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1 Introduction

Financial markets transfer financial resources, such as capital, equity, and
credit, between various areas of the economy. Investors participating in finan-
cial markets seek to benefit from transactions taking place. The monetary
value of financial securities provides a quantitative base for mathematical
analysis of the markets. Mathematical finance attempts to provide mathe-
matical explanations for the behaviour of financial markets.

Globalisation has increased competitive pressures for the local economies.
This has lead to a quest for more efficient market structures and for privatisa-
tion and deregulation in many fields. Deregulation of the electricity industry
has introduced free competition to electricity generation and sales businesses.
The intent has been to benefit the industries and other consumers by creat-
ing an efficient competitive market and thus to lower the cost of electricity.
The natural monopolies of physical electricity transmission and distribution
remain closely regulated.

In the deregulated Nordic electricity market, generators, sales companies,
and large end users trade physical electricity and financial electricity deriva-
tive instruments in an electricity exchange. The exchange sets the physical
electricity price for the next day, the spot price, with an equilibrium model
that matches the supply and demand curves of market participants. Sup-
ply and demand must be in balance at each instance separately to maintain
the technical functionality and operational reliability of the power system.
Technically, it is impossible to store electricity in large quantities in an eco-
nomically feasible manner. Therefore, variations in electricity generation or
in electricity demand cause considerable price uncertainty, i.e. high volatil-
ity, in spot electricity prices. Market participants use financial derivative
instruments to manage the uncertainties of future spot prices or to speculate
upon the uncertainty. Functionality and practises of competitive electricity
markets are in many ways similar to financial and other commodity markets.

In the language of mathematics, a probability space (Ω,F , P ) models the
uncertainty in the market. Here Ω is a set of possible outcomes for random
events, F is a σ-algebra on Ω, and P is a probability measure defined on
F . A random variable X(ω) is a F -measurable function X(·) : Ω → S,
where (S,S ) is a measurable state space that describes the values of random
outcomes in a topological space S and σ-algebra S on S. A stochastic process
is a collection of random variables that occur at each t ∈ T , where T is a set
of times in an interval T ∈ [0, T ]. A stochastic process is called a discrete time
process if the set T is discrete and a continuous time process if T = [0, T ].
A nondecreasing family {Ft}t≥0 of sub-σ-fields of F defines a filtration for
which Fs ⊆ Ft ⊆ F for 0 ≤ s < t < T . A stochastic process X(t, ω) is
adapted to Ft if X(t, ω) : [0, T ]× Ω→ S is Ft-measurable for each t.

In the financial context, an Rn+1-valued Ft-adapted stochastic process
S(t, ω) models market price movements, i.e. S := Rn+1 and S := B(Rn+1),
the σ-field of Borel sets. The process S(t, ω) is referred to as a market.
Si(t, ω) denotes the price of asset i. A filtration Ft contains the market
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information available at time t. A contingent claim is a security that gives
its owner a stochastic Ft-adapted cash-flow F (t, ω). A contingent claim is a
derivative of an underlying asset S(t, ω) if F (t, ω) is a measurable function
of S(t, ω).

Some key questions in mathematical finance are the modelling of market
price processes, derivative instrument pricing, and the selection of a portfolio
of securities in a certain optimal sense. These same questions are of interest
in competitive electricity markets.

2 Mathematical finance

2.1 Stochastic modelling

In finance, a general assumption is that price movements are random. Bache-
lier (1900) was the first to formulate stock price movements with a stochastic
process. More precisely, he modelled stock price movements with a Brown-
ian motion B(t, ω). The movements of a Brownian motion are random and
its state is normally distributed at any given time. The increments of a
Brownian motion are independently distributed. Finally, there is a version
of Brownian motion for which the mapping t → B(t, ω) is continuous for
almost all ω1.

An extensive period of empirical and theoretical research on stock prices
followed the work of Bachelier, but mostly in the latter half of the 1900s.
Muth (1961) developed a general theory of rational expectations which was
complemented by Lucas (1972, 1976). The theory of rational expectations
states that people form expectations as rationally as they can on the basis of
available information. Samuelson (1965a) and Mandelbrot (1966) explained
stock price movements in a similar manner. Their work, together with the
empirical and theoretical research of Fama (1965, 1970), led to the develop-
ment of the efficient market hypothesis. According to this hypothesis, stock
prices already incorporate all available information. Otherwise, predictable
price movements would generate possibilities for speculators to gain risk-free
profits. In efficient markets such speculators always exist and they always
take advantage of the presented opportunities, thus causing the opportunities
to disappear.

Prices following a Brownian motion can become negative. To overcome
this shortcoming, Samuelson (1965b) formulated the price movements of a
single stock as a geometric Brownian motion. For the price of a stock i
following a geometric Brownian motion

Si(t, ω) = eσiBi(t,ω)+δit,

where Bi(t, ω) is a one-dimensional Brownian motion and σi ∈ R and
δi ∈ R are parameters describing stock i. A stochastic process that follows a

1Karatzas and Shreve (1988), for example, gave a more thorough treatment of these
results by Wiener.
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geometric Brownian motion is log-normally distributed. Geometric Brownian
motion is still the most widely used process for stock price modelling, due to
its simplicity.

More generally, a geometric Brownian motion is an example of an Itô dif-
fusion process. For an Itô diffusion process, the underlying price movements
in (n+ 1)-dimensions follow

dS(t, ω) = µ(t, S(t, ω))dt+ σ(t, S(t, ω))dB(t, ω), (2.1)

where B(t, ω) is an (n+1)-dimensional Brownian motion, µ(t, S) : [0, T ]×
R
n+1 → R

n+1 and σ(t, S) : [0, T ] × Rn+1 → R
(n+1)×(n+1). For (2.1) to

have a solution, it is typically assumed that the functions µ(t, S(t, ω)) and
σ(t, S(t, ω)) satisfy Lipschitz continuity and growth conditions

‖µ(t, x)− µ(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖,
‖µ(t, x)‖2 + ‖σ(t, x)‖2 ≤ K2(1 + ‖x‖2),

for some constant K ∈ R and for every t ∈ [0, T ], x ∈ Rn+1, and y ∈
R
n+1. Itô diffusion processes cover a wide variety of price movements. For

example, Föllmer and Schweizer (1993) analysed economic theory behind
some stock price diffusion processes. Economic analysis and explanations
are important to the transparency and credibility of models in applications.
Merton (1975) constructed various stochastic processes based on an economic
growth model. Ross (1976) provided economic justification for asset price
processes by constructing a simple factor model for the random asset returns.
Bielecki and Pliska (1999) modelled underlying economic factors directly and
used these factors to construct market-price processes. Examples of their
economic factors are stock dividend yields, short-term interest rates, and
inflation rates.

