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1 Introduction

Hopf algebras were introduced by Heinz Hopf in 1941, in the context of algeb-
raic topology. Somewhat simplified, a Hopf algebra is an algebra for which
the dual space is also an algebra so that the duality pairing is intertwined in
a subtle symmetric way. Examples range from group algebras, their duals,
and universal enveloping algebras to deformations of such structures.

The study of Hopf algebras can be considered as a kind of non-commutative
geometry, stemming out from the 19th century observations of polynomial
rings. Indeed, by the work of Hilbert and others, many commutative rings
were realized as function algebras — recall the Gelfand theory of commut-
ative Banach algebras culminating this line of thought in early 1940s: For a
commutative unital C∗-algebra A, let X := Hom(A, C). The Gelfand trans-

form of f ∈ A is f̂ : X → C defined by f̂(x) := x(f). If X is endowed

with the weakest topology such that Â := {f̂ | f ∈ A} ⊂ C(X) then it is a

compact Hausdorff space and C(X) = Â ∼= A. That is, A is essentially an
algebra of functions.

Hence, commutative algebra is closely related to geometry: instead of a
space, we can study the function algebra on it. Non-commutative geometry is
a concept referring to the study of not necessarily commutative algebras. We
may associate C∗-algebras to non-commutative topology (commutative case:
C(X)), von Neumann algebras to non-commutative measure theory (com-
mutative case: L∞(X)), and Lipschitz-algebras to non-commutative metric
theory (commutative case: Lip(X)) (see [7]).

What if Hom(A, C) of a commutative C∗-algebra A has a structure of
a topological group? The group axioms give rise to operations on the al-
gebra, and these new operations have natural symmetries reflected in the
algebra; generalizing this to the non-commutative case, Hopf algebras arise.
Nevertheless, Hopf algebras provide a satisfying duality theory for algebraic
structures much more general than just groups. Purely algebraic Hopf theory
is often spiced up with topology, and there are Hopf-von Neumann algebras,
Hopf C∗-algebras, Hopf-Fréchet algebras, etc.

In the sequel, we study Hopf algebras inspired by symbolic calculus of
pseudodifferential operators on a compact Lie group G. There the Hopf
algebra H is the nuclear Fréchet algebra D(G) of functions f ∈ C∞(G);
the pseudodifferential operators that map H to H form a subalgebra of
L(H). Instead of studying an operator A ∈ L(H), we study its symbol
σA : G → L(H), in some sense a less complicated object. The symbol of a
pseudodifferential operator composition is approximately the product of the
symbols, σAB(x) = σA(x)σB(x)+ . . ., and the symbol of the adjoint operator
is almost the adjoint of the original symbol, σA∗(x) = σA(x)∗+. . .. Often just
these first term approximations are studied, discarding the remainders. Thus
a distorted composition A?B can be defined by σA?B(x) := σB(x)σA(x), and
a distorted adjoint A? by σA?(x) := σA(x)∗. But it turns out that L(H) has
analogies of all the other Hopf operations as well.
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2 Schwartz Kernel Theorem.

Schwartz Kernel Theorem [5]. For nuclear Fréchet spaces and their
duals the projective and injective tensor products coincide, and in the sequel
⊗̂ refers to these topological tensor products. Let H be a nuclear Fréchet
space and A ∈ L(H). The Schwartz kernel KA ∈ H⊗̂H′ of A is defined by

〈Aφ, f〉 =: 〈KA, f ⊗ φ〉

for every φ ∈ H and f ∈ H′ := L(H, C), where the duality brackets are for
H×H′ and (H⊗̂H′) × (H′⊗̂H), respectively. Then the mapping

(A 7→ K(A) = KA) : L(H) → H⊗̂H′

is a continuous linear isomorphism, for which

KBAC = (B ⊗ C ′)KA,

where C ′ ∈ L(H′) is the adjoint of C, defined by 〈φ,C ′f〉 := 〈Cφ, f〉.

3 Hopf algebras

Basic treatises of Hopf algebras are [2] and [1]. We shall use the following
convention: all the vector spaces encountered in this paper are over the
complex field C, and V ⊗ W denotes the tensor product of vector spaces.
We shall constantly identify the vector spaces C ⊗ V and V ⊗ C with V by
respective mappings µ⊗ v 7→ µv and v⊗µ 7→ µv. The identity mapping in a
vector space is denoted by I. The linear interchanging operator τ : V ⊗W →
W ⊗ V is defined by τ(v ⊗ w) := w ⊗ v.

