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This dissertation consists of the introductory Chapter 0, four main Chapters 1–4,
and an epilogue in Chapter 5. Out of the main chapters, Chapters 1 and 4 are
entirely based on my individual work, whereas Chapters 2 and 3 represent the
output of joint research with Prof. Lutz Weis (Karlsruhe). The main theorems
of both Chapters 2 and 3 were first conjectured, and their initial proofs sketched,
by Lutz Weis, whereas substantial details were worked out by myself.
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5. A Hörmander-type condition for singular integrals 129
6. Application to evolutionary integral equations 135
7. Counterexamples to uniqueness of extensions 137
8. Appendix: Comparison of multipliers on Besov and Bôchner spaces 140
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Preface

Writing this dissertation was an exciting adventure. Not only did it take
me to various abstract spaces of vector-valued functions, but also to such exotic
corners of the world as Karlsruhe in Baden-Württenberg and Columbia in South-
Carolina; and although my work dealt with operators which are translation-
invariant, my own journey was far from being that, and each geographic loca-
tion entailed some new people and ideas which helped bring this work to its
completion.

Of course, I owe my advisor Stig-Olof Londen a lot for leading me to such
an interesting path to walk. The beginning of this journey must be traced back
to our first discussions on my Master’s thesis [44] in the late Summer 2000: the
topic he proposed and I would study, R-boundedness and multiplier theorems, and
the thesis I wrote on this in Spring 2001, turned out to be my ticket to the wide
world—something my advisor perhaps could foresee, but I certainly did not.

At two conferences around these themes (one in Blaubeuren, Germany, and
the other in Delft, the Netherlands) in Summer 2001, I had the chance to meet
many of the experts in the field, and with my Master’s thesis at hand, an excuse
to talk with some of them. These included Philippe Clément who had already
proposed the Hardy space framework of Chapter 1 for my research during the time
of my finishing of my Master’s degree, and also Lutz Weis, whose operator-
valued Mihlin theorem [87] was the culmination of my thesis, and who would
become an even more prominent character in my doctoral work later on.

I spent much of the Summer and Autumn of 2001 working with the problems
in Chapter 1, and I am indebted to Philippe Clément for numerous fruitful
discussions and suggestions during this period, and to Stig-Olof Londen for
many helpful conversations, and for proof-reading my manuscripts. Juha Kin-

nunen was also always ready to discuss mathematics, and often pointed me to
useful references, also at later phases of my work.

There is no doupt that the single event most influential in shaping this dis-
sertation was my invitation, by Lutz Weis, to spend some months in Karlsruhe
in the coming year 2002. By the time of my departure on March 1st, I had
completed the proof of the Main Theorem 1.6 of Chapter 1, and was ready to
consider a new challenge. This would be the problem of boundedness of singu-
lar integrals with operator-valued kernel which I would study with Lutz Weis,
first on the Lebesgue–Bôchner and then on the Besov spaces of vector-valued
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4 Preface

functions. Chapters 2 and 3 represent the output of this joint research carried
out during my visit to Karlsruhe from March to July in 2002. Our collaboration
was most successful and inspiring, and continued in Columbia, South-Carolina,
in the last two months of the year, around a topic falling outside the scope of the
present work.

During my stay both in Karlsruhe and later Columbia, I had many mathemat-
ical discussions with, and lots of assistance in practical matters from Maria Gi-

rardi and Cornelia Kaiser. I am also most grateful to Maria Girardi and
Lutz Weis for kindly giving me the access to some still unfinished manuscripts
of their papers.

Back home from Karlsruhe in August, I started developing some ideas on new
kinds of Fourier multiplier theorems—these considerations, building on and tieing
together the results of Chapters 1–3, but also introducing some new ideas which I
found very fascinating to discover, make up the last Chapter 4. During my writing
of this chapter in August–October 2002, my advisor’s careful proof-reading helped
locate numerous typographical bugs and notational inconsistencies, and improved
the style of the presentation substantially.

The “honest work” on this dissertation was essentially finished when I left for
Columbia for two months on October 24th; during my stay there, I completed
some remaining details and wrote the introductory Chapter 0.

In addition to the ones already mentioned, I wish to thank Giovanni Dore

for answering (in less than an hour!) my e-mail enquiry on maximal regularity;
Stefan Geiss for sharing his knowledge on the UMD-spaces; Nigel Kalton

for offering his insights on“p < 1”at a couple of occasions; Peer Kunstmann for
several discussions on Hardy spaces in Karlsruhe; Irena Lasiecka for pointing
me to the interesting potential applications of the theory developed in Chapter 1
and for inviting me to give a talk on this topic at the Workshop on Nonlinear
Wave Equations in Charlottesville in December 2002; and Hans-Olav Tylli

for bringing a useful reference to my knowledge. I am also grateful to Kari

Astala and Eero Saksman for refereeing this dissertation and for locating
several misprints and making constructive suggestions to improve the final form
of the work. My special thanks are addressed to all those I forgot to mention.

During this research, I was financially supported by the Marie Curie Fellow-
ship of the European Union while in Karlsruhe, and by the Magnus Ehrnrooth
Foundation starting from my return.

Giving a proper account of the contribution of my close ones to the life I
live, therefore also to the finishing of this dissertation, is beyond the level of the
present treatment.

Otaniemi, 24.3.2003 T. H.



CHAPTER 0

Historical introduction and overview

1. Introduction

Numerous interesting operators of mathematical analysis, as well as of applied
fields, possess a translation-invariant structure. This is not surprising in view of
the somewhat heuristic but very general principle of “relativity”: The intrinsic
phenomena in a given space (whether mathematical or physical) are independent
of the particular choice of a coordinate representation, and in particular of the
choice of the origin. This principle governs such mathematical transformations as
the (in fact prototypical) harmonic conjugation, time-evolution operators of au-
tonomous differential equations, and even the laws of physics, which are generally
believed to remain invariant under the action of spatial translations.

Thus the sources of translation-invariant operators T are abundant, but what
do these operators actually look like, say, on the Lebesgue spaces Lp(Rn)? In his
classical paper [43], L. Hörmander showed that those T which, in addition, are
linear and bounded, are always representable in the form Tf = k ∗f of a singular

convolution operator, or equivalently, in the form T̂ f = mf̂ of a Fourier multiplier
transformation. (Here the hat ˆ denotes the Fourier transform, k is a tempered

distribution, and m = k̂; the two formulae above are valid, at least, for all f in
the Schwartz class S(Rn), a dense subspace of Lp(Rn) whenever p ∈ [1,∞[.)

The difficult question is the converse: to determine whether or not a particular
kernel k, or the corresponding multiplier m, gives rise to a bounded operator in
the way described above. This remains a challenging problem even in the classical
situation considered in [43]; several sufficient conditions, meeting the needs of
multiple applications, have been obtained by various authors, but a complete
answer is only known for p ∈ {1, 2,∞}. (See e.g. [76, 78].)

This dissertation examines the question of boundedness of translation-invari-
ant operators on several spaces of vector-valued functions, where a vector refers
to a point of a possibly infinite-dimensional Banach space X. The task of devel-
oping a reasonable theory in this setting, preferably allowing for operator-valued
multipliers and kernels, has been studied since the 60’s and constitutes a highly
non-trivial generalization of the classical scalar-valued results. More precisely,
some of the scalar-valued results do generalize to the vector-valued situation as
soon as absolute values are replaced by norms; some turn out to be simply false
in infinite-dimensional spaces; but there are various central results which call for
generalization but require considerable new effort and possibly completely new
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6 Historical introduction and overview

ideas to go through in the more general setting. Some of the essential tools for
doing this have been discovered only very recently.

The call for the vector-valued extensions is also related to significant applica-
tions, in addition to being of purely theoretical interest. In fact, the vector-valued
extension of the theory was motivated, from the beginning, by the needs of the
functional analytic approach to partial differential equations. One of the basic
questions in this field, the so-called maximal regularity problem for the abstract
evolution equation

(1.1) u̇(t) + Au(t) = f(t) (t ∈ [0,∞[), u(0) = 0

is to determine, for a given operator A, whether the solution map f 7→ Au maps
Lp(R+;X) into itself. This map is translation-invariant in the positive direction,
in the sense that u(·−h) is the solution of (1.1) with f(·−h) in place of f , whenever
h ≥ 0, and we extend f and u to the negative half-line by zero-fill. Moreover,
f 7→ Au can be extended, in a natural way, to an operator on Lp(R;X) (instead
of Lp(R+;X)), which is translation-invariant in both directions.

In typical applications, the Banach space X could be Lq(U) (for some q ∈
]1,∞[, and U a domain in Rn, say), and A the realization of some differential
operator

∑
aα(x)Dα, with appropriate boundary conditions, on this space. The

equation (1.1) would hence be short-hand for

∂u

∂t
+
∑
α

aα(x)
∂|α|u

∂xα1
1 · · · ∂xαnn

= f(t, x) t ∈ [0,∞[ , x = (x1, . . . , xn) ∈ U,

u(0, x) = 0 x = (x1, . . . , xn) ∈ U,

with boundary conditions.
Even more importantly, (1.1) could represent the linearization of some non-

linear differential equation: A common line of attack on non-linear problems is via
fixed-point arguments, in which the maximal regularity property of the linearized
problem plays a decisive rôle.

When −A is the generator of an analytic semigroup e−tA, the variation-of-
constants formula is valid for the solution u of (1.1), and, moreover, Au is given
in the form

(1.2) Au(t) =

∫ t

0

Ae−sAf(t− s) ds,

at least for f ∈ L1
loc(R̄+;D(A)), in which case it is legitimate to bring the un-

bounded operator A inside the integral. This is recognized as the convolution of
f with the operator-valued kernel k(t) := Ae−tAχ]0,∞[(t); it is a bounded operator
for each fixed t, but the kernel is singular at the origin, having norm proportional
to t−1 as t ↓ 0. One can also write (1.2) in the frequency representation as a
Fourier multiplier transformation

(1.3) Âu(ξ) = A(i2πξ + A)−1f̂(ξ) =: m(ξ)f̂(ξ),
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with an operator-valued multiplier m. [A heuristic derivation of this formula is
simply to take the Fourier transform of both sides (1.1); for a rigorous argument,
see Prop. 3.7 of Chapter 1.]

To appreciate the non-trivial nature of the vector-valued theory of translation-
invariant operators required by the maximal regularity problem, note that its so-
lution, except in Hilbert spaces, remained open for almost 40 years since the
60’s, when pioneering work was made by L. de Simon [74] and by P. E.

Sobolevskij [75]. The problem attracted considerable interest over the decades,
and important partial solutions were given by T. Coulhon and D. Lamber-

ton [24], by G. Dore and A. Venni [29], by M. Hieber and J. Prüss [42],
and by Lamberton [56], but a fairly complete answer was only obtained in the
turn of the millennium by N. Kalton and G. Lancien [49] and by L. Weis [87].
Moreover, this solution did not come out of void but was built on several funda-
mental ideas developed in the decades in between; in particular, it required some
deep insights into the geometry of Banach spaces due to J. Bourgain [10, 12],
D. L. Burkholder [13, 14, 15], and J. Lindenstrauss and L. Tzafriri [58].