Itô diffusion processes have continuous paths that are unable to capture
peaks or jumps in prices. Merton (1976) and Cox and Ross (1976) introduced
jump diffusion processes that have a random component to represent possible
jumps in prices. Duffie et al. (2000) presented a general affine jump diffusion
process

dS(t, ω) = µ(t, S(t))dt+ σ(t, S(t))dB(t, ω) + dq(t, S(t)), (2.2)

where q(t, S(t)) follows a pure jump process with intensity λ(t). Mathemat-
ically, it is possible to generalise (2.2) and construct more versatile mod-
els. For example, Carr and Wu (2004) considered a general model based
on a stochastic time-changed Lévy process. The economic motivation of
such generalisations is necessary to connect the models to the observed price
movements.

In commodity markets, there are typically two ways of trading a com-
modity. The commodity can be traded at spot price now. Alternatively, the
delivery of the commodity can occur at some future time point and the price
can be agreed upon with a forward contract now. Commodity prices are in-
fluenced by non-financial factors, such as storage costs, transportation, and
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utility of commodity consumption that vary over time. Therefore, forward
prices do not have an explicit dependency on spot prices. Commodity price
modelling needs to consider both spot prices and forward price dynamics.
Interest rate markets share a similar problem setting although for different
reasons. Commodity price modelling has followed the developments of stock
price and interest rate modelling.

Interest rate markets give comparative values of money at different future
times as seen by investors today. The future value of money is dependent
on inflation and other economic fundamentals that are stochastic. Vasicek
(1977) presented a mean-reverting process for the short-term interest rate
ρ(t, ω). Mean-reversion implies that interest rates fluctuate around some
mean interest level. In Vasicek’s model, the short-term interest rate followed
an Itô diffusion process

dρ(t, ω) = a(b− ρ(t, ω))dt+ σdB(t, ω), (2.3)

where b ∈ R gives the mean interest level, a ∈ R the rate of change to-
ward b, and σ ∈ R the local volatility. The process (2.3) is also known as
the mean-reverting Ornstein-Uhlenbeck process. The theoretical rationale
behind Vasicek’s model was that if interest rates become too high, the re-
sulting economic slow-down will eventually bring them down. On the other
hand, if the interest rates are too low, economic activity increases and inter-
est rates will rise. Cox et al. (1985) and Hull and White (1990a) presented
further models for the short-term interest rate.

Heath, Jarrow, and Morton (1992) modelled the interest rate forward
curve dynamics. Their model allowed stochastic movements at different
points in the forward curve. An increase in the number of factors that ap-
proximate the forward curve increases the explanatory power of the model.
Litterman and Scheinkman (1991) concluded that three factors explain most
of the observed interest rate movements. One factor explains the overall
shifts in the interest rate level, second changes in the slope of the interest
rate curve, and third variations in the curvature. Björk and Landén (2002)
presented several models and applications for interest rate forward curve dy-
namics.

In commodity markets, economic theory supports the development of
commodity price processes. Working (1949) developed the theory of the
influence of storage on inter-temporal price dynamics. Mandelbrot (1966)
used the efficient market hypothesis to model commodity prices like stock
prices. Kawai (1983) considered the implications of the theory of rational
expectations without storage possibilities, and Williams and Wright (1991)
and Deaton and Laroque (1996) studied storable commodities.

Brennan and Schwartz (1985), among others, used geometric Brownian
motion to model commodity spot price movements. Geometric Brownian
motion gives a first approximation of random commodity price movements
just as it does in financial markets. For instance, Smith and McCardle (1998)
modelled oil prices and Davis (2001) studied derivative pricing on accumu-
lated weather indexes based on geometric Brownian motion. Duffie and Gray
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(1995) and Schwartz (1997) presented and analysed more general diffusion
processes to represent commodity prices. Their processes incorporated some
of the observed commodity price characteristics, such as seasonality, mean-
reversion, and serial correlation, better than geometric Brownian motion.
Benth (2003) considered even more versatile fractional Brownian motions to
price weather derivatives. Modelling results from one market are not neces-
sarily applicable to other markets because commodity price characteristics
are market dependent.

There have been several attempts at modelling electricity spot prices in
competitive markets. The non-storability of electricity does not support
the arguments about the price formation as a continuous stochastic pro-
cess. However, that does not prevent modelling the random characteristics
of prices with stochastic processes. The available literature has two main
branches: statistical models and fundamental models. Statistical, or econo-
metric, models follow the finance tradition of modelling directly the stochas-
tic processes that represent prices. Fundamental, or structural, models build
the price processes based on equilibrium models for the electricity market.
Article [I] of this thesis presents a fundamentally motivated spot price model
that combines statistical processes for the factors affecting spot prices with
an approximative market model.

In the statistical approaches, modelling concentrates on the price process
form and parameters, such as functions µ(t, ω), σ(t, ω), λ(t, ω) of the process
in equation (2.2). After process form selection, available historical market
data provide estimates for the parameters so that the model matches the his-
torical prices. In U.S. markets, Deng (2000) presented mean-reverting jump
diffusion spot price processes with two jump types. He modelled price volatil-
ity with either a deterministic model, a model with two regimes between
which the price jumps, or with a stochastic model. Weron and Przyby lowicz
(2000) analysed the mean-reverting property in detail and concluded that,
statistically, at least Californian electricity market prices are mean-reverting.
Davison et al. (2002) modelled the average power demand and generation
capacity. In their model, the electricity price switches randomly between two
price regimes on the basis of the ratio between demand and capacity. In the
Nordic electricity market, Lucia and Schwartz (2002) considered several diffu-
sion processes. Their models were extensions of Vasicek’s model for interest
rates that included a deterministic time-dependent component. Simonsen
(2003) analysed hourly Nordic spot prices and concluded that prices are
mean-reverting. Huisman and Mahieu (2003) presented a regime-switching
model where price spikes were separated from mean-reverting prices. Weron
et al. (2004a) studied a jump diffusion model and a regime-switching model.
Weron et al. (2004b) considered the explanations behind several models and
ended up recommending a mean-reverting jump diffusion model.

The construction of statistical models is easy but no rigorous economic
motivation for the parameters has yet been given in electricity markets. In
comparison to financial markets, electricity markets lack the long historical
time series that would allow process parameter estimation. The continuous
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structural and regulatory changes2 in the markets have a major effect on
the prices. The historical estimates are not necessarily valid in the future,
and the influence of market changes to parameter values can be difficult to
estimate.

