determined as in
(39) with κ = 2.2 (2nd and 4th).

and

||σ||K =
M∑

m,`=1

σmσ`

∫
∇ϕd

m · ∇ϕd
` dxdy

=
M∑

m,`=1

σd
mσd

`

∫
∇ϕd

m · ∇ϕd
` dxdy = ||∇σd||2.

Hence, it is ok to call (37) smoothness regularization. Furthermore, we can write

||σ||2Kk =
( M∑

m

cmzm

)T ( M∑

`

c`λ
k
` z`

)
=

M∑

m

λk
mc2

m, (38)

where λ1, . . . , λM are the eigenvalues and z1, . . . , zM are the corresponding ei-
genvectors. By substituting α−kKk into (38) and by noticing that λ` ≥ α for
l = 1, . . . ,M , we can deduce that α−t/2||σ||Kt ≥ α−s/2||σ||Ks for t ≥ s, i.e.
||σ||Kk increases when k increases. For that reason, the larger is the value of k
the stronger is the smoothing effect of the regularization.

So as to demonstrate the structures generated by this regularization method,
we draw white noise random samples W ∈ RM ,W ∝ N (0, I) and set X =
K−k/2W . Then,

||W ||2 = W T W = XT Kk/2Kk/2X = XT KkX = ||X||2Kk .

Random draws are plotted in Figure 4.

5.2.3 Results

The quasi-Newton method seems to give rather credible information about the
location of the anomaly but the exact size and value of conductivity remain
uncertain. The reconstructions corresponding to α = 10−1 and α = 10−5 are
plotted in Figure 5. In both cases, the power k in the regularization function
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(37) is equal to one. Decreasing the value of the regularization parameter leads
to better localization of the anomaly but also to increased level of the overall
variation of σ.

Since least-squares reconstructions are easily computed and seem to localize
the anomaly relatively confidentially, we use least-squares approximation as a
method of determining a region of interest that is a subset Rpr ⊂ Ω in which the
anomaly lies with high reliability.

The region of interest is determined as

Rpr = {x ∈ Ω : |σ(x) − σbg(x)| ≥ κ std{σ}}, (39)

where σ is the quasi-Newton reconstruction, std{σ} its standard deviation and
κ > 0 some real-valued constant. This appears to work pretty well in practice.

5.3 MCMC integration

Statistical solution refers in this case to a Monte Carlo approximation of the
conditional expectation

σm =
1

m
(σ(1) + · · · + σ(m)) ≈

∫

RM

σπpost(σ) dσ (40)

In practice, achieving an reasonably accurate Monte Carlo estimate requires for
heavy computation compared to least-squares approximation. Therefore, statist-
ical solutions should be at least in some sense more precise than the corresponding
least-squares solutions. Again, the applied sampling techniques and linear algeb-
raic methods have a significant effect on the convergence rate and thereby the
usability of this approach.

5.3.1 Prior and posterior densities

We hypothesize that the anomaly is of the form (31) and is located somewhere
in the region of interest Rpr that is obtained from a quasi-Newton reconstruction
as described in (39) and Figure 5. In other words, we hypothesize that the con-
ductivity distribution can be written as in (32), where r, c and t are realizations
of random variables and c ∈ Rpr. We do not assume anything particular of the
shape of the prior distribution (e.g. Gaussian distribution), and therefore, let
these random variables be independent and uniformly distributed.

Note that this prior model cannot be exactly implemented. Due to the fact
that each conductivity distribution is constant in each triangle we cannot draw
samples exactly distributed as πpr but we have to apply the piecewise constant
interpolation introduced in section 5.1.1.

Since the problem is restricted as (32), the integration task (40) is actually
only four dimensional and MCMC integration is not necessarily needed. However,
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Figure 6: Two piecewise constant interpolation functions of random draws from
πpr. The red circle shows the exact size and shape of each perturbation.

a similar sampling scheme for the anomaly is workable also in more complex cases
where the background conductivity σbg has to be included into the list of unknown
variables.