Algebra. An algebra A = (A,m, η) consists of a vector space A with linear
mappings m : A ⊗ A → A (the product or multiplication) and η : C → A
(the unit), satisfying

m(m ⊗ I) = m(I ⊗ m)

(associativity of the product) and

m(η ⊗ I) = I = m(I ⊗ η)

(the unit of the algebra; notice the identifications C⊗ V = V = V ⊗C). We
shall use the following abbreviations: m(f ⊗ g) = fg and η(1) = I. Then
the algebra axioms are written as (fg)h = f(gh) (= fgh) and If = f = fI.
The algebra is commutative if m = mτ . If A,B are algebras then there is a
natural tensor product algebra A⊗ B with the unit

ηA⊗B := ηA ⊗ ηB

and with the product defined by

mA⊗B := (mA ⊗ mB)(I ⊗ τ ⊗ I),

i.e. (a1 ⊗ b1)(a2 ⊗ b2) = (a1a2) ⊗ (b1b2).
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Co-algebra. A co-algebra C = (C, ∆, ε) consists of a vector space C with
linear mappings ∆ : C → C ⊗ C (the co-product or co-multiplication) and
ε : C → C (the co-unit) satisfying

(∆ ⊗ I)∆ = (I ⊗ ∆)∆

(co-associativity of the co-product) and

(ε ⊗ I)∆ = I = (I ⊗ ε)∆

(the co-unit of the co-product). Notice that the co-algebra axioms are ob-
tained by inverting the arrows of the commutative diagrams given by the
algebra axioms; this is a dual concept. Co-algebra is called co-commutative

if ∆ = τ∆. The tensor product co-algebra C ⊗ D of co-algebras C,D is en-
dowed with operations

εC⊗D := εC ⊗ εD

and
∆C⊗D := (I ⊗ τ ⊗ I)(∆C ⊗ ∆D).

Now if A is an algebra and C is a co-algebra, we can define the convolution

A ∗ B of operators A,B ∈ L(C,A) by A ∗ B := m(A ⊗ B)∆.

Bi-algebra. A bi-algebra B = (B,m, η, ∆, ε) is an algebra (B,m, η) and a
co-algebra (B, ∆, ε) such that

∆(fg) = ∆(f)∆(g)

(the co-product is multiplicative, or the product is co-multiplicative),

ε(fg) = ε(f)ε(g)

(ε is a multiplicative linear functional on B) and

∆(I) = I ⊗ I

(and thereby ε(I) = 1 follows). To state this in another way, ∆, ε are algebra
morphisms and m, η are co-algebra morphisms. Now ηε ∈ L(B) is the neutral
element with respect to the convolution product, i.e. A∗(ηε) = A = (ηε)∗A,
and associativity of the convolution follows directly from both co-associativity
of ∆ and associativity of m.

Hopf algebra. A Hopf algebra

H = (H,m, η, ∆, ε, S)

is a bi-algebra (H,m, η, ∆, ε) with so called antipode S ∈ L(H) such that

I ∗ S = ηε = S ∗ I.

That is, S is the convolutive inverse of I. An involutive Hopf algebra is a
Hopf algebra H with involution j : H → H; i.e. j is conjugate-linear, j2 = I,
j(fg) = j(g)j(f) and (j ⊗ j)∆ = ∆j.
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Group algebra example. Let G be a compact Lie group, e ∈ G its neutral
element. Let D(G) be the space C∞(G) with the usual Fréchet space struc-
ture. We identify D(G)⊗D(G) with a subspace of D(G×G). Then the vector
space D(G) is endowed with co-algebra operations (∆φ)(x, y) := φ(xy) and
ε(φ) := φ(e). Hence the co-algebra axioms here correspond to the monoid ax-
ioms of the underlying space. Trivially, the usual multiplication and the unit
I ∈ D(G) provide an algebra structure for D(G). Distribution f ∈ D ′(G) is a

linear functional on D(G), acting by 〈φ, f〉 :=

∫

G

φ(x) f(x) dµG(x), where µG

is the Haar measure of G. Then the convolution f ∗g ∈ D′(G) = L(D(G), C)
of f, g ∈ D′(G) defined as above coincides with the usual convolution:

〈φ, f ∗ g〉 := 〈∆φ, f ⊗ g〉

=

∫

G×G

φ(xy) f(x) g(y) dµG×G(x, y)

=

∫

G

φ(x)

∫

G

f(xy−1) g(y) dµG(y) dµG(x).

