
Abstract: This thesis presents mathematical analysis of optical and electrical impedance tomography. We introduce papers [I–III], which study these diffusive tomography methods in the situation where the examined object is contaminated with inclusions that have physical properties differing from the background.

AMS subject classifications: 35R30, 35Q60, 35J25, 31A25, 31B20, 35R05, 78A70

Keywords: inverse boundary value problems, variational principles, optical tomography, non-scattering regions, radiative transfer equation, diffusion approximation, electrical impedance tomography, inverse conductivity problem, electrode models, inclusions, factorization method

nuutti.hyvonen@hut.fi

ISBN 951-22-7068-4
ISSN 0784-3143

Helsinki University of Technology
Department of Engineering Physics and Mathematics
Institute of Mathematics
P.O. Box 1100, 02015 HUT, Finland
email:math@hut.fi http://www.math.hut.fi/