5.3.2 Linear algebra

As the computations are restricted to the region of interest, each sampled con-
ductivity can be represented as σ = σbg + td so that the number of non-zeros in
d is relatively small. Therefore, it is advantageous to solve the forward problem
through the Sherman-Morrison-Woodbury -formula, introduced in section 4.2, as

Xσ = Xσbg
− tZd

σbg
(I + tV T

d Zd
σbg

Λd)
−1V T

d Xσbg
,

where the number of columns in Zσbg
is the number of nodes in the region of

interest. Since we correct each time the background solution Xσbg
, the computa-

tional workload can be diminished by directly correcting each current pattern

U (i)(σ) = U (i)(σbg) − t
(

0 C
)
Zd

σbg
(I + tV T

d Zd
σbg

Λd)
−1V T

d X(i)
σbg

,

Figure 7: Monte Carlo estimates (10000 samples) of the posterior expectation. In
the case where each of the variables c, r and t are unknown the sampler does not
find the right values of r and t (1st from left). If the value of either r (2nd) or t
(3rd) is fixed to its true value, the iteration converges close to the exact solution.
The anomaly is clearly dislocated in the case where the forward problem is solved
only through the linear approximation (24) (4th).
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Figure 8: The first 2000 iteration steps of the random-walk Metropolis runs
that correspond to the four Monte Carlo approximations illustrated in Figure 7.
Behaviour of the unknowns c1, c2, r and t are illustrated separately. The black
dashed line shows the true value of each of the unknowns. The red dash-dot line
shows the Monte Carlo approximation computed from the sample set.

where the product
(

0 C
)
Zd

σbg
can be calculated in advance. It is easy to see

that in this case the computational effort is largely determined by the effort of
evaluating (I + tV T

d Zd
σbg

Λd)
−1.

5.3.3 The sampling plan

The sampling plan is straightforward. We choose σ(0) = σbg = 1. Since σbg

is known to be close to the exact distribution, we neglect the burn-in phase,
i.e. iteration steps taken before the chain has reached the important parts of the
posterior distribution. The samples {σ(1), . . . , σ(m)} are generated in a single long
run accepting all the generated samples.

The applied algorithm is the random-walk Metropolis. Since we do not have
much information about the structure of the posterior density, the proposal is
chosen to be spherically symmetric Gaussian distribution similarly as in algorithm
3.2, i.e. the proposal distribution is N (0, γ2

T I), where I is 4 × 4 identity matrix.
Apart from the fact that the acceptance rate is usually controlled by varying
the step size, in our implementation the variance of the proposal density is fixed
(γ2

T = 4 · 10−4) and the acceptance rate is controlled by choosing the variance of
the likelihood density (γ2

N ∈ [2 · 10−4, 10−3] in (14)) so that the acceptance rate
is close to 35%. Total number of iterations is 10000 in each sampling run.

Additionally, feasibility of the surrogate transition method is experimented by
solving the forward problem instead of (11), only through the linearized model
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Figure 9: A pseudocolor plot of | ln πlh(σ|V)| restricted to the rt-plane. The
darkened part of the image shows where | ln πlh(σ|V)| < 50. The difference
between the pictures is hardly notable.

(24) by employing σbg as an initial guess. In this demonstrative case, the Sherman-
Morrison-Woodbury formula works so well, that (24) is actually much slower
way to solve the boundary potentials. In cases, where the sampler perturbs
the conductivity distribution more globally, the surrogate transition method can,
however, be of great importance.

5.3.4 Results

Results of four different random-walk Metropolis runs are plotted in Figures 7
and 8.

The results show that when each of c, r and t are unknown the true values
of t and r are not found. This is due to the fact that the inverse problem is
outstandingly ill-conditioned in the rt-plane (i.e. the plane, where the center of
the anomaly is fixed ). That is, various combinations of r- and t-values result in
electrode voltages very close to the measured voltage values. Figure 9 shows that
the posteriori density does not have one distinct maximum in the rt-plane.

The statistical model yields fairly reasonable solutions provided that either r
or t is fixed to its true value. Yet, the anomaly is clearly dislocated if U(σ) is
replaced with the surrogate solution U∗(σ).

Figure 10: Two quasi-Newton reconstructions with respect to two different weigh-
ing matrices both computed as a Monte Carlo approximation (500 samples) of
(22).
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5.4 The enhanced likelihood model

Estimates of the integrals (20), (21) and (22) are computed as Monte Carlo
approximations with respect to a set of 500 independent random samples

{σ(1), . . . , σ(500)}

drawn from the prior distribution described in section 5.3.1. The prior density is
a product of uniform densities and, therefore, we can draw independent random
samples directly from the prior. Consequently, there is no need to employ MCMC
integration. Again, independency of the samples guarantees that the estimates
converge quite rapidly. In this case, a set of a few hundred samples seems to be
large enough. Similarly as in the previous computations, U(σ) in the estimated
equations is obtained by solving the numerical forward problem (11) with respect
to the triangulation Th.