We notice that D(G) is in fact a bi-algebra with its canonical mappings, and
ηε(φ) = φ(e)I; the identity element with respect to the convolution is given
essentially by the Dirac delta δe at the neutral element e ∈ G. The group bi-
algebra D(G) is a natural involutive Hopf algebra with the antipode defined
by (Sφ)(x) := φ(x−1) and the involution given by (jφ)(x) := φ(x). Thus
here the antipode axiom is related to the existence and uniqueness of inverse
elements in the underlying monoid. Notice also that D(G)⊗̂D(G) can be
identified with D(G × G).

Hopf algebra in a nutshell: In short, if we denote m(A ⊗ B)∆ = A ∗ B

and I∗ = ηε, the axioms for a Hopf algebra H are:

m(m ⊗ I) = m(I ⊗ m), η(1) = I,

(∆ ⊗ I)∆ = (I ⊗ ∆)∆, I ∗ I∗ = I = I∗ ∗ I,

∆m = mH⊗H(∆ ⊗ ∆) = (m ⊗ m)∆H⊗H, εm = mC(ε ⊗ ε),

∆(I) = I ⊗ I, ε(I) = 1,

I ∗ S = I∗ = S ∗ I,

all the mappings m, η, ∆, ε, S being linear. The axioms for an involution j in
an involutive Hopf algebra are then

jm = τ(m ⊗ m)j, ∆j = (j ⊗ j)∆,

j being conjugate-linear.
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Consequences of the Hopf axioms. It quite easily follows that S is
anti-multiplicative and anti-co-multiplicative,

Sm = m(S ⊗ S)τ, ∆S = τ(S ⊗ S)∆,

and that
SI = I, SI∗ = I∗ = I∗S.

Furthermore, in an involutive Hopf algebra, the antipode has the inverse

S−1 = jSj.

Duality of Hopf algebras. Let H be a nuclear Hopf-Fréchet algebra, i.e. a
nuclear Fréchet space and a Hopf algebra, with the algebraic tensor products
replaced by the topological tensor products in the Hopf definitions. Then the
dual space H′ = L(H, C) has a natural dual Hopf algebra structure. Indeed,
we define the Hopf structure H′ = (H′,m, η, ∆, ε, S) by dualities H×H′ → C,
(H⊗̂H) × (H⊗̂H)′ → C and C × C′ → C, where (H⊗̂H)′ ∼= H′⊗̂H′ and
C′ ∼= C:

〈φ,m(f ⊗ g)〉 := 〈∆φ, f ⊗ g〉,

〈φ, η(1)〉 := 〈ε(φ), 1〉 = ε(φ),

〈φ ⊗ ψ, ∆f〉 := 〈m(φ ⊗ ψ), f〉,

〈1, ε(f)〉 := 〈η(1), f〉,

〈φ, Sf〉 := 〈Sφ, f〉.

If H is an involutive Hopf algebra, we can endow the dual with an antipode
by

〈φ, j(f)〉 := jC〈j(Sφ), f〉,

where jC : C → C is the complex conjugation z 7→ z.

Group algebra dual. Let G be a compact Lie group and f, g ∈ D′(G).
Then it is easy to verify that m(f ⊗ g) = f ∗ g ∈ D′(G), and that η(1) =
δe ∈ D′(G) is the Dirac delta at e ∈ G. Moreover, εf =

∫
G

f(x) dµG(x)
and Sf(x) = f(x−1) informally. The involution for distributions is given
by (j(f))(x) = f(x−1). Notice that D′(G)⊗̂D′(G) can be identified with
D′(G × G).

Hopf structures via linear isomorphisms. Let H be a Hopf algebra,
B a vector space and ι : B → H a linear bijection. Then this isomorphism
naturally endows B with a Hopf structure:

mB := ι−1mH(ι ⊗ ι),

ηB := ι−1ηH,

∆B := (ι−1 ⊗ ι−1)∆Hι,
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εB := εHι,

SB := ι−1SHι.

An involution, if it exists, is defined by

jB := ι−1jHι.