Agreeing that translation-invariant operators on spaces of vector-valued func-
tions are interesting, the specific problems in the field to be studied in this dis-
sertation are the following:

• The extension of Weis’ maximal regularity results, as well as the more
general theory of translation-invariant operators, from the Lp-setting
(p ∈ ]1,∞[) down to the real-variable Hardy spaces Hp (p ∈ ]0, 1]).
While the Hardy spaces are theoretically interesting as the natural con-
tinuation of the Lp-scale for exponents p ≤ 1, there is also a call for
such a theory from certain applications. To this call, Chapter 1 seems
to provide the first answers.
• A description of sufficient conditions for the Lp(Rn;X)-boundedness of

an operator f 7→ Tf = k ∗ f in terms of the convolution kernel k. This
approach taken in Chapter 2 complements the operator-valued Fourier
multiplier theorems recently proved in [2, 22, 25, 36, 40, 80, 87], where

the operators are written in the multiplier form T̂ f = mf̂ . While the
two forms are equivalent, some operators in applications appear more
naturally in the convolution form, and thus it is useful to have a device
for checking their boundedness directly in this representation.
• The investigation of singular, operator-valued convolution integrals on

Besov spaces of vector-valued functions. The Besov spaces provide a
useful substitute for the Lp-scale in situations where the structure of the
underlying Banach space X is not good enough to allow the boundedness
of interesting translation-invariant operators on Lp(Rn;X). While the
multiplier theory in this setting has been treated in [1, 35, 85], the
purpose of Chapter 3 is to provide the alternative convolution-integral
point of view to this problem.



8 Historical introduction and overview

• A return to the multiplier set-up, via the convolution point of view, to de-
rive Fourier multiplier theorems which improve on several known results
even in the scalar case. The convolution theory developed in the previ-
ous chapters is combined with some new Fourier-embedding theorems in
Chapter 4; these allow the deduction of very sharp sufficient conditions
for multipliers on all the function spaces mentioned above.

As indicated above, one chapter is devoted to each of the topics described.
For the convenience of the reader who is mainly interested in a particular topic, I
have tried to make the different chapters relatively self-contained. Only Chapter 4
relies substantially on the other chapters, but it can also be read independently,
provided one is ready to accept the results quoted from the earlier chapters. Most
of the cross-references refer to different parts of the same chapter; hence “(2.3)”
refers to the equation labelled (2.3) inside the same chapter where the reference
is made. Otherwise the chapter is indicated explicitly, e.g. “Theorem 4.21 of
Chapter 2”.

In the remaining part of this introductory chapter, I first sketch a historical
perspective to the theory of translation-invariant operators and some of its appli-
cations. The account given is not meant to be representative of the whole of this
field, which is much wider, but rather of those developments which are closely
related to the present work. After the historical overwiev, the main content of
each of the Chapters 1–4 will be explained.

2. A brief history of translation-invariant operators

Classical theory from M. Riesz to Hörmander. Translation-invariant
linear operators on Lp(Rn) are abundant; e.g., every linear differential operator∑
aαD

α falls into this category. But such operators are neither continuous nor
even defined on the whole space Lp(Rn). On the other hand, it is well-known
that every integrable function k induces, via

(2.1) Tf(x) :=

∫
Rn

k(x− y)f(y) dy =

∫
Rn

k(y)f(x− y) dy, a.e. x ∈ Rn,

a linear translation-invariant operator f ∈ Lp(Rn) 7→ Tf ∈ Lp(Rn) which is also
continuous, and in fact ‖T‖L(Lp(Rn)) ≤ ‖k‖L1(Rn) for all p ∈ [1,∞].

However, the restriction of the considerations to the integrable kernels k is
neither satisfactory in view of many of the applications one would like to consider,
nor necessary to have the operator T in (2.1) well-defined and bounded on Lp(Rn),
at least for p ∈ ]1,∞[. Interesting problems lie between the first-mentioned differ-
ential operators, which are obviously unbounded, and the convolution operators,
which are clearly bounded.

Probably the oldest and certainly the best-known instance of such an interme-
diate case is the operator of harmonic conjugation which maps a given function
u, harmonic in the unit disc, to another harmonic funtion v (unique up to an
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additive constant which may be fixed by requiring v(0) = 0, say) such that u+ iv
is analytic. A related problem which attracted the attention of complex analysts
of the early 20th century was whether the p-integral norm of v could in some way
be controlled in terms of that of u.

It is well-known today (see e.g. [51]) that this problem concerning functions
on the disc can be transformed to an equivalent problem related to the boundary
values on the unit circle T, and in fact, it can be cast into a form with close
resemblance with (2.1): The question is whether the periodic Hilbert transform

(2.2) Hπf(t) := p.v.-
1

2π

∫ π

−π

f(t− θ)
tan(θ/2)

dθ = lim
ε↓0

1

2π

(∫ −ε
−π

+

∫ π

ε

)
f(t− θ)
tan(θ/2)

dθ

(where the limit is easily seen to exist at least for all continuously differentiable
f) can be extended to a bounded linear operator on Lp(T) ≈ Lp(−π, π). If f
is the boundary function of the harmonic function u, then Hπf is the boundary
function of the harmonic conjugate v of u.

Another equivalent formulation of the problem, foreshadowing the more gen-
eral Fourier multiplier transformations, is obtained by considering the action of
Hπ on trigonometric polynomials. In this dense subspace of Lp(T), p < ∞, the
conjugation essentially changes some of the signs of the trigonometric coefficients:

(2.3)
n∑
−n

cke
ikt 7→ i

−1∑
−n

cke
ikt − i

n∑
1

cke
ikt.

From this observation and the orthogonality of the trigonometric polynomials,
the boundedness of Hπ on L2(T) follows at once. This boundedness phenome-
non of translation-invariant operators on L2 is in no way connected with the
particular properties of the Hilbert transform; rather, it is characteristic of all
of the scalar-valued theory of these operators. The boundedness or unbounded-
ness of such operators on L2 can immediately be seen from the boundedness or
unboundedness of the corresponding multiplier m, owing to the isometry on L2

of the Fourier transform, which simultaneously diagonalizes all the translation-
invariant operators.

Even in this scalar case, the boundedness of Hπ on Lp(T) for p 6= 2 turned out
to be a more difficult problem. It was eventually answered in the affirmative, for
p ∈ ]1,∞[, by M. Riesz [70], who applied tricky methods of complex analysis
which hardly suggested the significant generalizations of his result in the following
decades.

Nevertheless, the generalizations were to come. Between the publication of
the pioneering paper of M. Riesz and the work of Hörmander [43] in 1960,
the theory of translation-invariant operators progressed along two distinct main
lines:

J. Marcinkiewicz [60] considered in 1939 a problem generalizing (2.3) in
that the multiplication of the trigonometric coefficients by different signs was
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replaced by a more general transformation
n∑
−n

cke
ikt 7→

n∑
−n

λkcke
ikt,

with λk ∈ C. Marcinkiewicz also considered the n-dimensional generaliza-
tions of such operators and introduced the name multipliers of Fourier series
(multiplicateurs de séries de Fourier) to describe them.

He showed that a sufficient condition for the sequence (λk) to induce a bound-
ed operator on Lp(T), for p ∈ ]1,∞[, is the boundedness of the sequence, combined
with the uniform boundedness of its variation on the dyadic intervals, i.e.,

|λk| ≤ κ,
∑

2m≤|k|≤2m+1

|λk − λk+1| ≤ κ.

In fact, the theorem of Marcinkiewicz for the one-dimensional situation was
an almost direct consequence of certain quadratic estimates, due to J. Little-

wood, R. Paley and A. Zygmund, foreshadowing the notion of unconditional
decompositions which would be used 70 years later to extend these result to the
vector-valued setting. Most part of Marcinkiewicz’ paper [60] is concerned
with generalizing the multiplier theorem to the two-dimensional torus T2 (as a
model for the general n-dimensional case which is then reached similarly). It is
worth noting that the Rademacher functions and their basic properties, also vital
to the recent operator-valued results, are already present in a decisive rôle in his
work.

In 1956, S. G. Mihlin [62, 63] used transference techniques, building on
the theorem of Marcinkiewicz, to treat the analogous multiplier problem for
functions on Rn. In this setting, he showed that the derivative condition

(2.4) |ξ||α| |Dαm(ξ)| ≤ κ for all α ∈ {0, 1}n,

is sufficient for the boundedness of the operator f 7→ F−1[mf̂ ] on Lp(Rn) for
p ∈ ]1,∞[. This condition has turned out to be extremely useful in connection
with multipliers arising from partial differential equations.

P. I. Lizorkin was later able to relax the condition (2.4) to

(2.5) |ξαDαm(ξ)| ≤ κ for all α ∈ {0, 1}n;

references to this and related work can be found in Triebel’s book [82]. A
further weakening of this kind of conditions (with the uniformity in ξ replaced
by L1 averages over “dyadic blocks”) is given in Stein’s book [76].

A rather different-looking programme for generalizing M. Riesz’ result was
initiated by A. P. Calderón and A. Zygmund [16] in 1952. Taking the
singular integral representation (2.2) of the Hilbert transform, or rather, its non-
periodic version

Hf(t) := p.v.-

∫ ∞
−∞

1

πs
f(t− s) ds,
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as the prototype of the operators to be treated, Calderón and Zygmund con-
sidered more general n-dimensional singular integrals of the form

(2.6) Tf(t) = p.v.-

∫
Rn

Ω(s0)

|s|n
f(t− s) ds = lim

ε↓0

∫
|s|>ε

Ω(s0)

|s|n
f(t− s) ds,

where s0 := s/ |s| and Ω is an integrable function on the unit sphere Sn−1 of Rn

satisfying the cancellation and continuity conditions∫
Sn−1

Ω(u) dσ(u) = 0,

∫ 1

0

sup
u,v∈Sn−1

|u−v|≤t

|Ω(u)− Ω(v)| dt
t
<∞.

Clearly the Hilbert transform H is a special case with n = 1 and Ω(±1) = ±1/π.
The boundedness on Lp(Rn) of the operator defined in (2.6) was obtained

under the abovementioned conditions on Ω. In later works, the homogeneous
convolution kernels Ω(s0)/ |s|n were further replaced by the more general form
k(s).

In order to attack these problems, Calderón and Zygmund introduced
the so-called real method, as opposed to the complex analytic roots of singular
integrals. This method, based on a clever decomposition (now known as the
Calderón–Zygmund decomposition) of a function into its “good” and “bad”
parts, opened the way for wide-ranging generalizations of the theory far beyond
its complex analytic origin. The Calderón–Zygmund theory, developed to
multiple directions by these two authors and many others, has become a well-
established branch of mathematical analysis, and the Chicago school of analysis,
founded by Zygmund, has produced several prominent mathematicians devoted
to these topics. [A proper account of these developments would take us too
far away from our main line, and the interested reader is referred, e.g., to the
introduction of [4] for a history of the Chicago school.]

After the various pioneering contributions in the 50’s, the theories of singular
convolution integrals and Fourier multipliers had already reached a certain matu-
rity by the year 1960 when Hörmander published his elegant paper [43]. In this
work, he performed a comprehensive analysis of the boundedness of translation-
invariant operators on Lp(Rn), adopting a general point of view (exploiting, in
particular, L. Schwartz’ theory of distributions [73]) from which many of the
results of the previous decade could be derived in a unified manner.

Hörmander showed that his celebrated integral condition k ∈ K1, termed
the “almost L1 functions” [a terminology which did not become as popular as did
the condition itself] and defined by the requirement

(2.7)

∫
|t|>2|s|

|k(t)− k(t− s)| dt ≤ κ for all s 6= 0,

is a sufficient condition for k∗ to be bounded on all Lp(Rn), p ∈ ]1,∞[, provided
it is a priori known to be bounded on one Lp̃(Rn) with p̃ in the same range.
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Using this integral condition and the equivalence of convolution and multi-
plier operators, Hörmander also derived a variant of the theorem of Mihlin

where he could replace the uniform boundedness by quadratic averages over an-
nuli and moreover reduce the order of the highest required derivative from n to
bn/2c + 1. More precisely, Hörmander’s multiplier condition, leading to the
same conclusion as (2.4) was

(2.8)

(
1

rn

∫
r<|ξ|<2r

|Dαm(ξ)|2 dξ

)1/2

≤ κr−|α|

for r ∈ ]0,∞[, α ∈ Nn with |α| ≤ bn/2c+ 1.