5.4.1 The quasi-Newton reconstruction

Weighing the least-squares norm with the inverse of the conditional covariance
matrix (22) is experimented with a slightly modified version of the quasi-Newton
iteration. The Hessian matrix (18) is computed by using the Monte Carlo ap-
proximation of (22) as a weight matrix but the gradient (19) is, however, weighed
with the identity matrix. For some reason, computing the gradient by using (22)
decreases the quality of the reconstructions.

Similarly as in the section 5.2, the reconstruction is computed by performing
just one step of the iteration using the background conductivity σbg as an initial
guess.

5.4.2 MCMC integration

The enhanced likelihood model is applied to improve the statistical solutions
obtained through surrogate forward solution (24). That is, the likelihood density

Figure 11: Two Monte Carlo approximations (10000 samples) of the posteriori
expectation obtained by employing the enhanced likelihood model and the sur-
rogate forward solution (24). The anomaly is found if either r (left) or t (right)
is fixed to its true value.
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Figure 12: The first 2000 iteration steps of the random-walk Metropolis runs
that correspond to the Monte Carlo approximations illustrated in Figure 11.
Behaviour of the unknowns c1, c2, r and t are illustrated separately. The black
dashed line shows the true value of each of the unknowns. The red dash-dot line
shows the Monte Carlo approximation computed from the sample set.

(14) is substituted with

πlh(V | σ) ∝ exp
(
−

1

2
(U∗(σ) − V − µ)T Γ−1(U∗(σ) − V − µ)

)
, (41)

where µ and Γ are computed as Monte Carlo approximations of (20), (21) and
U∗(σ) is the surrogate forward solution.

The sampling plan is similar to the one introduced in the section 5.3 but this
time we examine only the case where the forward problem is solved through (24)
with either r or t fixed to its true value.

5.4.3 Results

The quasi-Newton reconstructions corresponding to two different Monte Carlo
approximations of (22) are plotted in Figure 10. In both cases the regularization
parameters α in (18) and (19) and k in (37) are equal to one. We see that the
location of the anomaly is found quite accurately and the overall variation of the
solution is on much lower level than in the reconstructions in Figure 5.

Two statistical solutions and the corresponding Markov Chain runs are plotted
in Figures 11 and 12. This time the anomaly is found even though the forward
solution is only approximated as (24).
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6 Discussion

In the numerical experiments, both least-squares approach and the MCMC based
estimation scheme succeed rather well in locating the anomaly, that is, in finding
c, but the two other sought quantities r and t remain uncertain.

It is evident that the more one has prior knowledge of σ the more prefer-
able is the MCMC approach. Prior information can more easily be decoded into
the prior distribution than the regularizing functional. Implementing the quasi-
Newton algorithm by applying any regularization method favoring discontinuous
conductivities, such as anomalies of certain size and shape, is problematic, since
the quasi-Newton assumes differentiability of the map σ → Ψ(σ). Again, obtain-
ing any confidence intervals of the quasi-Newton reconstruction is difficult since
there is no strict statistical interpretation of the method. Therefore, achieving
a feasible least-squares estimate is more or less art of fixing the free-floating
parameters so that the outcome is close to the optimal. The result is often a
compromise between smoothness and resolution. In our experiments, the quasi-
Newton reconstruction is comparable to the MCMC based conditional mean es-
timate as far as both r and t are unknown. Only assuming that the true value
of either of these quantities was known beforehand caused a distinct difference
between them.

Due to the fact that the posterior distribution is ’banana shaped’ in the rt-
plane as illustrated in Figure 9 the random proposal tends to waste a lot of
effort a lot of effort exploring the distribution in wrong directions. It is apparent
that the shape is likely to be even more awkward in cases where the background
conductivity σbg is not a constant function. For that reason, it is not obvious
whether the random-walk Metropolis would be an applicable algorithm for finding
an anomaly in such cases. It seems possible that one might need an algorithm
that can be adapted to follow both the local and the global dynamics of the
posterior distribution. Monte Carlo methodology involves various sophisticated
sampling schemes that might turn out to be usable when developing further
the present random-walk idea. These include multipoint methods [31], simulated

annealing [23] and dynamic weighting [40]. Adaptive Monte Carlo methods have
been considered also in [27] and [14].

Besides the Metropolis-Hastings algorithm, one of the most frequently em-
ployed transition rules is the Gibbs sampler [12]. Metropolis-Hastings is based
on ’trial-and-error’ strategy whereas the Gibbs sampler is a conditional sampling
technique where no rejection is incurred at any of its sampling steps. The trans-
ition rules are built upon conditional distributions derived from the target distri-
bution. Thus, there is no problem of finding a suitable proposal function. This
algorithm is, however, often successful with complicated target densities. The
Gibbs sampler has not been implemented in this study, which is largely due to
the difficulties that occurred in connection with drawing random samples from
conditional distributions. This is typical in Bayesian computations where the
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variance of the target distribution is often very small. More detailed discussion
of applying the Gibbs sampler to EIT can be found in [19].