In the sequel, we equip L(H) with Hopf structures L∗ and L? via linear
bijections

L?
ρ
→ L∗

K
→ H⊗̂H′,

where L? = L∗ = L(H) as topological vector spaces, K is the Schwartz kernel
isomorphism, and ρ is a natural convolution isomorphism A 7→ A ∗ S.

4 Hopf structure via Schwartz kernels

The fundamental Hopf structure for L(H). Let H be a nuclear Hopf-
Fréchet algebra; the most natural way to endow L(H) with a Hopf algebra
structure is from H⊗̂H′ via the Schwartz kernel isomorphism A 7→ K(A) =
KA. For instance,

m∗(A ⊗ B) := K−1(m(KA ⊗ KB)).

Let us denote this Hopf algebra by L∗ = (L(H),m∗, η∗, ∆∗, ε∗, S∗), and write
I∗ := η∗(1).

Theorem 1. The operations in L∗ can be written in terms of the basic Hopf

operations m, η, ∆, ε, S of H as follows:

m∗(A ⊗ B) = m(A ⊗ B)∆ = A ∗ B, (1)

I∗ = η∗(1) = ηε, (2)

∆∗(A) = ∆Am, (3)

ε∗(A) = ε(A(IH)), (4)

S∗(A) = SAS. (5)

If H is an involutive Hopf algebra then L∗ has a Hopf structure with involu-

tion j∗, where

j∗(A) = jAjS. (6)
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Proof. In the following, A,B ∈ L(H) have respective Schwartz kernels
KA, KB ∈ H⊗̂H′. Let f, g ∈ H′ and φ, ψ ∈ H. Then

〈m∗(A ⊗ B)φ, f〉 := 〈m(KA ⊗ KB), f ⊗ φ〉

= 〈KA ⊗ KB, ∆(f ⊗ φ)〉

= 〈(A ⊗ B)∆φ, ∆f〉

= 〈m(A ⊗ B)∆φ, f〉

= 〈(A ∗ B)φ, f〉,

〈I∗φ, f〉 := 〈η(1 ⊗ 1), f ⊗ φ〉

= 〈1 ⊗ 1, ε(f ⊗ φ)〉

= 〈εφ, εf〉

= 〈ηεφ, f〉,

〈∆∗(A)(φ ⊗ ψ), f ⊗ g〉 := 〈∆(KA), (f ⊗ φ) ⊗ (g ⊗ ψ)〉

= 〈KA,m((f ⊗ φ) ⊗ (g ⊗ ψ))〉

= 〈Am(φ ⊗ ψ),m(f ⊗ g)〉

= 〈∆Am(φ ⊗ ψ), f ⊗ g〉,

ε∗(A) := ε(KA)

= 〈KA, η(1 ⊗ 1)〉

= 〈Aη1, η1〉

= 〈εAη1, 1〉

= εAI,

〈S∗(A)φ, f〉 := 〈S(KA), f ⊗ φ〉

= 〈KA, S(f ⊗ φ)〉

= 〈ASφ, Sf〉

= 〈SASφ, f〉.

If H is an involutive Hopf algebra with involution j then H′ has involution
i given by 〈φ, i(f)〉 = 〈j(Sφ), f〉; thereby L∗ has the Hopf structure with
involution A 7→ jAjS, because

〈(j ⊗ i)KA, f ⊗ φ〉 = 〈(S−1 ⊗ I)KA, (i ⊗ jS)(f ⊗ φ)〉

= 〈S−1AjSφ, if〉

= 〈jSS−1AjSφ, f〉

= 〈KjAjS, f ⊗ φ〉;

notice that we used the fact KBAC = (B ⊗ C ′)KA 2
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Hopf operations for L(D(G)). Let G be a compact Lie group and A,B ∈
L(D(G)) with respective Schwartz kernels KA, KB. Then informally

KA∗B(x, y) =

∫

G

KA(x, yz−1) KB(x, z) dµG(z),

ε∗(A) =

∫

G

KA(e, z) dµG(z),

KS∗(A)(x, y) = KA(x−1, y−1),

Kj∗(A)(x, y) = KA(x, y−1),

and so on.