The unification in Hörmander’s work of the various aspects of the theory
of translation-invariant operators can be seen as the culmination of the classical
epoch in the development of the theory.

[The reader should we warned of the fact that there is considerable confusion
in the literature concerning the attribution of the various multiplier theorems to
the original authors. Sometimes, the names of Marcinkiewicz and Mihlin are
mixed, and often a result mostly resembling that of Hörmander appears under
the title “Hörmander–Mihlin multiplier theorem”. This is somewhat misleading,
since Hörmander’s multiplier theorem does not include the original result of
Mihlin (except when n = 1), as is apparent from the fact that Hörmander’s
condition involves, when n > 1, estimates for the derivatives ∂2m/∂x2

i , but Mih-

lin’s condition does not. This theme will be developed further in Chapter 4.]

Vector-valued generalizations, the abstract Cauchy problem, and
the geometry of Banach spaces. The possibility of generalizing the theory
of translation-invariant operators to the vector-valued situation, as well as its
applications to the functional analytic approach to partial differential equations,
were recognised already in the early 60’s.

J. Schwartz [72] in 1961, and A. Benedek, A. P. Calderón and R. Pan-

zone [5] in 1962 observed that Hörmander’s integral condition, combined with
the a priori boundedness of a convolution operator on one Lp̃(Rn;X)-space, is
sufficient for the boundedness on Lp(Rn;X), for all p ∈ ]1,∞[, even for general
Banach spaces X and kernels taking values in L(X). J. Schwartz used these
techniques to extend results of Calderón and Zygmund for singular integrals
to functions taking values in an Lq space (q ∈ ]1,∞[), and Marcinkiewicz’ and
Mihlin’s multiplier theorems (with n = 1) to Hilbert space valued functions.

In 1964, L. de Simon [74] applied the theory of singular integrals to the
abstract Cauchy problem (1.1) on a Hilbert space X, proving that the solution u
satisfies the maximal regularity property

(2.9) ‖u̇‖Lp(Rn;X) + ‖Au‖Lp(Rn;X) ≤ C ‖f‖Lp(Rn;X)

if and only if −A is the generator of a bounded analytic semigroup on X.
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In the same year, P. E. Sobolevskij [75] showed that −A generating a
bounded analytic semigroup is necessary for maximal Lp-regularity also on a
general Banach space X; moreover, using the result of Benedek, Calderón

and Panzone he showed that it is also sufficient for the maximal Lp-regularity
on all p ∈ ]1,∞[, provided the maximal Lp̃-regularity for one p̃ ∈ ]1,∞[ is
known a priori. (A more recent proof of this result which does not rely on the
general theory of singular integrals but works directly with the special proper-
ties of the variation-of-constants formula can be found in P. Cannarsa and
V. Vespri [17].)

It is worth observing that the multiplier m(ξ) = A(i2πξ+A)−1 related to the
maximal regularity problem, for −A the generator of a bounded analytic semi-
group, satisfies exactly the estimates required in Mihlin’s theorem. In fact, it
follows from the well-known spectral characterization of generators (see e.g. [30])
that the function m(ξ) from (1.3) is bounded on R \ {0} for such A; moreover,
the derivative satisfies

(2.10) ξm′(ξ) = ξ(−i2π)A(i2πξ + A)−2 = −m(ξ)(I −m(ξ)),

which is bounded on R \ {0} if m is. Thus, if Mihlin’s theorem were true for
operator-valued multipliers on a particular spaceX, then every negative generator
A would have maximal Lp-regularity, but such a theorem was only known for a
Hilbert space X. Sobolevskij actually conjectured that the a priori regularity
could be dropped from his assumptions, on a general Banach space X, but this
remained open for a long period of time.

The stalemate situation with the abstract Cauchy problem, the things being
settled in the Hilbert space setting but essentially open in the more general frame-
work, was characteristic of the entire vector-valued theory of singular integrals. It
was hardly more difficult than in the scalar-valued setting to extend an operator
boundedly to the whole scale of the spaces Lp(Rn;X), as soon as the boundedness
was guaranteed on one such space; in fact, as pointed out by J. Schwartz and
by Benedek et al., the arguments establishing these assertions were essentially
repetitions of the real method of Calderón and Zygmund with absolute values
replaced by norms.

In the scalar-valued setting, the extension procedure is usually sufficient, since
the boundedness on L2(Rn) is a matter of checking the boundedness of the multi-
plier m, and this same technique can be carried to the Hilbert space framework,
but hardly further; in the lack of a notion of orthogonality and Plancherel’s
theorem, the space L2(Rn;X), for a non-Hilbert space X, is just as bad as any
of the spaces Lp(Rn;X).

For X = Lq(S,Σ, µ), q ∈ ]1,∞[, the space Lq(Rn;X) can, to a certain ex-
tent, take the rôle of the starting point of boundedness considerations of an
operator on the spaces Lp(Rn;X), as already observed by J. Schwartz. In
fact, if k is a scalar-valued kernel which induces a bounded convolution opera-
tor on Lq(Rn) (of scalar-valued functions), and F ∈ Lq(Rn, Lq(S)) ≈ Lq(Rn ×
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S), then one merely needs to write F (x, s) in place of f(x) in the inequality∫ ∣∣∫ k(x− y)f(y) dy
∣∣q dx ≤ C

∫
|f(x)|q dx, integrate over s ∈ S and apply Fu-

bini’s theorem to get

(2.11)

∫ ∥∥∥∥∫ k(x− y)F (y, ·) dy

∥∥∥∥q
Lq(S)

dx ≤ C

∫
‖F (x, ·)‖qLq(S) dx.

This is exactly the boundedness of k∗ on Lq(Rn;Lq(S)), and if the kernel k is
appropriate, one can take this as the a priori estimate required in proving the
boundedness of k∗ on all Lp(Rn;Lq(S)), p ∈ ]1,∞[. However, this trick is heavily
based on the structure of the space Lq(S) and does not suggest a generalization to
more general Banach spaces X. While the trick is simple, it is truly a trick, and
does not give an indication of what exactly is the property of the Lq(S) spaces
which makes the result hold. Moreover, even for X = Lq(S), the case where
k(x) ∈ L(X) falls beyond the reach of this approach.

In the beginning of the 80’s, the fundamental connection with the multiplier
problem and the geometric structure of the underlying space X was finally dis-
covered. It was D. L. Burkholder [13, 14, 15] who was able to present a
geometric (and superficially simple-looking) condition which, when satisfied by
X, guarantees the boundedness of certain singular integrals ofX-valued functions,
including the prototype example given by the Hilbert transform. This geometric
condition was the so-called ζ-convexity, i.e., the existence of a biconvex function
ζ : X ×X → R satisfying

ζ(0, 0) > 0 and ζ(x, y) ≤ |x− y|X for |x|X = |y|X = 1.

Burkholder also showed the equivalence of the ζ-convexity of X with the
unconditionality of martingale difference sequences on Lp(Ω, (Ai)

∞
i=0,P;X) (where

p ∈ ]1,∞[, Ω is an arbitrary probability space with a filtration (Ai)
∞
i=0, i.e.,

an increasing sequence of σ-algebras on Ω, and P is a probability measure on
σ(∪∞i=0Ai)). This means the inequality

E

∣∣∣∣∣
∞∑
i=0

εidi

∣∣∣∣∣
p

X

≤ C E

∣∣∣∣∣
∞∑
i=0

di

∣∣∣∣∣
p

X

holding with a fixed C < ∞, whenever (εi)
∞
i=0 is a sequence of signs ±1 and

(di)
∞
i=0 is a martingale difference sequence on Lp(Ω;X), p ∈ ]1,∞[, adapted to

(Ai)
∞
i=0 [which means that di ∈ Lp(Ai;X), and the conditional expectations satisfy

E[di+1|Ai] = 0, for all i ∈ N]. This is the UMD condition which is most often used
as the defining property and as the name of the ζ-convex spaces in the current
literature. The condition is independent of p ∈ ]1,∞[, i.e., holds for all such p
provided it holds for one.

J. Bourgain [10] completed the results of Burkholder by showing that
the boundedness of the Hilbert transform on Lp(T;X) (which is equivalent to
its boundedness on Lp(R;X) by straightforward transference-arguments), con-
versely, implies the UMD property for X. Thus the class of Banach spaces X
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for which the prototype singular integral p.v.-1/πx∗, or equivalently, the simplest
non-trivial multiplier −i sgn(ξ), would induce a bounded operator on Lp(Rn;X)
was characterized in terms of the UMD property by these two authors.

The UMD condition is satisfied by the Lq(S) spaces for q ∈ ]1,∞[ (a proof of
which is essentially contained above around Eq. (2.11), taking the characterization
by means of the boundedness of the Hilbert transform for granted) but also by
several other interesting examples such as the Schatten ideals Sq := {A ∈ L(H) :
‖A‖Sq = (tr(A∗A)q/2)1/q < ∞}, again with q ∈ ]1,∞[—this was observed by
Bourgain [10]. Moreover, the UMD condition is inherited from X to X ′, to
Lp(S,Σ, µ;X), p ∈ ]1,∞[, and to (closed) subspaces and quotient spaces of the
original space. [These are based on standard extension techniques.] A useful
review of UMD-spaces, containing the above properties and more, is given by
J. L. Rubio de Francia [71]. Detailed proofs of some of the results mentioned
above can be found in my Master’s thesis [44].

Bourgain went on in [12] (see also [11]) to show that the already established
boundedness of the Hilbert transform could further be used as a tool in proving
the boundedness of a much richer class of Fourier multiplier and singular integral
transformations on UMD-spaces, thus promoting these spaces to a central rôle,
not only from the point-of-view of geometricians of Banach spaces but of all
those working with vector-valued integral operators in numerous applications.
More precisely, Bourgain translated the UMD property into the Littlewood–
Paley-type estimate

(2.12) ‖f‖Lp(T;X) ∼
(
E

∥∥∥∑ εjfj

∥∥∥p
Lp(T;X)

)1/p

, where

fj(t) :=
∑

2j−1≤|k|<2j

f̂(k)eikt for j = 1, 2, . . . , f0(t) := f̂(0),

where ∼ denotes the boundedness of the ratio of the two quantities, from above
and from below, by positive numbers independent of the particular choice of
f ∈ Lp(T;X), and (εj)

∞
j=0 is the Rademacher system of independent random

variables with P(εj = +1) = P(εj = −1) = 1/2.
While this result reduces, for X = C, to the very same quadratic estimates

that were used by Marcinkiewicz in proving his multiplier theorem, the only
way of formulating this inequality in the general vector-valued setting is with
the help of the Rademacher functions. The usefulness of these functions, even in
scalar-valued analysis, lies in the fact that the many quadratic estimates of har-
monic analysis admit an equivalent linear formulation in terms of the Rademacher
means. In the general situation, this becomes even more essential, as the qua-
dratic estimates become nonsense but the linearized versions remain valid in a
much wider vector-valued framework. Using these ideas and the decomposition
at hand, Bourgain established a UMD-valued analogue of Marcinkiewicz’
theorem on Lp(T;X).
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Multiplier theorems for vector-valued functions in n variables were considered
by T. R. McConnell [61] and by F. Zimmermann [89]. McConnell used
a different approach from Bourgain’s, applying heavy probabilistic machinery
and obtaining also an independent proof of some of Bourgain’s results for n = 1.
Zimmermann, on the other hand, built on the methods developed by Bourgain

but observed two different ways of generalizing from one to n dimensions. The
results from the two approaches, only one of which could be carried out in gen-
eral UMD-spaces, revealed further connections between vector-valued multiplier
theorems and the properties of the underlying Banach spaces: Zimmermann

showed that whereas the theorem of Mihlin, with assumption (2.4), holds true
with Lp(Rn) replaced by Lp(Rn;X), for an arbitrary UMD-space X, the theorem
of Lizorkin, with assumption (2.5), does not hold in general unless additional
assumptions on the space are imposed. In particular, Zimmermann showed that
Lizorkin’s theorem fails on the Schatten ideals Sp when p 6= 2.