In the fundamental approaches, a model for the supply–demand balance
determines electricity prices. Botnen et al. (1992) and Haugstad and Rismark
(1998) presented a model for the minimisation of the marginal generation cost
of the whole generation system in the Nordic market against consumption
and transmission constraints. They assumed that, in a competitive market,
spot price equals the marginal generation cost thus obtained. Johnsen (2001)
presented a supply–demand model for the hydro-dominant Norwegian elec-
tricity market from a time before the common Nordic market had started.
He used hydro inflow, snow, and temperature conditions to explain spot price
formation. Many approaches supplement fundamental models with statisti-
cal processes. Skantze and Ilic (2001) considered a fundamental model for
the electricity price dynamics that incorporated the seasonality of prices,
stochastic supply outages, and mean revision. Barlow (2002) used a mean-
reverting process for the demand and a fixed supply function to end up with
a mean-reverting process for the spot price. Burger et al. (2004) created a
model that included a stochastic load process and used statistical processes to
describe the remaining errors. Models that include fundamental factors are
more tractable than statistical models. Economic reasoning can be used to
deduct the properties of the factors. The special characteristics of electricity
prices and changing market conditions are better captured with fundamental
models than with pure statistical models. On the other hand, fundamental
models require comprehensive data sets that are laborious to maintain.

Visudhiphan and Ilic (1999) attempted to take the strategic behaviour
of market participants into account. They modelled the dynamic bidding
strategies of generators and assumed that the demand is given. They argued
that such a model leads to a dynamic equilibrium that reflects spot prices.
Hobbs et al. (2000) modelled the price formation of one single time period
with a game-theoretic approach. Anderson and Philpott (2002) considered
the formation of supply-function equilibrium, while Hinz (2003) studied equi-
librium prices and optimal bidding strategies for electricity producers under
two different electricity auction frameworks. These economic and game the-
oretic models can give insights to the market dynamics but their capability
to explain observed price levels and dynamics has been weak.

Koekebakker and Ollmar (2001) considered the electricity forward price
dynamics in the Nordic electricity market using the Heath-Jarrow-Morton
framework. Their conclusion was that two stochastic factors are unable to
explain the forward curve dynamics as well as two factors in interest rate
markets. Lucia and Schwartz (2002) used one-factor and two-factor models to
explain forward prices. They concluded that their models perform worse than

2For example, the planned fifth nuclear power plant in Finland will change supply
conditions and EU wide emission trading scheme will change the marginal costs of carbon
emitting power plants.
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similar models in other commodity markets. Benth et al. (2003) extended a
spot price model presented by Schwartz (1997) to incorporate jumps and time
varying parameters, and derived model-based forward prices. They used risk
premiums to explain the difference between model prices and observed market
prices. They applied the model to oil markets and the Nordic electricity
market. Again, the model was able to explain price developments in the oil
markets better than in the electricity markets. The modelling of electricity
forward price dynamics is an active research topic to which article [II] of this
thesis contributes.

2.2 Derivative pricing

Bachelier (1900) was the first to consider mathematical pricing of a financial
derivative in connection with his stock price model, i.e. the Brownian motion.
Since then, financial markets have adopted a large number of derivatives that
are actively traded. The most common derivatives are forward and futures
contracts and options. A forward contract is an agreement to buy or sell an
asset at a certain future time at a certain price. The cash flow from a forward
contract, or the payoff, is given by

F (S(T, ω)) := S(T, ω)−K,

where S(T, ω) is the price of the underlying asset at time T and K ∈ R
is the fixed price agreed upon. A futures contract has similar payoff but
slightly different payment terms. Two basic options are a call option and a
put option. The owner of a call option has the right to buy the underlying
asset at a certain price. The owner of a put option has the right to sell the
underlying asset at a certain price. European exercise rules mean that the
right to exercise an option is restricted to a fixed time T . With American
exercise rules, the exercise can occur at any time in an interval [0, T ]. As an
example, a European call option has a payoff

F (S(T, ω)) := (S(T, ω)−X)+,

where T is the fixed exercise time and X ∈ R is the fixed exercise price.
In their seminal paper, Black and Scholes (1973) considered the pricing

of European options on stock price. They assumed that stock prices follow a
random walk, the stock price distribution at any time is log-normal, the stock
does not pay dividends, and interest rates are constant and deterministic,
denoted by ρ ∈ R. A stochastic process that describes these stock price
characteristics is a geometric Brownian motion with some growth rate µ
and volatility σ. Given such circumstances, Black and Scholes showed that
the theoretical price of the option f(t, S(t, ω)) follows a partial differential
equation

∂f(t, S)

∂t
+ ρS(t, ω)

∂f(t, S)

∂S
+

1

2
σ2S2(t, ω)

∂2f(t, S)

∂S2
= ρf(t, S), (2.4)
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before the exercise time. The option payoff at T gives a boundary condition
for the partial differential equation. For a European call option, the boundary
condition is

f(T, S(T, ω)) = F (S(T, ω)) = (S(T, ω)−X)+. (2.5)

The solution to the partial differential equation (2.4) together with the
boundary condition (2.5) gives the pricing formula for a European call option

f(t, S(t, ω)) = S(t, ω)Φ(d1)− e−ρ(T−t)XΦ(d2), (2.6)

where Φ(·) : R → [0, 1] denotes the cumulative distribution function for
a normally distributed random variable with a mean of 0 and a standard
deviation of 1, and

d1 =
lnS(t, ω)/X + (ρ+ σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

The basis for the Black and Scholes pricing formula is the no-arbitrage argu-
ment and the use of continuous trading to replicate option payoffs.

More formally, a trading strategy is a Ft-adapted stochastic process π(t, ω).
The values πi(t, ω), i = 0, . . . , n, describe the portfolio holdings at time t, i.e.
the number of units of asset i held at time t. A self-financing trading strategy
requires no investment after the initial cost. A self-financing trading strat-
egy is admissible if the associated portfolio wealth, πT(t)S(t, ω), has a finite
lower bound. This lower bound limits the amount of money that an investor
can borrow. An arbitrage is a self-financing trading strategy that has zero
initial cost, a non-negative end wealth P -almost surely, and a positive end
wealth with positive probability. A self-financing trading strategy replicates
a contingent claim if the payoff from the trading strategy is equal to the pay-
off from the contingent claim, P -almost surely. Black and Scholes derived
their partial differential equation (2.4) by constructing a replicating trading
strategy for the option payoff. The cost of starting the replication strategy
gives the theoretical option price as given by the pricing formula (2.6). If
the real option price is lower (higher) than the initial cost of replication, it is
theoretically possible to buy (sell) the option, follow the replicating strategy,
and be left with a certain profit at the exercise time. A similar no-arbitrage
argument for a forward contract with delivery time T yields the theoretical
arbitrage-free forward price as

f(t, S(t, ω);T ) = eρ(T−t)S(t, ω),

provided that the interest rates are deterministic and constant, denoted
by ρ ∈ R, and that the underlying asset is tradable.