5 Hopf homomorphism by convolution

In Theorem 1 we equipped L(H) with the involutive Hopf structure L∗ from
H⊗̂H′ via the Schwartz kernel isomorphism. There the product is the op-
erator convolution (A,B) 7→ A ∗ B = m(A ⊗ B)∆, with the unit element
I∗ = ηε ∈ L(H). We know that I and S are convolution inverses to each
other, I ∗ S = ηε = S ∗ I. A simple way to endow L(H) with an involutive
Hopf structure with the unit element I is via the linear bijection

ρ = (A 7→ A ∗ S) : L(H) → L∗.

Alternatively, this Hopf algebra is begotten by the isomorphism

L = (A 7→ LA = KA∗S) : L(H) → H⊗̂H′.

We denote this Hopf structure by

L? = (L(H),m?, η?, ∆?, ε?, S?, j?).

Since S ∗ I = ηε = I∗ and (A ∗ S)(I) = AI, we get:

Theorem 2. The operations in L? can be written in terms of the basic Hopf

operations m, η, ∆, ε, S of H as follows:

m?(A ⊗ B) = A ∗ S ∗ B, (7)

I? = η?(1) = I (8)

∆?(A) = (∆(A ∗ S)m) ∗ (I ⊗ I), (9)

ε?(A) = ε(A(IH)), (10)

S?(A) = (S(A ∗ S)S) ∗ I. (11)

If H is an involutive Hopf algebra then L? has a Hopf structure with involu-

tion j?, where

j?(A) = (j(A ∗ S)jS) ∗ I. (12)
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6 Pseudodifferential operators

Pseudodifferential operators. Let S(Rn) be the Schwartz test func-
tion space of rapidly decreasing smooth functions Rn → C. An operator
A ∈ L(S(Rn)) is called a pseudodifferential operator of order m ∈ R on Rn,
denoted by A ∈ Ψm(Rn), if it is of the form

(Af)(x) =

∫

Rn

a(x, ξ) f̂(ξ) ei2πx·ξ dx,

where the symbol a ∈ C∞(Rn × Rn) satisfies the inequalities

∣∣∂α
ξ ∂β

xa(x, ξ)
∣∣ ≤ CAmαβ ‖ξ‖

m−|α|
Rn

for ‖ξ‖Rn > 1, where CAmαβ < ∞ is a constant depending on A,m, α, β.
Let M be a compact smooth manifold without a boundary, and let D(M)
be the test function space of C∞-smooth functions on M . An operator
A ∈ L(D(M)) is called a pseudodifferential operator of order m ∈ R on
M , denoted by A ∈ Ψm(M), if all of its localizations belong to Ψm(Rdim(M));
this definition makes sense, since Ψm(Rn) is invariant under smooth changes
of local coordinates. A principal symbol of a pseudodifferential operator
A ∈ Ψm(M) is a function on the cotangent bundle of M defining A up to
Ψm−1(M). If pseudodifferential operators A ∈ ΨmA(M) and B ∈ ΨmB(M)
have respective principal symbols a, b, then the composition AB has a prin-
cipal symbol ab, and the adjoint A∗ has a principal symbol a; in some sense,
pseudodifferential operator algebras behave like function algebras. For more
about pseudodifferential calculus, see [4].

Compact Lie groups. The nuclear Fréchet space of interest for us is D(G),
where G is a compact Lie group. Let µG be the normalized Haar measure
of G. For A ∈ L(D(G)), let us define a mapping sA : G → D′(G) and a
convolution operator σA(x) ∈ L(D(G)) by

(Aφ)(x) =

∫

G

KA(x, y) φ(y) dµG(y)

=:

∫

G

sA(x)(xy−1) φ(y) dµG(y)

= (sA(x) ∗ φ)(x)

=: (σA(x)φ)(x).

Let us call the mapping σA : G → L(D(G)) the symbol of A. It is note-
worthy that A 7→ σA is a one-to-one mapping. For pseudodifferential op-
erators on G, there is a symbolic calculus with asymptotic expansions ana-
logous to the Euclidean case, see [3] and [6]. One of the consequences is
that if pseudodifferential operators A1 ∈ Ψm1(G) and A2 ∈ Ψm2(G) have
the respective symbols σA1

, σA2
, then the composition A1A2 ∈ Ψm1+m2(G)

has the symbol x 7→ σA1
(x)σA2

(x) modulo Ψm1+m2−1(G), and the adjoint
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A∗
1 ∈ Ψm1(G) has the symbol x 7→ σA1

(x)∗ modulo Ψm1−1(G). Again, the
behavior of pseudodifferential operator algebras resembles function algebra
case. Next we show how symbolic calculus is related to the Hopf algebra
D(G).