The notion of the UMD condition and its equivalent characterizations also
helped in understanding the properties of the Hardy spaces of vector-valued func-
tions. Several results in this direction were proved by O. Blasco in a series of
papers, of which [8] contains the most interesting results for the present point-
of-view. Blasco showed, in particular, that exactly under the UMD-property of
the space X do the various classical characterizations of the Hardy space H1(T)
agree to give the same space H1(T;X). This result will play a rôle in Chapter 1.

All this proved, the theory of scalar-valued Fourier multipliers on the Bôchner
spaces had reached a rather satisfactory form by the end of the 80’s. However,
the case of operator-valued multipliers, essential for the treatment of the abstract
Cauchy problem, did not seem to have come any closer to a positive solution.
The main progress in this direction since the 60’s was an unpublished result of
G. Pisier from 1978 which, from the point of view of applications, was strongly in
the negative: If Mihlin’s theorem holds true for all operator-valued multipliers
on Lp(Rn;X), then X is necessarily isomorphic to a Hilbert space. (The result,
with proof, can be found in a recent paper by W. Arendt and S. Bu [3].)

Of course, this did not yet imply an equally negative answer to the problem of
maximal regularity, where the relevant multiplier (1.3) has a very special struc-
ture, and so might conceivably induce a bounded operator even if the general
Mihlin theorem fails. But even for multipliers of this specific type, T. Coul-

hon and D. Lamberton [24] were able to reduce the class of admissible Banach
spaces, once the interrelation between the UMD condition and vector-valued sin-
gular integrals was recognized: These authors demonstrated that the negative
generator of the Poisson semigroup on X = L2(R;E) does not have maximal reg-
ularity if E is not a UMD space. (See also C. Le Merdy [57].) This showed that
Sobolevskij’s conjecture failed in the full generality; however, the possibility of
its validity on all UMD spaces was still left open.

Positive partial results in this direction were proved in 1987 by G. Dore

and A. Venni [29] and by Lamberton [56]. Dore and Venni showed that
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the maximal regularity property is satisfied by the Cauchy problem on a UMD
space provided that the operator A admits bounded imaginary powers (BIP).
(C. Le Merdy [57] has later shown that the BIP alone do not suffice, i.e., he
constructed an operator on a non-UMD space with BIP but without maximal reg-
ularity.) Lamberton, on the other hand, proved maximal regularity for negative
generators of contraction semigroups on Lp spaces. Further sufficient conditions
were obtained ten years later by M. Hieber and J. Prüss [42] for negative gen-
erators of semigroups representable by heat kernels in terms of kernel estimates,
but the complete solution of the problem still had to wait.

Translation-invariant operators on different function spaces. Even
though the Lp theory of translation-invariant operators forms without doubt the
heart of the matter, such operators are of interest and have been considered by
several authors on various other function spaces, too.

The real variable theory of the Hardy spaces Hp, and in particular the pa-
per [31] of C. Fefferman and E. M. Stein, opened the way for the extension
of the results from the reflexive Lp spaces (i.e., those with p ∈ ]1,∞[) to the
Hardy spaces Hp with p ∈ ]0, 1]. The extent to which the theory of singular
integrals carries over to this setting, together with the fact that the spaces Hp

agree with the corresponding Lp spaces for p ∈ ]1,∞[, has given rise to the idea
that the Hardy spaces Hp, rather than the Lebesgue spaces Lp, form the “right”
continuation to p ∈ ]0, 1] of the reflexive Lp scale. (Cf. e.g. Stein [77].)

The extension of the theory to the Hp spaces has proven to be very interesting
theoretically, but there are also significant applications. E.g., I. Chueshov and
I. Lasiecka [18] have recently used the h1 space (a local version, introduced by
D. Goldberg [39], of H1) as a framework for the treatment of non-linear equa-
tions of elasticity. This also motivates the study of abstract evolution equations
in the H1 setting in Chapter 1.

One can further consider weighted Lp and Hp spaces. The fundamental work
of B. Muckenhoupt [64] in characterizing, in terms of the celebrated Ap condi-
tion, the weights w for which the Hardy–Littlewood maximal function is bounded
on Lp(Rn, w(x)dx) paved the way for the understanding of the continuity prop-
erties of singular integrals on the weighted spaces. See in particular the paper
of R. R. Coifman and C. Fefferman [23] and the references cited there for
more on these developments.

Although weighted spaces will not be treated in the present work, it turns out
that some of the techniques developed to handle the weighted situation are also
useful in the vector-valued setting. In particular, the methods of D. S. Kurtz

and R. L. Wheeden [54] (in treating weighted Lp spaces), which were further
elaborated by J.-O. Strömberg and A. Torchinsky [81] (in the context of
weighted Hp spaces) are of interest, since they do not blindly rely on the use
of Plancherel’s theorem but exploits the more general Hausdorff–Young
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inequality

(2.13) ‖f̂‖p′ ≤ C ‖f‖p
for different values of p ∈ [1, 2].

This inequality is always true with p = 1 for f ∈ Lp(Rn;X), X being an ar-
bitrary Banach space. The estimate (2.13) is not true, in general, for any larger
value of p; however, if it holds for a given p ∈ [1, 2] (with C < ∞ independent
of f), the space X is said to have Fourier-type p. This notion is due to J. Pee-

tre [65] who also showed that every Lq(µ) space (with µ a σ-finite measure)
has Fourier-type min(q, q′), and in general no higher. Thus there are many in-
teresting Banach spaces having a non-trivial Fourier-type, i.e., (2.13) valid for
some p > 1. On the other hand, the Hausdorff–Young ineqality with p = 2,
which is essentially Plancherel’s theorem, is valid if (easy to see) and only
if (a deeper result due to S. Kwapień [55]) the underlying space is isomorphic
to a Hilbert space. These ideas will play an important rôle in Chapter 1; they
were first exploited in connection with the vector-valued multiplier problem by
L. Weis [85], as will be explained in more detail below.

While the development of the theory of translation-invariant operators on
Hp could be considered an extension of the corresponding Lp theory, the related
results on the Besov spaces Bs,p

q may be regarded, in a certain sense, as a substitute
for it. This statement is particularly true in the vector-valued setting: As the
land of operator-valued multipliers on Lp(Rn;X) seemed to be left barren by the
result of Pisier, the Besov spaces Bs,p

q (Rn;X) provided a more promising path.
This path was followed by H. Amann [1] and independently by L. Weis [85] in
the late 90’s.

The Besov spaces can be defined as follows (among various other equivalent
characterizations): For f ∈ S ′(Rn;X) := L(S(Rn);X) (the space of X-valued
tempered distributions), the quantity

‖f‖s,p;q :=

∥∥∥∥(2µs ‖ϕµ ∗ f‖p
)∞
µ=0

∥∥∥∥
`q

is required to be finite, in order that f ∈ Bs,p
q (Rn;X), and ‖·‖s,p;q is the norm

on this space (making it a Banach space whenever s ∈ R and p, q ∈ [1,∞]; the
quasi-Banach spaces obtained when p or q lies in ]0, 1[ will not be considered here).
The functions ϕµ appearing here constitute a resolution of unity in the frequency
domain, i.e., ϕ̂0 ∈ S(Rn) is radial and decreasing, with range [0, 1], equal to
unity in B̄(0, 1

2
) and vanishing outside B̄(0, 1), and ϕ̂µ := ϕ̂0(2−µ·)− ϕ̂0(2−µ+1·)

for µ = 1, 2, . . ., so that
∑∞

µ=0 ϕ̂µ(ξ) ≡ 1. More information on Besov spaces
can be found, e.g., in the book of Triebel [83]; unlike in the Lp setting, the
theory of these spaces is essentially the same in the vector-valued setting, and
the reader will notice that the statements and proofs in [83] regarding Besov
spaces generalize to the vector-valued setting essentially by replacing absolute
values by norms.
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[The reader should be warned that many texts, including [83], use the nota-
tion ϕµ for what is here called ϕ̂µ. The motivation for the present notation is the
consistency in denoting objects “living” in the frequency representation by sym-
bols with the hat .̂ The only exception to this rule is the conventional notation m
for Fourier multipliers, even though they manifestly are objects of the frequency
domain.]

While the above definition does seem difficult at the first sight, as it is, the
complications in the definition will pay off as simplifications of the theorems. In
fact, the dyadic decomposition, which in the Bôchner spaces was a deep result of
Bourgain and quite non-trivial even for the classical Lebesgue spaces, is now
built into the very definition of the spaces Bs,p

q (Rn;X). Moreover, the present
decomposition is much easier to handle , as the different parts of the decomposi-
tion only contribute to the norm ‖f‖s,p;q in terms of their absolute size, whereas
in the Bôchner space setting they were coupled in a subtle manner in terms of
the Rademacher means.

Making use of this defining property of the Besov spaces, Amann was able
to establish an analogue of Mihlin’s theorem for operator-valued multipliers on
Bs,p
q (Rn;X), with no restrictions on the underlying Banach spaceX. His sufficient

condition was the set of estimates

(2.14) (1 + |ξ|)|α| ‖Dαm(ξ)‖L(X) ≤ κ for all |α| ≤ n+ 1.

While this, clearly, was not a solution to the original Lp multiplier problem,
Amann pointed out that it was not too far away from one. In fact, combining
the multiplier theorem on the Besov scale with appropriate embedding results be-
tween Besov spaces and more classical ones, Amann derived boundedness results
for operators between the classical spaces, and also demonstrated the usefulness
of this approach in numerous applications in his comprehensive paper [1]. How-
ever, as he pointed out, the information on the precise smoothness of the original
function that was lost in the embeddings was just enough to lose the possibility
of obtaining maximal regularity results in this way.

An independent study of the Besov space multipliers was carried out by
L. Weis in connection with semigroup stability problems [85]. (An expanded
study along these lines was recently produced by M. Girardi and Weis [35].)
Whereas the multiplier theorems of Amann were completely independent of the
structure of the underlying Banach space X, Weis observed that one could re-
duce the smoothness required of the multiplier in the most general setting by
taking into account the Fourier-type of X. By doing so, he could relax the con-
dition (2.14) to

(1 + |ξ|)|α| ‖Dαm(ξ)‖L(X) ≤ κ for all |α| ≤ bn/tc+ 1,
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when X has Fourier-type t. This reproduces Amann’s result for the trivial
Fourier-type t = 1, but gives sharper results for “better” spaces. Thus, yet an-
other connection was established between the structure of the Banach space X
and the multiplier theory valid on that space.

Solution to the operator-valued multiplier problem on Lp, and fur-
ther developments. An operator-valued version of Mihlin’s multiplier theo-
rem had to wait until the turn of the millennium, although the seeds of the solu-
tion were already hidden in the work of Bourgain, or even, in a sense, in that of
Marcinkiewicz. As Pisier’s result showed that a complete analogue of Mih-

lin’s theorem (by means of replacing the absolute values in the condition (2.4)
by operator-norms) was simply false, except in Hilbert spaces, the problem was
now finding the right way of strengthening these asumptions, enough in order
to make the result hold but not too much to exclude interesting applications.
An interesting review of the state of the art only shortly before the solution was
found is given by M. Hieber [41].