Since the conductivity distribution is updated only in the region of interest,
the forward solution is easily obtained by employing the Sherman-Morrison-
Woodbury –formula. More global updates would require more expensive methods
of linear algebra. Since computational cost of the surrogate forward solution (24)
is independent from the structure of σ, it is important to study whether it would
be advantageous to use it as a substitute for the solution of (11) or in generating
surrogate Markov chains. Figures 7 and 8 indicate that employing the surrogate
solution as a pure substitute diminishes the accuracy of the posterior expectation
estimate considerably. The anomaly is distinctly dislocated even though its size
is given. Applying a surrogate Markov chain that does not locate the anomaly
correctly does not seem a feasible idea: each time the actual chain would come
close to the true location, the surrogate chain would be likely to drift away from
it.

Comparing Figure 5 to Figure 10 and Figure 7 to Figure 11 we see that the use
of the enhanced likelihood model improves considerably both the quasi-Newton
reconstruction and quality of the approximation (24). Particularly interesting
is that the anomaly is correctly located in figure 11. Therefore, there is reason
to believe that constructing a surrogate Markov chain transition rule through a
combined use of (24) and the enhanced likelihood model might still, be a feasible
idea.

A robust model for the inverse problem described in section 5.1 can be ob-
tained by writing the equation (1) as

∇ · (σbg + δ)∇(ubg + uδ) = 0, (42)

where δ and uδ are the unknown quantities and ∇·σbg∇ubg = 0. Since the support
of the anomaly is restricted to a small subset of Ω, it is obvious that δ does not
affect remarkably the current field in Ω. In other words, ∇uδ ≈ c∇ubg, where c
is some scalar-valued function. Substitution to (42) plus a slight manipulation
gives

∆uδ ≈ −
1 + c

σbg

∇ · δ∇ubg, (43)

where σbg has been treated as a scalar-valued constant. From (43) we see that the
potential field uδ is approximately induced by a small supported electromagnetic
field δ∇uδ. That is, the present inverse problem is analogous to detecting an
electromagnetic dipole with unknown location, length and charge from a vacuum
cavity based on voltage measurements on the boundary, which is evidently an ill-
conditioned problem due to the fact that both varying the length and the charge
result in very similar changes far from the dipole. In contrast to the charge,
the length has a slight effect on the shape of the potential distribution on the
boundary and, therefore, one should be able to distinguish these changes. This is
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certainly not possible if the number of voltage measurements is too small. Again,
the number of injected currents is closely related to the oscillation frequency of
∇ubg, that on the basis of the right hand side of (43) reflects the resolution of
the installation. Consequently, the number of electrodes apparently affects the
accuracy of the numerical solutions. However, it is also apparent that the present
inverse problem would remain ill-conditioned in rt-plane even though the number
of electrodes was increased.

Finally, it is important to point out that the approximation error (34) is large
compared to the measurement error (33). Unfortunately, the limited memory
capacity of the available computer hardware did not allow significant refinements
of the triangulation. Refining the triangulation would certainly reduce (34) but
then again each triangulation has its maximal resolution. In other words, for any
triangulation there are anomalies for which (34) is large. Thus, the case we have
studied indeed tells us about what happens when the anomaly is small in terms
of the resolution of the triangulation. Another topic would be to examine the
case where the measurement error is the dominating one.

7 Summary and Conclusions

The findings and conclusions of this study can be formulated as follows.

• It was found that a regularization method favoring smooth solutions can
be produced effectively by using the finite element method as described in
section 5.2.2.

• Even though it is difficult to construct a regularization method favoring
arbitrary conductivities (e.g. strongly discontinuous conductivities), the
statistical model is preferable to the least-squares approach only if prior
knowledge accurate enough is available.

• MCMC based estimation model was superior if either the size or the value
of conductivity of the anomaly was given.

• Solving the forward problem by applying the finite element method led into
statistical solutions that were considerably better than those obtained by
applying the surrogate forward solution.

• The enhanced likelihood model improved significantly both the least-squares
reconstruction and workability of the surrogate solution.

• The seemingly primitive problem demonstrated in the present experiments
turned out to be difficult to solve. Therefore, further numerical analysis
would be a natural continuation of the study.
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