Remark. The distribution LA ∈ D(G)⊗̂D′(G) introduced in the previous
section satisfies LA = (I ⊗ S)sA, because

LA(x, y) = KA∗S(x, y)

=

∫

G

KA(x, yz−1) KS(x, z) dµG(z)

= KA(x, yx)

= sA(x, y−1).

Conversely, sA = (I ⊗ S)LA, since here S2 = I.

Theorem 3. Let A,B ∈ L(D(G)). Then

σA?B(x) = σB(x)σA(x)

for every x ∈ G. If A ∈ Ψm1(G) and B ∈ Ψm2(G) then

A ? B ∈ Ψm1+m2(G) and A ? B − AB ∈ Ψm1+m2−1(G).

Moreover, σI?
(x) ≡ I.

Proof. Notice that D(G) is commutative and that S : D′(G) → D′(G) is
antimultiplicative. Thus we get

sA?B = (I ⊗ S)LA?B

= (I ⊗ S)(LA LB)

= (I ⊗ S)(((I ⊗ S)sA) ((I ⊗ S)sB))

= ((I ⊗ S)(I ⊗ S)sB) ((I ⊗ S)(I ⊗ S)sA)

= sB sA,

and consequently σA?B(x) = σB(x)σA(x).
Let A ∈ Ψm1(G) and B ∈ Ψm2(G). As it is well-known, AB ∈ Ψm1+m2(G)

and [A,B] = AB − BA ∈ Ψm1+m2−1(G). From the symbolic calculus of [3]
and [6] it follows that the operator A ? B with the symbol

x 7→ σB(x)σA(x)

belongs to Ψm1+m2(G), and moreover that A ? B − BA ∈ Ψm1+m2−1(G),
because the first term in the asymptotic expansion for σBA(x) is σB(x)σA(x).
Hence also

A ? B − AB = A ? B − BA − [A,B]

belongs to Ψm1+m2−1(G) 2
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Theorem 4. Let A ∈ L(D(G)). Then

σj?(A)(x) = σA(x)∗

for every x ∈ G, where B∗ for B ∈ L(D(G)) is defined by

〈φ,B∗f〉 := 〈Bφ, f〉.

If A ∈ Ψm(G) then

j?(A) ∈ Ψm(G) and j?(A) − A∗ ∈ Ψm−1(G).

Proof. Now

sj?(A) = (I ⊗ S)Lj?(A)

= (I ⊗ S)(j ⊗ j)LA

= (I ⊗ S)(j ⊗ j)(I ⊗ S)sA

= (j ⊗ SjS)sA

= (j ⊗ j)sA,

and combining this with 〈g ∗ φ, f〉 = 〈φ, j(g) ∗ f〉, we get σj?(A)(x) = σA(x)∗.
If A ∈ Ψm(G) then A∗ ∈ Ψm(G) and

x 7→ σA∗(x) − σA(x)∗

is the symbol of an operator belonging to Ψm−1(G), by [3] and [6] 2

Theorem 5. Let A ∈ L(D(G)). Then

σS?(A)(x) = σA(x−1)′

for every x ∈ G. If A ∈ Ψm(G) then S?(A) ∈ Ψm(G).

Proof. Here

sS?(A) = (I ⊗ S)LS?(A)

= (I ⊗ S)(S ⊗ S)LA

= (I ⊗ S)(S ⊗ S)(I ⊗ S)sA

= (S ⊗ S)sA.

Combining this fact with 〈g∗φ, f〉 = 〈φ, (Sg)∗f〉, we get σS?(A)(x) = σA(x−1)′.
Let A ∈ Ψm(G). Then

x 7→ σA′(x) − σA(x)′

is the symbol of an operator belonging to Ψm−1(G), due to the analogous
result for A 7→ A∗ presented in [3] and [6]. If B ∈ Ψm(G) and κ : G → G is
C∞-smooth then

x 7→ σB(κ(x))

is the symbol of an operator belonging to Ψm(G), due to the symbol operator
inequalities in [6]. Finally, by choosing σB(x) := σA(x)′ and κ := (x 7→ x−1),
we obtain S?(A) ∈ Ψm(G) 2

13
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