To see where the problems occur with operator-valued multipliers, consider
in the periodic situation a multiplier (mk)k∈Z for which mk = Mj whenever
2j−1 ≤ |k| < 2j, (Mj)

∞
j=0 being a bounded sequence on L(X). According to the

dyadic decomposition (2.12), the Lp norm of the transformation of a function f
by the multiplier m is then proportional to(

E

∥∥∥∑ εjMjfj(·)
∥∥∥p
Lp(T;X)

)1/p

=

(∫
T

E

∣∣∣∑ εjMjfj(t)
∣∣∣p
X

dt

)1/p

.

If the Mj were scalars, the multiplier transformation induced by (mk)k∈Z would
be bounded by Bourgain’s UMD-valued extension of Marcinkiewicz theo-
rem. However, to show the boundedness of the present operator-valued multi-
plier transformation, one would have to pull out the operator-valued coefficients
Mj from this summation, but there is, in general, no reason why this should be
allowed.

E. Berkson and T. A. Gillespie [7] observed the usefulness of having this
property for particular collections of operators, and as it was not true in general,
they included it as an assumption in a number of their results. More precisely,
they formulated the notion of R-property of a collection T ⊂ L(X), which is
satisfied if the inequality

(2.15)

E ∣∣∣∣∣
N∑
j=1

εjTjxj

∣∣∣∣∣
p

X

1/p

≤ C

E ∣∣∣∣∣
N∑
j=1

εjxj

∣∣∣∣∣
p

X

1/p

holds with a fixed C < ∞ and p ∈ [1,∞[, for all N ∈ Z+ and all choices of
x1, . . . , xN ∈ X, T1, . . . , TN ∈ T. The R-property of a collection T is in fact
independent of the exponent p ∈ [1,∞[ (i.e., it either holds for all these p or for
none of them), which follows from Kahane’s inequality (see e.g. [67]).
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The R in the R-property of Berkson and Gillespie was used by these
authors as a reference to M. Riesz; however, it can also be pronounced as either
“randomized”or“Rademacher”, following the (re)interpretations of other authors.
Instead of the R-property, one usually speaks of R-boundedness in the recent
literature; accordingly, the collection T with this property is said to be R-bounded
and the R-bound of T is defined as

R(T) := min{C ≥ 0 : (2.15) holds with p = 1}.

Although Berkson and Gillespie singled out this right notion of bound-
edness, they only used it as an auxiliary device in establishing scalar-valued
multiplier theorems. A further study of the properties of R-boundedness and
its relation to unconditional Schauder decompositions (of which the dyadic de-
composition in (2.12) is an example) was carried out by Ph. Clément, B. de

Pagter, F. A. Sukochev and H. Witvliet [21] (see also Witvliet’s disser-
tation [88]), but it was Weis [86, 87] who first managed to fully exploit these
ideas in proving the operator-valued extension of Mihlin’s theorem: If X is a
UMD-space and the multiplier function m ∈ C1(R \ {0};L(X)) is such that the
sets

(2.16) {m(ξ) : ξ ∈ R \ {0}} and {ξm′(ξ) : ξ ∈ R \ {0}} are R-bounded,

then m is a Fourier multiplier on Lp(R;X) for all p ∈ ]1,∞[.
Weis was able to give a partial converse to this result, showing that certain

R-boundedness in the assumptions cannot be avoided, and Ph. Clément and
J. Prüss [22] improved this converse argument, showing that, in fact, the R-
boundedness of {m(ξ) : ξ a Lebesgue point of m} is necessary for m to be a
Fourier multiplier on Lp(Rn;X). An abstraction of this necessary condition to
more general groups (in place of Rn) has been proved by S. Blunck [9].

While the results of Weis and Clément–Prüss did not exactly characterize
the Lp multipliers on a UMD-space X, they clearly showed that R-boundedness
is the right notion in this context. One could also say that the necessary and
sufficient conditions were now as close as reasonably could be hoped for, recalling
the lack of an exact characterization even in the scalar case.

First versions of the operator-valued multiplier theorem in n variables were
proved by Ž. Štrkalj and Weis [80] and also by R. Haller, H. Horst

and A. Noll [40]. Both of these works built on the ideas of Zimmermann

and obtained analogous results stating the sufficiency of an R-version of Mih-

lin’s condition on all UMD-spaces, and the sufficiency of an R-version of Li-

zorkin’s condition on all UMD-spaces with so-called property (α) (see e.g. [21],
Def. 3.11, or Chapter 2, Lemma 6.1, for a definition). Quite recently, M. Gi-

rardi and Weis [36] have proved operator-valued Hörmander-type theorems on
UMD-Bôchner spaces, where the Fourier-type of the underlying spaces is taken
into account to decrease the required smoothness. Similar results are obtained
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as an application of the boundedness results for singular integrals in Chapter 2,
and Chapter 4 elaborates further on this theme.

W. Arendt and S. Bu [2] have given a simple proof of an operator-valued
Marcinkiewicz-type theorem on Lp(T;X) (which would also follow from the more
general results in [80]). These authors also prove several interesting results,
which shed some light on the nature of R-bounded operator collections and their
relation to the structure of the underlying Banach space; e.g., they show that
every bounded subset of L(X) is R-bounded if and only if X is isomorphic to a
Hilbert space. With the help of this result and the necessity of R-boundedness
of operator-valued multipliers, Arendt and Bu also give in [3] a proof of the
earlier mentioned unpublished result of Pisier.

Of course, the solution of the multiplier question had profound implications
on the problem of maximal regularity. In this field, a significant breakthrough
had already been reached, independently of the above mentioned developments,
by N. Kalton and G. Lancien [49]: They considered the restrictions on the
structure of the Banach space X that would be imposed provided the maximal
regularity property holds for all negative generators A on X, and came to the
conclusion that, among all Banach spaces X with an unconditional basis, those
isomorphic to a Hilbert space are the only ones for which this is true. In partic-
ular, this result applies to the Lq spaces, q ∈ ]1,∞[, of interest in the concrete
applications, and shows that only on X = L2 can one have maximal regularity
for all negative generators. The proof exploited, in particular, a characterization
of Hilbert spaces in terms of the complemented subspace property, dating back
to the work of J. Lindenstrauss and L. Tzafriri [58] in 1971—one more
instance were the geometry of Banach spaces entered the scene in a fundamental
way.

While the result of Kalton and Lancien was a strong negative answer,
similar in spirit to that of Pisier, one should bear in mind that it only implied
the existence of some pathological generators −A, leaving open the problem of
determining whether or not the maximal regularity property would hold for some
particular A arising from a specific problem. The result of Weis, on the other
hand, gave a characterization of those A for which the maximal regularity prop-
erty does indeed hold: On a UMD-space X, the abstract Cauchy problem has
maximal Lp-regularity for p ∈ ]1,∞[ if and only if −A is the generator of a
bounded analytic semigroup, such that the operator collection

(2.17) {A(i2πξ + A)−1 : ξ ∈ R \ {0}} is R-bounded;

when this condition is satisfied, A is said to be R-sectorial, this being a strength-
ening of the usual notion of sectoriality of operators.

That one can indeed obtain a characterization may seem surprising, since for
the multipliers there were only non-coinciding necessary and sufficient conditions;
however, the better situation with the maximal regularity problem is due to the
special form of the related multiplier m from (1.3). Since the maximal regularity
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for the Cauchy problem is equivalent to m inducing a bounded Fourier multi-
plier transformation, the necessity of R-boundedness proved by Clément and
Prüss shows that (2.17) is indeed necessary for maximal regularity. (The original
argument of Weis preceded the result of Clément and Prüss but was more
complicated and less general.) But given that (2.17) holds, it already follows
from (2.10) (and an easily established permanence of R-boundedness in opera-
tor products) that {ξm′(ξ) : ξ ∈ R \ {0}}, too, is R-bounded, and so Weis’s
conditions (2.16) are satisfied, showing that (2.17) is also sufficient.

After Weis’ characterization of maximal Lp-regularity, the result of Kalton

and Lancien can be reinterpreted as showing the existence of non-R-sectorial
negative generators of analytic semigroups in all non-Hilbert UMD-spaces with an
unconditional basis, whereas the problem of determining whether or not a particu-
lar operator A has the maximal regularity property is translated into the problem
of investigating its R-sectoriality. Whether this has some use beyond theoretical
interest, depends, of course, on the feasibility of checking the R-boundedness of
particular collections of operators. It has turned out that this can indeed by
done in many cases, and that the R-boundedness characterization in fact pro-
vides a very practical way of proving the maximal regularity of various concrete
operators.

A comprehensive treatment of large classes of differential operators, using the
R-boundedness techniques, is given by R. Denk, M. Hieber and J. Prüss [25].
Maximal regularity of analogues of the Cauchy problem (1.1) in the periodic
situation has been considered by Arendt and Bu [2], and in the discrete time
framework by S. Blunck [9] and by P. Portal [68]. P. C. Kunstmann

and Weis [52] have proved perturbation theorems for maximal Lp-regularity via
perturbation results for the equivalent R-boundedness conditions. A continuous
time non-autonomous problem is treated with the R-boundedness methods by
Ž. Štrkalj [79].

It is not difficult to find examples of R-bounded sets even in the more classical
literature; in fact, the usual square-function estimates of harmonic analysis are
actually statements of R-boundedness. Indeed, the R-boundedness of a collection
T of operators on Lp(µ), p ∈ [1,∞[, is equivalent to the inequality

∥∥∥∥(∑ |Tjfj(·)|2
)1/2

∥∥∥∥
Lp(µ)

≤ C

∥∥∥∥(∑ |fj(·)|2
)1/2

∥∥∥∥
Lp(µ)

holding uniformly with a constant C <∞ for all choices of Tj ∈ T and fj ∈ Lp(µ),
and numerous estimates of this kind are proved, e.g., in the books of Stein [76,
77] and Garćıa-Cuerva and Rubio de Francia [34]. The fact that certain
weighted estimates imply square-function estimates and thus R-boundedness has
been exploited by A. Fröhlich [32, 33] in establishing maximal regularity
results for the Stokes operator in weighted Lq spaces.
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Several recent studies have revealed further abundance of R-bounded col-
lections of operators. There is a remarkable “bootstrapping” property of R-
boundedness which states, roughly speaking, that the operator-valued multiplier
theorems, which contain R-boundedness in their assumptions, not only yield the
boundedness of individual operators but in fact R-boundedness of collections of
operators satisfying the assumptions uniformly. A. Venni [84] first observed this
for scalar-valued multipliers acting on Bôchner spaces. Girardi and Weis [37]
have extended the idea to the operator-valued setting and given a comprehensive
treatment around this theme. The results of this kind again require the property
(α) of the underlying Banach spaces.

The R-boundedness techniques have also been successfully exploited in other
problems, such as the H∞ functional calculus for Banach space operators (see
Kalton and Weis [50]). The common factor in all these developments is the
attempt to extend to the Banach space framework such results and ideas for
which only Hilbert space theory was known so far. The remarkable success in
this field in the recent years indicates that the notion of R-boundedness does
indeed provide the right framework for such developments, many other of which
are still likely to come. The present dissertation, too, is a part of and aims at
furthering this “R-programme”.

3. Comments on Chapters 1–4

Chapter 1. Chapter 1 is devoted to various aspects of translation-invariant
operators on the Hardy spaces Hp(Rn;X), p ∈ ]0, 1], of vector-valued functions.
Both necessary and sufficient conditions are derived for Fourier multipliers acting
on these spaces, and applications to the “maximal Hp-regularity” of the abstract
Cauchy problem (1.1) are considered throughout the work.

The main results of the chapter include the following conditions on multipliers:

• If m : Rn → L(X, Y ) is a Fourier multiplier from the Hardy space
H1(Rn;X) to L1(Rn;X), then {m(ξ) : ξ ∈ Rn \ {0}} is R-bounded.
• Conversely, if X and Y are UMD-spaces with Fourier-type t ∈ ]1, 2], and

{|ξ||α|Dαm(ξ) : ξ ∈ Rn \ {0}} is R-bounded for all |α| ≤ bn/tc+ 1, then
m is a Fourier-multiplier from H1(Rn;X) to H1(Rn;Y ).