Research and practical developments on derivative instruments have built
on the work by Black and Scholes. Merton (1973) relaxed the assumption
that the stock does not pay dividends and presented the results of Black and
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Scholes more coherently. The basic financial market model has developed
since then. Based on Ross (1976), a standard assumption is that the market
is arbitrage-free. Another common assumption is that the market has an
asset, for example cash, whose value is positive P -almost surely. The positive
asset makes it possible to construct a normalised price process by dividing
the original price process S(t, ω) by the asset that is always positive. The
value of money held in a risk-free interest bearing bank account is a typical
denominator. In the case of constant and deterministic interest rates, the
interests accumulate by

S0(t) = eρtS0(0),

where S0(t) denotes the nominal amount of money and ρ gives the interest
rate level. Then, the denominator is

ξ(t) := 1/S0(t) = e−ρt,

and the normalised price process is

S̃(t, ω) := ξ(t)S(t, ω).

In general ξ(t) can be stochastic; for example, if the interest rates are stochas-
tic.

A replicating trading strategy is independent of investors’ risk preferences.
Cox and Ross (1976) constructed risk-neutral probabilities under which the
theoretical option price is equal to the expectation of the option payoff. A
risk-neutral probability measure is closely linked with the concept of an equiv-
alent martingale measure. A measure Q is equivalent to P if

P (F ) > 0 if and only if Q(F ) > 0,∀F ∈ F .

For an absolutely integrable process X(t, ω),

EQ[|X(t, ω)|] <∞, ∀t ≥ 0.

An absolutely integrable Ft-adapted process X(t, ω) is a martingale with
respect to a measure Q if

EQ[X(t, ω)|Fs] = X(s, ω), ∀s ≤ t,

where Fs is the filtration that gives the information at time s. Harrison and
Kreps (1979) created a unified functional analytic framework for derivative
instrument pricing. They showed that a market S(t, ω) has no admissible ar-
bitrage opportunities if and only if an equivalent martingale measure exists3.
Moreover, they showed that the theoretical price of any contingent claim

3Actually, in continuous-time models and if T is not finite, Delbaen and Schachermayer
(1994, 1998) showed that the existence of a martingale measure requires a slightly stronger
condition: no free lunches with vanishing risk.
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f(t, S(t, ω)) can be stated as a stochastic integral of a replicating trading
strategy, π(t, ω), i.e.

ξ(T, ω)f(T, S(T, ω)) = f(0, S(0, ω)) +

∫ T

0

π(t, ω)dS̃(t, ω), (2.7)

where ξ(t, ω) is the normalisation function and S̃(t, ω) the normalised mar-
ket. An equivalent martingale measure Q for S̃(t, ω) exists in arbitrage-free
markets. Taking expectations of both sides of (2.7) with respect to Q, yields
the theoretical price of the contingent claim as

f(0, S(0, ω)) = EQ[ξ(T, ω)f(T, S(T, ω))|F0]. (2.8)

A market S(t, ω) is complete if each bounded contingent claim can be repli-
cated. As an example, the Black and Scholes market is complete. If an
equivalent martingale measure Q exists, Harrison and Pliska (1981) showed
that Q is unique if and only if the market is complete. If markets are in-
complete, it follows that an equivalent martingale measure Q is not unique.
In incomplete markets, the risk-neutral pricing theory does not guarantee
unique theoretical prices for derivatives.

Market incompleteness arises due to real-world market frictions. Some
market frictions are transaction costs, constraints on trading, taxation effects,
and different rates for borrowing and lending money. Stochastic modelling
of the market can also cause incompleteness; for example, a market follow-
ing a jump-diffusion process (2.2) is incomplete in general. The advances in
derivative pricing theory in incomplete markets have focused on the inclusion
of some specific friction. Karatzas (1989), Sundaresan (2000), and Cvitanic
(2001) presented some of these developments. The value of these theoretical
advances is limited outside their respective areas. King (2002) considered
many simultaneous market frictions. He presented an arbitrage-free inter-
val for European contingent claim prices by using stochastic programming.
Kallio and Ziemba (2003) presented arbitrage-free contingent claim pricing
in incomplete markets that is based on simple optimisation theory. These
developments are promising in their simplicity and generality.

Despite the theoretical advances in derivative pricing, quantitative pricing
remains challenging. In certain simple instances, either the partial differen-
tial equation or the integral form that describes the theoretical derivative
prices can be solved analytically. A typical requirement is that the market
is complete; this gives rise to a unique solution to the martingale pricing
problem if an equivalent martingale measure exists. Also, if a derivative is
of the European type, its payoff gives a boundary condition for the pricing
partial differential equation. If the exercise occurs according to the Amer-
ican exercise rules, the theoretical results are less satisfying. Jacka (1991)
presented some results on integral equation representation for the price of an
American put option. Karatzas and Shreve (1998, p. 54–79) described the
pricing problem of the American contingent claims in more detail.
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Numerical methods generate quantitative price estimates if there are no
analytical solutions to derivative prices. Based on special market or deriva-
tive characteristics, it is sometimes possible to approximate the theoretical
derivative prices analytically. Johnson (1983) and MacMillan (1986) studied
the pricing of American contingent claims for which there are no analytical
pricing formulae. Given the characteristic function of the underlying proba-
bility distribution, Carr and Madan (1998) and Lee (2004) calculated theoret-
ical derivative prices using Fourier transformations. Brennan and Schwartz
(1978), Courtadon (1982), and Hull and White (1990b) used finite difference
methods to numerically solve the partial differential equation associated with
the theoretical contingent claim price. These methods are highly dependent
on market characteristics and derivative properties.

One method of quantitative pricing is to integrate numerically the expec-
tation present in the pricing problem. In general, the expectation of random
variable X : Ω→ R

n+1 with respect to a distribution P can be approximated
with

EP [X] :=

∫
Rn+1

X(ω)P (dω) ≈ 1

p

p∑
k=1

ckX(ωk),

where the choice of points {ωk}k=1,...,p ∈ Ω and weights {ck}k=1,...,p ∈ R should
lead to increasing accuracy as p→∞. In Monte Carlo simulation methods,
this approximation is random. Random variables {ωk}k=1,...,p are drawn ac-
cording to the distribution P and equal weight is assigned to each sample.
Boyle (1977) introduced Monte Carlo methods to solving financial problems.
Boyle et al. (1997) provided several technical improvements of Monte Carlo
methods in pricing of American options, for example. Lattice and tree meth-
ods determine the possible price movements explicitly. The point locations
and weight sizes are fixed according to some theoretical or heuristic argu-
ments. Cox et al. (1979) presented the theory of risk-neutral option pricing
in discrete time with a simple binomial model for the price movements. King
(2002) formulated the option price evaluation as a stochastic programming
problem and allowed more general tree models for uncertain factors.