The first statement is Theorem 4.2 of Chapter 1, whereas the second is actu-
ally a sufficient condition for checking the rather more technical, but also more
general, assumptions of Theorem 5.13. This latter theorem also states that one
can further ensure the boundedness of the multiplier transformation induced by
m from Hp(Rn;X) to Hp(Rn;Y ) for p < 1 by assuming more derivative condi-
tions of the same form as above. In particular, assuming the R-boundedness of

{|ξ||α|Dαm(ξ) : ξ ∈ Rn \ {0}} for all α ∈ Nn, the function m will be a multiplier
from Hp(Rn;X) to Hp(Rn;Y ) for all p ∈ ]0, 1], and, in fact, uniform boundedness
would do in place of R-boundedness for the higher order derivatives.
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As in the Lp setting, and for the same reason, it turns out that the generally
non-coinciding necessary and sufficient conditions for multipliers give a charac-
terization of boundedness when applied to the particular multiplier (1.3) related
to the abstract Cauchy problem. The method also applies to some more gen-
eral fractional-order equations, treated by Ph. Clément, G. Gripenberg and
S.-O. Londen [19], and by Clément, Londen and G. Simonett [20], as well
as to abstract PDE’s.

Chapter 2. After the excursion to the Hardy spaces in Chapter 1, we return
to the Bôchner space setting in Chapter 2, seeking for sufficient conditions for the
boundedness on Lp(Rn;X) of f 7→ k ∗ f in terms of the properties of the singular
convolution kernel k. Nevertheless, it turns out that some of the ideas coming
from the Hardy space set-up play a substantial rôle in the Lp framework, too;
in fact, one of the key ingredients in the proof of the main theorem is a suitable
atomic decomposition of a Schwartz function φ with zero integral. Other main
ingredients include the systematic exploitation of the notion of R-boundedness
and a deep lemma of Bourgain [12] concerning translations on Lp(Rn;X).

The main theorem (Theorem 4.1 of Ch. 2) is motivated by the classical re-
sult of Hörmander [43]. It shows that sufficient conditionss to guarantee the
boundedness of the convolution transformation f 7→ k ∗ f on Lp(Rn;X), when
p ∈ ]1,∞[ and X is a UMD-space, are given in terms of an R-version of his
integral condition (2.7), more precisely,

(3.1)

∫
|x|>2|y|

R({2−nj(k(2−j(x− y))− k(2−jx)) : j ∈ Z}) log(2 + |x|) dx

≤ C log(2 + |y|)

for all y ∈ Rn \{0}, combined with the R-boundedness of the set {k̂(ξ) : ξ ∈ Rn}.
Recall that R(T) designates the R-bound of the set T.

While the R-boundedness reduces to uniform boundedness for scalar-valued
kernels, the R-integral condition (3.1) remains stronger than the classical assump-
tion (2.7) even in the scalar setting, not only because of the logarithmic weight
but also because even the supremum supj∈Z 2−nj |k(2−j(x− y))− k(2−jx)| inside
the integral is in general larger than the single (j = 0)-term |k(x− y)− k(x)|
in the classical condition. However, the difference is not as substantial as it
formally appears; when applied to regular singular integral operators, the main
theorem of Chapter 2 yields conditions which are direct analogues of the clas-
sical theorems, only with boundedness replaced by R-boundedness. E.g., for
an odd kernel k ∈ C1(Rn \ {0};L(X)), we find that the R-boundedness of
{|x|n k(x), |x|n+1∇k(x) : x ∈ Rn \ {0}} is sufficient for the boundedness of k∗ on
Lp(Rn;X), p ∈ ]1,∞[.

A further illustration of the strength of the main theorem on singular integral
operators is provided by applying it to deduce strong Fourier multiplier theorems.
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Some results in this direction are proved in the last section of Chapter 2, and this
theme is developed further in Chapter 4.

Chapter 3. Chapter 3 deals with operators that are formally similar to the
ones considered in Chapter 2 but the function spaces on which the boundedness
questions are considered now come from the Besov scale. The main theorem
(Theorem 5.7 of Ch. 3) establishes the boundedness of a singular convolution
operator f ∈ Bs,p

q (Rn;X) 7→ k ∗ f ∈ Bs,p
q (Rn;X) for all s ∈ R, p, q ∈ [1,∞] under

assumptions of the following type:

• k̂ ∈ L∞(Rn;L(X, Y )),
•
∫
|t|>2|s| ‖k(t− s)− k(t)‖L(X,Y ) dt ≤ C for all s 6= 0, and

•
∫
|t|>r ‖k(t)‖L(X,Y ) dt <∞ for some r > 0.

The conditions on the boundedness of the Fourier transform and the Hörmander-
type estimate are already familiar from the Lp setting, and it is observed that the
subtleties with R-boundedness and the logarithmic weight have disappeared from
the conditions. This is in a close relation to the form of the dyadic decomposition
which is valid on the two scales of spaces, and illustrates the simpler character of
the Besov space setting as compared to the Bôchner spaces.

On the other hand, the third condition above, which imposes a rather heavy
restriction on the size of the kernel at infinity, is related to the inhomogeneity of
the Besov spaces (in the sense that the norms ‖f‖s,p;q do not scale nicely with

dilations f 7→ f(δ·) as do the Lp norms); in fact, it is shown in Chapter 3 that a
condition of this type is necessary to ensure the boundedness of f 7→ k ∗ f on all
of the Besov spaces.

There are also some new phenomena to be encountered in connection with
the Besov spaces Bs,p

q when at least one of the exponents p or q is infinite. In
the Lp setting, it is a classical result that f 7→ k ∗ f is bounded on L∞(Rn) if
and only if k = µ is a finite Borel measure on Rn, so that all non-trivial singular
integrals fail to be bounded on this space, and one is hence permitted, without
loss of generality, to restrict the considerations to p <∞. However, the situation
is quite different for the Besov spaces Bs,p

q : Not only is it possible to have the
boundedness of several interesting operators on the whole scale of these spaces
where s ∈ R and p, q ∈ [1,∞], but in fact some of the most important and concrete
instances of Besov spaces are the Hölder (or Lipschitz) spaces BUCs = Λs = Bs,∞

∞
(for s ∈ R+ \N), so that the restriction to p, q <∞ would be a serious omission.

The problem with the infinite exponents is the fact that the Schwartz functions
fail to be dense in Bs,p

q as soon as p or q is ∞. As a result, proving an estimate
‖k ∗ f‖s,p;q ≤ C ‖f‖s,p;q for all Schwartz functions f does not automatically imply
the existence of a bounded extension T of k∗ to all of Bs,p

q . Thus the extension of
the operator to the whole space requires a procedure different from the standard
density argument; moreover, even if an extension is found, there is no guarantee
of uniqueness.
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It seems that this uniqueness problem of the extension has been set aside by
many authors, but these problems are given special attention in Chapter 3. The
idea of imposing additional conditions on the extended operator T so as to assure
uniqueness was already considered by Girardi and Weis [35] in connection with
the multiplier problem. They showed that uniqueness is guaranteed by requiring
the extension to satisfy an additional weak-to-weak type continuity assumption.
We show in Chapter 3 that even somewhat weaker additional requirements are
sufficient.

In fact, it is shown that the very natural requirement that the extended op-
erator T have the properties

ψ ∗ Tf = T (ψ ∗ f), and (Tf)(· − h) = T [f(· − h)]

for all f ∈ Bs,p
q (Rn;X), all ψ ∈ S(Rn), and all h ∈ Rn specifies it uniquely

provided p <∞ (but q =∞ allowed); however, for p =∞ we have to impose an
additional “compact-to-weak” continuity requirement on T—this is weaker than
the weak-to-weak continuity in [35]. Counterexamples are also given to show
that the uniqueness fails, in general, unless such conditions are imposed.

Chapter 4. In many respects, Chapter 4 represents the culmination of the
present work. Although it continues the development of the vector-valued theory,
the results improve on several known theorems even in the scalar case.

The motivation of the investigation comes from the comparison of the two
classical multiplier theorems of Mihlin and Hörmander, whose sufficient con-
ditions for m to be a Fourier multiplier on Lp(Rn) are (2.4) and (2.8), respectively.
Let us, for the sake of simplicity, consider n = 3, and compare the set of deriva-
tives of m for which an estimate is required in the two sets of assumptions:

• by both: m, ∂m/∂x, ∂m/∂y, ∂m/∂z, ∂2m/∂x∂y, ∂2m/∂y∂z, ∂2m/∂z∂x;
• by Hörmander only: ∂2m/∂x2, ∂2m/∂y2, ∂2m/∂z2;
• by Mihlin only: ∂3m/∂x∂y∂z.

The intersection of the assumptions is rather large, but both theorems require
some more estimates in addition to those common to both. It seems very natural
a question to enquire whether some additional estimates really are necessary, or
whether the pure intersection would be sufficient to conclude the boundedness of
the multiplier transformation.

More generally, in n dimensions, Mihlin requires estimates for the derivatives
whose order α = (α1, . . . , αn) satisfies the ∞-norm estimate |α|∞ ≤ 1, whereas
Hörmander for those with the 1-norm restricted by |α|1 ≤ bn/2c + 1. In
general, these describe partially overlapping sets of multi-indices, neither of which
is included in the other. Again, one may wonder whether it would suffice to
assume conditions only for those derivatives whose order satisfies both restrictions
|α|∞ ≤ 1 and |α|1 ≤ bn/2c+ 1.

The answer, which is proved in Chapter 4 (Cor. 7.4), is yes.
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In fact, I derive this result as a corollary of a rather more general theorem in
which the smoothness required of the multiplier is measured with a continuous
parameter; moreover, variants of the method apply not only to the Lebesgue–
Bôchner spaces but to the Hardy and Besov spaces as well. (For the convenience
of the reader who is interested in the main ideas behind the proof, rather than
the most general form of the results, a simplified and self-contained proof of the
above described“intersection theorem”, just in the scalar-valued case, is presented
in Chapter 5.) The philosophy of the proof is to combine results for convolution
operators, which were developed separately for Hardy, Bôchner and Besov spaces
in Chapters 1–3, with sharp new Fourier embedding theorems, which are then
used to check the appropriate conditions for the convolution kernel k = m̌ by
means of the assumptions on the multiplier m.

As simple as it seems, the simultaneous improvement of Mihlin’s and Hör-

mander’s multiplier theorem illustrates the power of the approach. The strong
results obtained even in the classical situation also provide one more motivating
factor for the vector-valued analysis carried out in this work: It is often the case
that the consideration of a problem from a somewhat generalized point of view
may reveal aspects which were unnoticed in the particular special case of initial
interest. In accordance with this principle, it is found here, in the end, that the
elaborate machinery, which was developed to cope with the difficulties encoun-
tered in the operator-valued setting, is powerful enough not only to extend the
theorems already known for the scalar case to the Banach space framework, but
to actually improve even on the original scalar-valued results.



CHAPTER 1

Translation-invariant operators on Hardy spaces

We prove new operator-valued Fourier multiplier theorems on
real-variable Hardy spaces of vector-valued functions. These
are applied to the maximal regularity question of the abstract
Cauchy problem (ACP) u̇ + Au = f, u(0) = 0 on Hp(R̄+;X),
p ∈ ]0, 1], as well as other equations.

In particular, we extend the recent theorem of L. Weis,
which says that the regularity of the ACP on Lp(R̄+;X) (where
p ∈ ]1,∞[ and X is UMD) is equivalent to the R-boundedness of
A(iξ+A)−1, ξ ∈ R, by showing that these conditions are further
equivalent to the regularity of the ACP on H1, and moreover
they are sufficient for the regularity on Hp, p ∈ ]0, 1[.

The results of this chapter have been submitted in the form
of the paper [45].

1. Introduction

Since the establishment of the real-variable characterization of the Hardy
spaces Hp, p ∈ ]0, 1], various operators (such as singular integrals, multipliers,
maximal functions etc.) have been extensively studied in this setting. This new
point of view has provided considerable insight into the nature of these operators,
whose theory was classically concentrated on the Lp-setting, with p ∈ ]1,∞[
(cf. [34, 77]). The purpose of the present chapter is to carry out this programme
for the maximal regularity problem of certain abstract differential equations and
the related convolution and Fourier multiplier operators. This is motivated by
the significant progress in the corresponding Lp-theory in recent years, after the
realization, first by Weis [86, 87], of the meaning ofR-boundedness in connection
with these problems. See also [2, 21, 22, 25, 36, 80].

The extension of these recent results to the real-variable Hardy spaces is not
only a theoretical challenge, but also a relevant task in view of some applications.
In fact, such techniques are of interest in the analysis of nonlinear equations of
elasticity, where local Hardy spaces (cf. e.g. [77], p. 134) seem to be the “right
tool” (I. Lasiecka, personal communication; see also [18], Sect. 1.2). We should
admit, though, that a gap remains between the abstract setting of the present
chapter and the applied problems just mentioned; in fact, we consider Hardy space
norms in the time-like variable t, whereas our space-like variables are hidden in

29
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the abstract space X, which in most cases is required to be UMD, a condition
which immediately excludes non-reflexive function spaces. Nevertheless, the re-
sults given here appear to be the first steps towards bringing the R-boundedness
techniques, succesfully applied in the Lp-setting, down to H1 and below.

Let us be more precise about the particular problems we have in mind. As
the simplest example, consider the abstract Cauchy problem

(1.1) u̇(t) + Au(t) = f(t) for t ≥ 0, u(0) = 0,

with A a closed linear operator with dense domain in the underlying Banach
space X and f ∈ L1

loc(R̄+;X).
It is well-known that, if −A is the generator of a strongly continuous semi-

group (T t)t≥0, then an Lp-solution [u ∈ W 1,p(R̄+;X) with u(t) ∈ D(A) for
a.e. t ≥ 0, and which satisfies (1.1) a.e.], when it exists, is necessarily given
by the variation-of-constants formula

(1.2) u(t) =

∫ t

0

T t−sf(s) ds, hence Au(t) = A

∫ t

0

T t−sf(s) ds,

and the above formula for u can always be used to define what is called the mild
solution.

Moreover, if (T t) is bounded and analytic and f is appropriate, then

(1.3) û(ξ) = (i2πξ + A)−1f̂(ξ), F[Au](ξ) = A(i2πξ + A)−1f̂(ξ),

whereˆ≡ F is the Fourier transform.
By maximal regularity of the ACP one means that, with any given data f

in a certain function class, there exists a unique solution u (in an appropriate
sense) such that both the terms on the left-hand side of (1.1) possess the same
regularity (e.g., in the Lp-setting, are integrable to the same power on the pos-
itive half-line) as f . One also occasionally takes as a definition the somewhat
stronger requirement that this regularity also hold for u itself, but, as it turns
out, the latter condition is true if and only if the first one is and, in addition, A
is boundedly invertible.

Some classical facts (due to different authors) concerning the maximal Lp-
regularity of the ACP are contained in the following result.

Theorem 1.4 (de Simon, Sobolevskij 1964). Let X be an arbitrary Ba-
nach space, and ACP have maximal Lp̃-regularity for some p̃ ∈ ]1,∞[. Then
−A is the generator of a bounded analytic semigroup, and ACP has maximal Lp-
regularity for all p ∈ ]1,∞[. If X is (isomorphic to) a Hilbert space, then −A
generating a bounded analytic semigroup is sufficient for maximal Lp-regularity
for all p ∈ ]1,∞[.

Proofs of the various statements and comments on the original works can
be found in the review article [27] of Dore. As described in more detail there,
whereas the equivalence of the various Lp-regularities was already observed by
Sobolevskij [75], to see when this regularity property holds even for one p ∈ ]1,∞[
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remained open for a much longer time (except in the Hilbert space case solved
by de Simon [74]).

Several sufficient conditions for the maximal Lp-regularity of particular classes
of operators were obtained over the years (again cf. [27]) but a fairly complete an-
swer was given only recently: First, Kalton and Lancien [49] showed that, out
of all Banach spaces with an unconditional basis, those isomorphic to a Hilbert
space are the only ones were maximal regularity holds for all negative generators
of analytic semigroups. Then, in the context of UMD-spaces, Weis [87] gave
a characterization of those operators A for which the ACP does have maximal
Lp-regularity. This characterization made use of the notion of R-boundedness, a
concept first exploited by Bourgain [12] and systematically studied by Clé-

ment, de Pagter, Sukochev and Witvliet [21].

Theorem 1.5 (Weis 2000). Let X be a UMD-space and −A the generator
of a bounded analytic semigroup. Then the following are equivalent:

(W1) ACP has maximal Lp-regularity for all p ∈ ]1,∞[.
(W2) The collection {A(i2πξ + A)−1| ξ ∈ R \ {0}} is R-bounded.

Let us now consider the question of whether, and to what extent, these results
could be extended to Hp for p ∈ ]0, 1].

First of all, we note that for the differential equation (1.1) to have a meaning
as written, it is assumed that f is a function, yielding a value f(t) for t ≥ 0;
however, for p ∈ ]0, 1[, an element of Hp is no longer a function in general, but
a (tempered) distribution. (E.g., we have δa − δb ∈ Hp(R) for p ∈]1/2, 1[, where
δa is the Dirac mass at a.) Nevertheless, one can still consider the operators
f 7→ Au defined by (1.2) or (1.3), initially on an appropriate dense subspace
of Hp, and hope to establish their boundedness which then permits a unique
continuous linear extension to all of Hp.

Taking the existence of such a continuous extension as the definition of maxi-
mal regularity in the general setting (for details, see Def. 3.10), one can establish
the following extension of the classical equivalence of the various Lp-regularities:

If the ACP has maximal Lp̃-regularity for some p̃ ∈ ]1,∞[, then
it also has maximal Hp-regularity for all p ∈ ]0, 1].

In fact, this follows rather readily from general extension results due to
Strömberg and Torchinsky [81]: Once a singular integral operator is bound-
ed on some Lp̃, and its kernel (or the corresponding multiplier) satisfies certain
conditions, the operator will also be bounded on Hp. Somewhat surprisingly, the
scalar-valued results in [81] turn out to generalize to the setting of vector-valued
functions and operator-valued kernels with essentially the same proofs, making
only obvious, mostly notational modifications (Sect. 5).

Having obtained this sufficient condition for maximal Hp-regularity almost
for free, one could also ask for a converse type implication, i.e., whether the
knowledge of having maximal regularity on Hp could be used to deduce the
corresponding property in the classical Lp-setting.
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We are able to give a partial affirmative answer, and the key result in this
direction is the following:

If the ACP has (H1, L1) regularity, i.e., if f 7→ Au maps (a dense
subset of) H1 boundedly into L1, then −A generates a bounded
analytic semigroup and the set {A(i2πξ +A)−1| ξ ∈ R \ {0}} is
R-bounded.

The R-boundedness assertion actually follows from the much more general
and far-reaching Theorem 4.2, which asserts the R-boundedness of the essential
range of any Fourier-multiplier mapping H1(Rn;X) into L1(Rn;Y ). It extends
the corresponding Lp-result due to Clément and Prüss [22] (which is restated
as Theorem 4.1).

With the above mentioned sufficient criterion for R-boundedness and the
implication W2 ⇒ W1 of Theorem 1.5, we obtain the fact that maximal H1-
regularity (or actually the formally weaker (H1, L1)-regularity) implies maximal
Lp-regularity for all p ∈ ]1,∞[ in the UMD-setting.

Combining the results mentioned so far, we can augment Weis’ Theorem 1.5,
so as to get the following more complete characterization of the maximal regu-
larity of the ACP on a UMD-space:

Theorem 1.6. Let X be a UMD-space. Then the following are equivalent:

(C1) ACP has maximal Lp-regularity for all p ∈ ]1,∞[.
(C2) ACP has maximal H1-regularity.
(C3) ACP has (H1, L1)-regularity.
(C4) −A generates a bounded analytic semigroup and the collection

{A(i2πξ + A)−1| ξ ∈ R \ {0}} is R-bounded.

Moreover, any of these is sufficient to

(C5) ACP has maximal Hp-regularity for all p ∈ ]0, 1[.

Remark 1.7. In fact, the implications C1 ⇒ C2 ⇒ C3 ⇒ C4 and C1 ⇒ C5

hold for any Banach space X.

We should note that the equivalence of C2 and C3 above is also a consequence
of a more general result (Lemma 6.1) concerning Fourier multipliers acting on
UMD-valued function spaces.

One could hope that the implication C3 ⇒ C1 above would turn out to be of
use in some applications; indeed, to verify (H1, L1)-regularity, one would need to
check that f 7→ Au maps atoms of H1 uniformly into integrable functions, and
this could in some cases be simpler than the direct verification of the other items
in Theorem 1.6.

Having sketched the results we are going to prove for the Cauchy problem,
we note that the methods applied are by no means restricted to this particular
equation (although the existence of the simple and explicit variation-of-constants
formula (1.2) can be used to simplify certain matters). We can also treat the
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more general fractional order equations

(1.8) Dαu(t) + Au(t) = f(t) for t ≥ 0, u(0) = 0, (u̇(0) = 0 if α > 1),

where α ∈ ]0, 2[.
While the previous example was still a problem on the line, our methods work

equally well in n dimensions, and as an example in this direction we are able to
give a maximal regularity result similar to Theorem 1.6 for the abstract Laplace
equation

(1.9) −4u(t) + Au(t) = f(t) for t ∈ Rn.

The chapter is organized as follows: Sect. 2 is preliminary, collecting some
general notation and facts to be used. Two lengthy proofs of lemmata concerning
Hardy spaces are postponed to an appendix, Sect. 8. In Sect. 3 we discuss in
detail the relation between different possible notions of maximal regularity in
the setting of Hardy spaces, and we also prove the necessity of −A generating
an analytic semigroup (Theorem 3.1) for the (H1, L1)-regularity of (1.1). We go
on with necessary conditions, from the point of view of general multipliers, in
Sect. 4, where we prove the necessity of R-boundedness for (H1, L1)-multipliers
(Theorem 4.2). Sufficient conditions for the boundedness of our operators are
then taken up in Sect. 5. We return to the problem of maximal regularity in
Sect. 6, where we complete the proof of Theorem 1.6, and also formulate and
prove analogous results for the problems (1.8) and (1.9). Brief final remarks are
given in Sect. 7.

2. General preliminaries

Let us fix some notation. The set of natural numbers is N := {0, 1, 2, . . .}
and that of positive integers is Z+ := {1, 2, . . .}. Moreover, R+ := ]0,∞[ and
R̄+ := [0,∞[. For ` > 0, we denote by b`c the greatest integer at most `, and by
bb`cc the greatest integer strictly less than `. Thus both functions give the integer
part of a non-integer `, but bbmcc = m− 1, bmc = m for m ∈ Z+.

X and Y are complex Banach spaces. The Lebesgue–Bôchner spaces of X-
valued functions on Ω [usually Rn or R̄+, always equipped with the Lebesgue
measure] are denoted by Lp(Ω;X), and the Hardy spaces [whose definition is
given later in this section] by Hp(Ω;X). If X = C, we omit it from the notation
and simply write Lp(Rn) etc.