Commodity derivatives are market specific and a limited number of com-
mon pricing results exists. Black (1976) derived the theoretical price of a
European option on commodity forward prices by assuming that the forward
prices follow a log-normal process. Brennan and Schwartz (1985) presented
pricing formula for commodity forward contracts if there were storage possi-
bilities for the commodity. Gibson and Schwartz (1990) studied the pricing of
contingent claims in oil markets under a particular price process. Miltersen
and Schwartz (1998) extended Black’s model to specific interest rate and
forward price structures. As in electricity markets, non-storable underlying
assets exist in some livestock markets. Tomek and Peterson (2001) studied
derivative pricing in agriculture following the finance traditions.

Commodity derivatives or physical assets that are operated in the market
have often complex payoffs. Brennan and Schwartz (1985) studied the val-
uation of natural resources that are used with flexible decisions. Dixit and
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Pindyck (1994) analysed the related concept of real options and gave several
application areas. Real option theory considers the flexibility embedded in
specific investment opportunities. Complex derivatives in commodity mar-
kets and real investment opportunities share similar characteristics. On gas
markets, Thompson (1995) used a lattice-based framework to analyse the
theoretical price of a swing option4. Commodity pricing is often based on
the assumptions on the particular price process form and therefore pricing
results are not as general as in financial markets.

In competitive electricity markets, Kaye et al. (1990) presented early ideas
on forward contract pricing. Gedra (1994) studied pricing of electricity for-
ward contracts and options on spot price with the Black and Scholes ap-
proach. Similarly, Ghosh and Ramesh (1997) priced spot electricity forwards
and options directly as in financial markets. However, because physical elec-
tricity is not a tradable asset, there are no theoretical grounds to motivate
replicating portfolios for spot electricity derivatives as in the Black and Sc-
holes model. As a consequence, spot electricity markets are incomplete. Ar-
ticle [III] of this thesis contributes to the general theory and basic properties
of electricity derivative pricing.

Eydeland and Geman (1999) considered a generation-based fundamental
model for the theoretical prices of forward contracts. Bessembinder and
Lemmon (2002) presented an equilibrium model for the spot prices and used
the model to price forward contracts. These models rely on some subjective
views on spot price movements. A general result for the pricing of electricity
forward contracts has not yet been established.

Similarly, pricing results on more complicated electricity derivatives are
based on subjective price process views. Bjorgan et al. (2000) studied swing
option pricing in electricity markets. They obtained theoretical swing option
prices with a particular spot price process by using stochastic dynamic pro-
gramming. Lari-Lavassani et al. (2001) valued swing options under certain
price processes by creating a set of scenario trees to represent the optionality
of the contract. Mo and Gjelsvik (2002) presented an optimal strategy for
the holder of a swing option under their price model but did not consider
the pricing problem as such. Tseng and Barz (2002) took a real options ap-
proach and considered the valuation of generation assets with a Monte Carlo
application of dynamic programming.

Market incompleteness restricts theoretical pricing of derivatives on elec-
tricity spot prices. If all future time points can be traded with forward
contracts, then the resulting forward contract market is complete. On this
kind of forward market, complicated derivative pricing is possible. For in-
stance, Deng et al. (2001) introduced pricing models for generation assets,
while Keppo and Räsänen (1999) studied end consumer sales. However, it
is a strong requirement to have a tradable forward contract for each time
period. It is yet to be shown that the assumption of a completed forward
market is feasible in electricity markets.

4See, for example, article [III] for a definition.
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2.3 Investment theory

An investor in the market faces alternative investment opportunities that
result in uncertain outcomes. Based on the investor’s preferences, he/she
ought to invest the available capital in an “optimal” manner. The main
questions are how to characterise investors’ preferences and the optimality of
a portfolio, how to model the uncertainties involved, and how to make the
optimal selection. Article [IV] of this thesis studies these questions in the
competitive electricity markets.

The theory of optimal portfolio selection originates from the work by
Markowitz (1952a, 1959) who considered the choice between several risky
assets, such as stocks in the stock market. The Markowitz model is set
in a simple one-period market T = {0, T}. An investor selects a portfolio
π ∈ Rn+1 at the beginning of the time period, i.e. invests πi in an asset i at
a price Si(0), and observes the market prices S(T, ω) ∈ Rn+1 at the end of
the period. The simple asset returns r ∈ Rn+1 over time are

ri :=
Si(T, ω)− Si(0)

Si(0)
, ∀i = 1, . . . , n+ 1.

The return of the whole portfolio at the end of the time period is rTπ.
Markowitz assumed that there are estimates for the expected asset returns
r̄ and the covariances of assets V over the time [0, T ]. The investor targets
some level for the expected return, r∗ ∈ R. The optimal portfolio in the sense
of Markowitz is given by the solution of

minimise
π

1

2
πTV π

subject to r̄Tπ = r∗,
n+1∑
i=1

πi = 1.

Such selection results in an estimated variance minimising portfolio that has
an estimated expected return r∗. The optimal portfolio selection is dependent
on the estimates for returns and covariances.

Markowitz’s theory focused on the choice between several risky assets.
Tobin (1958) included the possibility of holding capital in a risk-free asset,
such as cash, instead of investing everything in the stock market. He argued
that a rational investor holds some capital in risk-free money and some in a
single portfolio of risky assets. The risk attitudes of investors determine the
division between risk-free investment and risky investment.

The optimal portfolio selection theory of Markowitz and Tobin intro-
duced risk to investment strategy considerations. The attitude toward risk
vs. return defines what is optimal for each investor. Von Neumann and Mor-
genstern (1944) created an axiomatisation of risk preferences. They showed
that if the investor can always arrange presented alternatives in the order of
his/her preference, then a utility function can be associated with those pref-
erences. It is customary to consider the utility of wealth U(W ) : R → R in
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finance; as in article [IV]. A utility function is usually assumed to be a twice
continuously differentiable increasing function of wealth. Portfolio wealth is
given by

W (π(t), S(t, ω)) := πT(t)S(t, ω),

where π(t) gives the portfolio holdings and S(t, ω) gives the market prices
for the assets.

Friedman and Savage (1948) studied utility functions and their connection
with the implied risk preferences. They categorised investors as risk-averse,
risk-neutral, or risk-seeking. Given two investment opportunities with equal
expected return, risk-averse investors choose the one with lesser risk. Risk-
neutral investors are indifferent between a risky and a certain investment if
the investments have equal expected return. Risk-seeking investors prefer the
risky investment more than the certain investment. Mathematically, the risk
preferences translate to the properties of utility functions. The risk-averse
investor’s utility function is strictly concave, while the risk-neutral investor’s
is linear and the risk-seeking investor’s strictly convex. A general consensus
after the work by Markowitz (1952a,b) is that most investors are risk-averse.
For a risk-averse investor, an increase in wealth from modest starting wealth
gives a greater increase in utility than an equal increase starting from a
greater degree of wealth.

Research after Markowitz and Tobin has combined optimal portfolio se-
lection and utility function theories. Hanoch and Levy (1969) generalised
Markowitz’s mean–variance setting to any von Neumann and Morgenstern
utility function. Pratt (1964) and Arrow (1965) made characterisations of
utility functions in terms of how large a risk premium a risk-averse investor
with some specific utility function would like to receive in comparison to
a risk-neutral investor. Kallberg and Ziemba (1983) studied the properties
of utility functions in optimal portfolio selection problems. They concluded
that the selection of a utility function to match certain risk preferences can
be made on the basis of a risk characterisation similar to those of Arrow
and Pratt. Luenberger (1993) considered theoretical justifications for choos-
ing a particular utility function that maximises the expected growth, while
Hakansson and Ziemba (1995) considered the importance of utility function
choice for the long-term growth in wealth. Rabin (2000) and Rabin and
Thaler (2001) criticised the utility theory and the assumption that rational
investors are risk-averse. They showed that the estimation of a concave util-
ity function based on a decision on a certain level of wealth implies irrational
choices on other levels of wealth. They suggested an alternative functional
form that would capture risk preferences in a more relevant manner.

Modern optimal portfolio selection theory is based on utility maximi-
sation over time. The static one-period optimal portfolio selection theory
was elaborated to a dynamic multi-period setting by Samuelson (1969) in
discrete time and by Merton (1969, 1971) in continuous time. A dynamic
optimal portfolio selection framework allows portfolio adjustments either in
discrete time steps or continuously. If the investment period is long, the pos-
sibility of adjusting the portfolio according to new information yields better
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optimisation results. Steinbach (2001) presented some more recent advances
and refinements made in the modern optimal portfolio selection theory.

Companies participating in uncertain markets often have an interest in
decreasing their profit uncertainty, or, in other words, in hedging against
risks. Smith and Stulz (1985) showed that taxation effects can favour the
more constant profits of a company that is hedging. Leland (1998) argued
that hedging enables greater leverage, meaning the company can better op-
timise its capital structure. The question of hedging can be formulated as an
optimal portfolio selection problem, i.e. as a risk management problem.

The introduction of electricity spot markets and electricity derivative in-
struments created a new challenge for the, till then, regulated power industry.
High spot market price volatility exposes spot market participants to a high
level of profit uncertainty. Hedging with spot electricity derivatives reduces
profit uncertainty. The problem is to know how much to hedge and with what
instruments. Kaye et al. (1990) and Amundsen and Singh (1992) considered
the use of derivatives to hedge risks in spot electricity markets. Weron (2000)
presented a more detailed analysis on the special characteristics of electricity
markets. Bessembinder and Lemmon (2002) argued that companies operat-
ing in competitive electricity markets are likely to benefit from reducing their
profit uncertainty like companies in other markets.

Bjorgan et al. (1999) presented an application of the Markowitz model for
an electricity generator that sells electricity at spot price. Their optimal port-
folio selection considered the generation strategy together with hedging deci-
sions. Fleten et al. (1997, 2002) and Mo et al. (2001) based their work on the
tradition of optimal hydro-power scheduling. They studied a scenario-based
stochastic programming approach for solving the optimal portfolio selection
problem in electricity markets so that the optimal generation decisions and
hedging decisions are coordinated. Bjørkvoll et al. (2001) optimised gener-
ation and the corresponding hedging portfolio but separated the generation
and hedging decisions. They argued that hedging decisions that take place
with market prices do not affect the generation decisions. Existing litera-
ture on optimal portfolio selection focuses on the optimisation problem of an
electricity generator.

In addition to the influence of risk on optimal portfolio selection, the
quantification of risk is an interesting question in itself. Markowitz (1952a)
associated risk with the variation of portfolio return. Since then, increased
competition and consequent tighter margins have increased the need to anal-
yse risks. Baumol (1963) presented an alternative risk measure that later has
become the standard risk analysis tool in financial markets, the value-at-risk
measure. For example, Jorion (1997) presented a thorough analysis on value-
at-risk. Value-at-risk measures the difference between expected wealth and
a level below which the wealth is at a given probability. More precisely, the
value-at-risk for the wealth in a portfolio π at a given probability α ∈ (0, 1)
and over a given time τ is

V aR(π;α, τ) := EP [W (π, S(τ, ω))]− inf{L ∈ R|P (W (π, S(τ, ω)) < L) ≥ α},
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where the portfolio is constant over time. Value-at-risk has some un-
wanted characteristics. For example, value-at-risk does not indicate how low
wealth can be if the probabilistic limit breaks. Artzner et al. (1999) intro-
duced risk measures that are more suitable for optimisation problems and
give more intuitive risk quantifications. Föllmer and Schied (2002) gave a
detailed analysis of the properties of risk measures. The choice of a risk
measure is dependent on investors’ preferences, as is the choice of a utility
function.

Pilipovic (1997) applied value-at-risk to electricity markets. In finance,
value-at-risk measures the potential change in portfolio wealth in the short-
term. Electricity portfolios that include physical assets are held over a longer
time. Lemming (2004) presented a variation of value-at-risk called the profit-
at-risk that gives more relevant risk quantifications in electricity markets.
Profit-and-risk is identical in form to value-at-risk, but the time horizon is
different. Value-at-risk focuses on the short-term changes in portfolio wealth,
while profit-at-risk focuses on the wealth after longer time periods.

3 Results

3.1 Spot price model

Article [I] considers an efficient and economically sound fundamental elec-
tricity spot price model for the Nordic market. The model explicitly states
the discrete time stochastic processes for the fundamental factors that influ-
ence spot prices. A market equilibrium model that approximates the actual
Nordic market setting combines the stochastic factors to form spot prices.

The stochastic climate factors in article [I] are temperature and precipi-
tation. Based on these, the article models hydrological inflow and snow-pack
development, which affect hydro-power generation availability. The rest of
the supply consists of constantly run nuclear power, partly temperature-
dependent back-pressure generation, and price-driven condensing power. The
demand model has a temperature-dependent component that captures the
seasonality of demand and a stochastic component. Historical observations,
underlying physical phenomena, and, if needed, expert opinions justify the
model construction.

Mathematically, the movements of the n stochastic factors, X(t, ω) :=
(X0(t, ω), . . . , Xn(t, ω)), follow a discrete time diffusion process

Xi(t+ ∆t, ω) = µi(t,X(t, ω)) + σi(t,X(t, ω))εi(t, ω), 0 ≤ t ≤ T, 1 ≤ i ≤ n,

where µi(t,X) is the local drift of Xi(t, ω) and σi(t,X) is the local volatility
from Gaussian stochastic variable εi(t, ω). Based on the fundamental factors,
the approximate market model creates a competitive equilibrium for the spot
price.

In contrast to market-dependent price data, a long history is available for
the estimation of fundamental factor process parameters. Therefore, the es-
timates for the fundamental factor processes are stabler and factors are more
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accurately represented than statistical models for the complicated electricity
spot price process. Realised market prices provide estimates for the param-
eters of the supply–demand approximation. Estimation from market prices
reflects the marginal generation costs of the whole market and the behaviour
of market participants.

The model of article [I] produces spot price distributions efficiently in
computational terms when compared to previous fundamental models. The
article presents the model performance with numerical results on the Nordic
market. The ideal use of the model is to create mid-term spot price distri-
butions. Better approaches exist for the short-term price forecasting. The
unavailability of accurate long-term weather forecasts, among other things,
limits the possibilities of making accurate long-term electricity price forecasts.
However, the model is able to capture observed fundamentally-motivated
market price movements.

Explicit models for the underlying stochastic factors are useful in risk
management problems, like the one in article [IV]. An example is the quan-
tification of the risk of an electricity end user with temperature-dependent
demand. The end user’s volume risk would be unnoticeable without a model
for the demand and the explaining temperature. An additional benefit of
modelling the underlying factors explicitly is the possibility of creating and
analysing single hand-picked scenarios; for example, when analysing worst-
case performance.

As in earlier literature, the price model gives derivative prices under the
implied probability measure P by assuming that pricing in the market oc-
curs using the same measure. The advantage created by the article is the
pricing possibility of derivatives that are dependent on spot price and un-
derlying factors simultaneously. Article [I] shows how to price a complex
multi-dimensional derivative on electricity spot price and temperature and
demonstrates some quantitative theoretical prices.

3.2 Forward price dynamics

Article [II] presents a statistical model for the electricity forward price dy-
namics in the Nordic market. The relation between electricity spot price
and electricity forward prices is more complicated than in most financial and
commodity markets, like article [III] shows. Short-term supply–demand equi-
librium determines the electricity spot prices, and supply and demand must
be in balance at each instance separately. As a result, spot price now is not
explicitly connected with the spot price at some future time point. Similarly,
no explicit connections exist between the forward prices of different delivery
times.

The model for the electricity forward price dynamics captures the main
characteristics of the observed spot and forward price movements. Short-term
changes in, for example, weather or supply conditions affect the short-term
prices to a greater extent. Therefore, spot price volatility is higher than
forward price volatility. Because changes in the supply–demand conditions
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are limited in time, forward prices for neighbouring delivery times correlate
with each other more than forward prices whose delivery times are distant
from each other.

A probability space (Ω,F , P ) models the market uncertainty. To remain
tractable, the article makes some simplifications. Parametrised exponential
functions model the volatility and correlation effects. The article assumes
that forward prices are equal to the expected future spot prices, i.e. at time
t, the instantaneous forward price for delivery time τ , f(t; τ), is

f(t; τ) = E[S(τ, ω)|Ft],

where Ft describes the current market information. This implies that
forward prices converge to spot prices when the delivery time τ → t. The
model assumes that the electricity spot volatility curve σ(t) : [0, T ]→ R

+ is
deterministic and forward prices follow log-normal distributions.

The main assumption in article [III] is that the forward prices follow a
stochastic differential equation

df(t; τ) = f(t; τ)e−α(τ−t)σ(τ)dB(t, ω; τ) ∀t ∈ [0, τ ], τ ∈ [0, T ],

where α > 0 is a real constant and B(t, ω; τ) is a Brownian motion corre-
sponding to a forward contract with delivery time τ . The correlation struc-
ture of Brownian motions with delivery times τ and τ ∗ is given by

dB(t, ω; τ)dB(t, ω; τ ∗) = e−γ|τ−τ
∗|,

where γ > 0 is a real constant.
Use of the maximum likelihood method gives estimates for model param-

eters with data from the Nordic electricity market. Article [II] presents three
applications and numerical examples. Firstly, the article studies the applica-
tion of the forward price model to electricity forward price forecasting, given
an electricity spot price forecast. Coherent spot and forward price forecasts
are useful in many applications, for example, in dynamical extensions to the
optimal portfolio selection model in article [IV]. The model allows the calcu-
lation of time-dependent forward price volatilities that are in use in option
pricing formulae for options on forward contracts. Finally, article [II] consid-
ers the ability to explain forward price curve movements with the model. For
example, the use of four factors to explain price variations captures roughly
three quarters of the uncertainty for a one-year time period. The results
of the article confirm similar earlier results as to the difficulty of modelling
electricity forward price dynamics when compared to other markets.

3.3 Electricity derivative pricing

Article [III] considers the pricing problems for the most common derivatives
in the Nordic market. The article introduces a mathematical framework for
the assets and instruments in the financial tradition. The underlying market
S(t, ω) is modelled in a probability space (Ω,F , P ).
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The article associates the non-storability of electricity with the non-
tradability of spot electricity. It is impossible to buy electricity from the
market now, hold it over time, and sell it back to the market. Due to the
non-tradability of spot electricity, the electricity market is incomplete and
the standard arbitrage-free pricing arguments of finance are inapplicable.

Article [III] assumes that an equivalent martingale measure Q exists and
market participants price derivatives instruments with Q. The measure Q is
not unique, as the non-tradability of electricity leads to an incomplete market.
Nevertheless, theoretical prices for derivatives with normalised payoffs F̃ (ω)
are given by

f(t, ω) = EQ[F̃ (ω)|Ft].

The article does not try to explicitly quantify the derivative prices but focuses
on available general results and theoretical price relations.

Article [III] shows that forward prices converge to the market expectations
of spot prices at the end of their trading period. The result is well in line
with the efficient market hypothesis in finance. The article proves that the
expected spot prices, and hence forward prices, are different from the actual
price realisations, P -almost surely. The article summarises these results to
show that the pricing measure Q includes the market expectations of future
forward price movements.

Electricity forward contracts are financial securities. They can be traded
despite the non-tradability of spot electricity. Article [III] concludes that
the pricing of derivatives on electricity forward contracts corresponds to the
pricing of derivatives on forwards in finance. In particular, the difficulties
of pricing European call options on forward contracts are no different from
financial markets.

Article [III] provides a few arbitrage-free price relations between spot elec-
tricity derivative prices. The article shows that put and call options on spot
price averages, i.e. Asian options, follow the put-call parity found in other
financial markets. The article presents the special characteristics of swing
option pricing, and an arbitrage-free lower bound for the price. The lower
bound is based on electricity forward prices. The article shows that, with
similar parameters, the swing option with greater flexibility can have a worse
payoff than an Asian option. The reason for this is that the terms of the swing
option can force an exercise at unfavourable times. The article introduces
several open problems for further study.

Actual market prices and price relations from the Nordic market support
the theoretical results. European option prices for the forward contracts are
higher in the market than the theoretical Black and Scholes prices. Histori-
cal data that provide model parameters does not predict the future but the
market prices do include the expectations of market participants as to the
future. Also, market frictions mean that market participants require higher
profits for the risks involved in options. Finally, the article presents possi-
ble hedging alternatives for an electricity end user and the consequences of
hedging strategies.
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3.4 Risk management

Article [IV] considers a risk-averse market participant’s risk management
problem in competitive electricity markets. The participant holds a portfolio
that consists of financial derivative instruments, physical assets, and other
commitments dependent on electricity market prices. Electricity spot price
characteristics and complex derivative instruments in the portfolio mean that
no analytical solutions exist for the optimal portfolio selection problem. Arti-
cle [IV] presents a quantitative method that captures the main characteristics
of the problem. The method is computationally efficient and gives practical
solutions to market participants’ optimal portfolio selection problems.

Article [IV] formulates the risk management problem as an optimal port-
folio selection problem. The objective of the optimal portfolio selection is
to maximise the utility of wealth. The model is static in the sense that ini-
tial decisions cannot be adjusted. However, the model captures spot price
dynamics and the cash-flows linked to them during the optimisation period.
The initial portfolio is fixed π0 ∈ Rn+1. The optimal portfolio selection prob-
lem is to adjust π0 by θ ∈ Rn+1 so that the resulting portfolio π = π0 + θ
maximises the expected utility at the end of a fixed time period. Derivatives
and assets in the portfolio yield a payoff F (ω) ∈ Rn+1 during the optimisation
period [0, T ]. These payoffs accumulate the wealth W (π, F (ω)) := πTF (ω)
at the end of the time period. The wealth is reduced by the initial costs of
derivatives and assets. The portfolio selection problem is

max
θ∈Θ

E[U(W (π, F (ω)))], (3.1)

where the Θ ∈ Rn+1 gives the portfolio constraints. The initial decision is
to choose θ. Certain payoffs F (ω) realise and reduce or increase the wealth.
The expected utility models the participants’ risk preferences.

If the change in portfolio wealth is small, an approximation reduces the
computational requirements. The approach taken in article [IV] corresponds
with the derivation of the Arrow-Pratt measure of risk aversion. A Taylor’s
expansion approximates the utility function around the initial position, i.e.
the wealth given by the initial portfolio π0. The approximation of problem
(3.1) is

max
θ∈Θ

E[θT∂U

∂π
(πT

0 F (ω)) +
1

2
θT∂

2U

∂π2
(πT

0 F (ω))θ], (3.2)

with a ignorable constant term E[U(W (π0, F (ω)))] and an error term E[O(θ3)].
Monte Carlo simulation provides a numerical approximation of the expecta-
tion of the Taylor’s expansion. The problem thus becomes a deterministic
quadratic optimisation problem with given portfolio constraints θ ∈ Θ. If Θ
is a convex set, then solving the deterministic quadratic optimisation problem
is straightforward.

Solution of (3.2) requires the expectations of derivative and asset payoffs
F (ω) ∈ Rn+1. Monte Carlo simulation over the optimisation period produces
payoffs based on the simulated market prices and other relevant stochastic
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factors. These payoffs also give approximations of market prices of the deriva-
tives and assets in the portfolio. Inter-temporal portfolio adjustments would
require the computation of conditional asset prices in each state. Article [IV]
is restricted to a static optimal portfolio selection framework due to the com-
putational challenges involved in such an approach.

To carry out the Monte Carlo simulation, article [IV] presents an elec-
tricity spot price model. The expected spot price is equal to the prevailing
forward prices,

E[S(τ, ω)|Ft] = f(t; τ), (3.3)

where f(t; τ) is the forward price for delivery time τ at time t. Remaining
uncertainty around the expected value is log-normal5. A calibration of the
model parameters makes the expected spot prices equal to the electricity
forward prices. Model calibration prevents the optimisation of exploiting
differences between market forward prices and simulated prices.

Monte Carlo simulation of a fixed portfolio over time gives an estimate of
the distribution of portfolio wealth. Hence, a profit-at-risk6 measure, or any
other value from the wealth distribution, is directly available. Article [IV]
presents numerical solutions for an electricity end user and generator in the
Nordic market. The results of optimising with respect to a risk-averse utility
function are consistent with the reduction of risk as shown by the profit-at-
risk measure.

4 Discussion

The purpose of mathematical finance is to explain the phenomena observed
in financial markets. Typical questions relate to market price modelling,
derivative instrument pricing, and optimal portfolio selection. The same
questions are relevant in competitive electricity markets.

Stock price modelling in finance has relied on convenient mathematical
models. However, economic explanations of the price processes are important
in applications. For example, optimal portfolio selection or derivative pricing
in incomplete markets should not be based on arbitrary characteristics of
price models. It is possible to construct models and explain electricity spot
prices on the basis of market fundamentals. A similar problem exists in the
modelling of forward price dynamics. The inclusion of economic and market
fundamental factors in the forward price analysis should help to increase
the explanatory power of forward price models. The variety of models in
the literature calls for a comparative study to assess the performance of
approaches in explaining observed price movements.

Results of mathematical finance are unavailing in derivative instrument
pricing in competitive electricity markets. The main reason is the non-
storability of electricity that implies market incompleteness. In incomplete

5The article erroneously states that the returns of the prices are log-normally dis-
tributed. This is incorrect: The assumption is that prices are log-normally distributed.

6The article uses the term value-at-risk in an identical meaning.
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markets, it is impossible to construct arbitrage-free pricing rules that are the
basis of derivative pricing in financial markets. Derivative prices based on
some subjective price models have no theoretical relation to market prices.
The possibilities of stating objective price relations in electricity markets are
limited. Recent promising results in finance arise from the possibility of using
other observed market prices to create arbitrage-free derivative price inter-
vals. Within such an interval, prices can be selected on the basis of investors’
preferences, market views, or other commitments.

The prevalent business principles of finance are similar in electricity mar-
kets. Some concepts introduced in financial markets are therefore directly
usable in electricity markets. A careful application of optimal portfolio se-
lection and risk management is possible following the approaches in financial
markets. Likewise, risk measurement is as important, or even more impor-
tant, than in financial markets, due to the large electricity spot price uncer-
tainty. Dynamic optimal portfolio selection and development of risk measures
in electricity markets are subject to further research.

The perspective of finance is that of an individual investor. The use
of developed models and methods in business determines the usefulness of
the mathematical explanations. Globalisation and the resulting increase in
competition will heighten the need for effective applications of advanced the-
oretical models with a sound economic basis.
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