Test function spaces. S(Rn;X) denotes the Schwartz class of infinitely dif-
ferentiable, rapidly decreasing X-valued functions. The X-valued tempered dis-
tributions are defined by S ′(Rn;X) := L(S(Rn), X), where L(A,B) denotes the
space of continuous linear operators between the topological vector spaces A and
B.
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Important test function classes include D(Rn;X) := C∞c (Rn;X) ⊂ S(Rn;X),
where the subscript c indicates compact support, and

D̂0(Rn;X) :=
{
ψ ∈ S(Rn;X)

∣∣∣ ψ̂ ∈ D(Rn;X), 0 /∈ supp ψ̂
}
,

where ψ̂ stands for the Fourier transform of ψ. It is well-known that all the test-
function classes mentioned so far are dense in Lp(Rn;X) for p ∈ ]1,∞[; in fact,

this is true even for the algebraic tensor products X ⊗ D̂0(Rn) etc.
Fourier transform and multipliers. The Fourier transform, of f ∈ L1(Rn;X),

is defined by

f̂(ξ) ≡ Ff(ξ) :=

∫
Rn

f(t)e−i2πξ·t dt.

It is an isomorphism on S(Rn;X), as well as on S ′(Rn;X) [where it is defined by

the duality
〈
f̂ , ψ

〉
:=
〈
f, ψ̂

〉
]. Moreover, the equality F2f(t) = f(−t) is always

true in the sense of tempered distributions. The inverse Fourier transform is
denoted by f̌ ≡ F−1f .

Given m ∈ L1
loc(R

n;L(X, Y )), we can consider the Fourier multiplier operator

T , initially defined on D̂0(Rn;X), say, by Tf := F−1[mf̂ ]; or more explicitly,

(2.1) Tf(t) :=

∫
Rn

m(ξ)f̂(ξ)ei2πξ·t dξ.

It is an interesting question to determine whether, for a given m, the operator
T has a bounded extension from Lp(Rn;X) to Lp(Rn;Y ), say. Several classical
results are well-known in the scalar context; for the vector-valued situation, it
has been known for some time that a reasonable theory is valid for the Banach
spaces with the UMD-property. This means the unconditionality of martingale
d ifference sequences in Lp([0, 1];X) for one (and then all) p ∈ ]1,∞[, or what is
equivalent [according to results due to Burkholder and Bourgain], that the
multiplier m(ξ) := −i sgn(ξ) defines by means of (2.1) a bounded operator, the
Hilbert transform, on Lp(R;X) for one (and then all) p ∈ ]1,∞[. See e.g. the
review paper of Rubio de Francia [71] for more on UMD-spaces.

Fourier-type of Banach spaces. As another notion from the geometry of Ba-
nach spaces, we recall that a Banach space X is said to have Fourier-type p, if
the Hausdorff–Young inequality

(2.2) ‖f̂‖Lp′ (R;X) ≤ C ‖f‖Lp(R;X) ,

is true for every f ∈ (L1∩Lp)(R;X) with some finite C. Obviously every Banach
space satisfies this inequality with p = 1, and by interpolation the inequality
holds for q ∈ ]1, p[ if it holds for some p > 1. X is said to have a non-trivial
Fourier-type, if it has a Fourier-type p > 1. Note that once (2.2) is true, the
corresponding inequality with R replaced by Rn also holds due to the tensor
nature of the Fourier transform.
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The notion of Fourier-type is due to Peetre [65]. He proved in [65], among
other things, that every space Lp(Ω,Σ, µ) (of scalar-valued functions) has Fourier-
type min(p, p′). Kwapień [55] has shown that B has Fourier-type 2 if and only
if it is isomorphic to a Hilbert space.

Because of the significant rôle of the UMD-spaces in the theory of multipliers,
it is useful to know that every UMD-space has a non-trivial Fourier-type. This
is a consequence of the following results: (This argument was shown to me by S.

Geiss.)

• A UMD-space does not contain uniformly `1(r) := (Cr, |·|1) for r ∈ Z+.
• A Banach space X does not contain uniformly `1(r), r ∈ Z+, if and only

if X has a non-trivial Rademacher-type.
• X has a non-trivial Rademacher-type if and only if it has a non-trivial

Fourier-type.

The first assertion is easy to prove, since the non-reflexive sequence space `1

is not UMD (UMD-spaces being even super-reflexive, see [71, p. 205]), and so has
infinite UMD-constants Mp(`

1) = ∞. By approximating `1-valued martingales
by their projections to the r first coordinate directions, it follows readily that
the UMD-constant of `1(r) is larger than any preassigned M > 0 once r is large
enough, i.e., Mp(`

1(r))→∞ as r →∞, which proves the assertion.
The second and in particular the third claim above are deeper, and we refer

to [67], Theorems 4.4.7 and 5.6.30, and the references cited there, also for the
definition of the Rademacher-type. These results are originally due to Pisier

and Bourgain, respectively.
R-boundedness. This has become a prominent notion in connection with re-

sults for operator-valued Fourier multipliers and singular integrals. We denote
by εj, j = 1, 2, . . ., the Rademacher system of independent random variables on
some probability space (Ω,Σ,P) which satisfy P(εj = 1) = P(εj = −1) = 1/2. E
denotes the expectation related to the probability measure P.

We recall [22, 87] that T ⊂ L(X;Y ) is called R-bounded, the R being short
for Rademacher, randomized or Riesz, if for some p ∈ ]0,∞[ and C <∞ and for
all N ∈ Z+, xj ∈ X, Tj ∈ T the inequalityE ∣∣∣∣∣

N∑
j=1

εjTjxj

∣∣∣∣∣
p

Y

 1
p

≤ C

E ∣∣∣∣∣
N∑
j=1

εjxj

∣∣∣∣∣
p

X

 1
p

holds. It follows from Kahane’s inequality that for each fixed T, the condition
in fact holds true either for all p ∈ ]0,∞[ (with C possibly depending on p) or
for none. We shall be mostly concerned with the case p = 1, and we define the
R-bound of T as

R

refer to the smallest C in this inequality as the R-bound of T and denote it
by R(T).
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One of the most standard tools related to R-boundedness is the contraction
principle (of J.-P. Kahane) stating thatE ∣∣∣∣∣

N∑
j=1

εjλjxj

∣∣∣∣∣
p

X

 1
p

≤ π

2

E ∣∣∣∣∣
N∑
j=1

εjxj

∣∣∣∣∣
p

X

 1
p

for p ≥ 1, N ∈ Z+, xj ∈ X and λj ∈ C with |λj| ≤ 1.
In the literature, one usually finds this with the constant 2 in place of π/2.

Even though the size of constants is quite immaterial for our purposes, we shall
use the inequality in this sharper form, which is proved in [67, §3.5.4].

Atomic Hardy spaces. We recall the definition of the Hardy spaces of vector-
valued functions and establish some of their properties that are relevant to us in
the subsequent sections.

As is well-known in the scalar-valued setting, there exist various equivalent
characterizations of the spaces Hp, 0 < p ≤ 1. In the vector-valued situation, not
all of these equivalences remain valid, and we must be more careful about the
definition. Here we are concerned with the atomic Hardy spaces

Hp(Rn;X) :=

{
S ′-

∞∑
k=0

λkak : ak an Hp-atom, λk ∈ C,
∞∑
k=0

|λk|p <∞

}
(where S ′-

∑
indicates convergence of the series in the sense of tempered distri-

butions), equipped with the quasi-norm

‖f‖pHp(Rn;X) := inf
∞∑
k=0

|λk|p ,

where the infimum is taken over all atomic decompositions of f ∈ Hp as in the
definition of the atomic Hardy space.

The definition of the atoms appearing above is the same as in the scalar-valued
context: We say that a ∈ Lq(Rn;X) is a (p, q,N)-atom, where 0 < p ≤ 1 < q ≤ ∞
and N ∈ N, provided that

• a is supported in a ball B̄,

• ‖a‖Lq ≤
∣∣B̄∣∣q−1−p−1

, and
•
∫
xαa(x) dx = 0 for all α ∈ Nn with |α| ≤ N .

The three requirements above are referred to as the support condition, the size
condition and the moment condition, respectively.

We say that a is a (p, q)-atom if it is a (p, q,N)-atom for some N ∈ N, and
that a is an Hp-atom of Lq-type if it is a (p, q,N)-atom for some N ≥ n(p−1−1).
Finally, a is an Hp-atom, if it is an Hp-atom of some Lq-type, q > 1. In the
definition of Hp above, we require that the ak are (p, q)-atoms for some fixed
q > 1. The spaces obtained with different values of q coincide and the norms are
equivalent. In the sequel, we will freely use any of the equivalent norms of Hp
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defined in terms of the different values of q ∈ ]1,∞[, whichever is most suited to
a particular purpose.

Hardy spaces on a half-line. For the purposes of studying the Cauchy problem,
a notion of Hardy spaces on R̄+ is useful. Of course, one could simply define (and
this could be done with any set in place of R̄+)

Hp(R̄+;X) :={
S ′-

∞∑
k=0

λkak : ak an Hp-atom supported on R̄+, λk ∈ C,
∞∑
k=0

|λk|p <∞

}
,

and take as the norm the same formal expression as in the case of the line, but
restricted to those atomic decompositions living on the positive half-line only.

However, we would like to identify Hp(R̄+;X) with the subset of Hp(R;X)
consisting of those elements supported on the positive half-line, in the way fa-
miliar from the context of the Lp spaces. Contrary to the case of Lp where this
identification, due to the fact that the size of a function is essentially the sum of
the sizes of its local parts, is more or less obvious, it is not clear a priori that
we can do the same in the Hp context; indeed, the fact that a distribution f
is supported on R̄+ and has an atomic decomposition does not imply that all
(or in fact any) atoms of the particular decomposition should have their support
contained in R̄+. Nevertheless, things can be settled, as stated in the following:

Lemma 2.3. We have Hp(R̄+;X) ≈ {f ∈ Hp(R;X) : supp f ∈ R̄+}, in the
sense of coincidence of the sets and equivalence of norms.

More precisely, there exists C = Cp < ∞ such that for every f ∈ Hp(R;X)
supported on R̄+, there exists an atomic decomposition f = S ′-

∑∞
k=1 λkak such

that supp ak ⊂ R̄+ and
∑∞

k=0 |λk|
p ≤ C ‖f‖pHp(R;X), where the p-norm of Hp(R;X)

is defined using all atomic decompositions of f , possibly not supported on R̄+.

The proof of this lemma, as well as that of the next one, is postponed to
Sect. 8.

Dense subsets. It is always useful to have a convenient dense subspace to work
with. The following lemma shows that the problem of finding dense subspaces of
the Hardy spaces of vector-valued functions reduces to the correponding task in
the scalar-valued context.

Lemma 2.4. Let Z be a dense subspace of X, and G a dense subspace of
Hp(Rn) resp. Hp(R̄+). Then Z ⊗ G is a dense subspace of Hp(Rn;X) resp.
Hp(R̄+;X). In particular,

• X ⊗ (D(Rn) ∩Hp(Rn)) and X ⊗ D̂0(Rn) are dense in Hp(Rn;X),
• X ⊗ (C∞c (R+) ∩Hp(R̄+)) is dense in Hp(R̄+;X).
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Recall that

D(Rn) ∩Hp(Rn)

= {f ∈ D(Rn)| f has the same vanishing moments as an atom of Hp},

and the same is true with D(Rn) replaced by S(Rn).

3. Notion of regularity of the ACP on Hardy spaces

In this section, we make slightly more precise the sense in which the regularity
of the solutions of the Cauchy problem is equivalent to the boundedness of the
(singular) integral and multiplier operators defined in (1.2) and (1.3). Although
this is reasonably well-known in the Lp context, and the proofs in the Hp setting
turn out to be quite standard, it seems appropriate to have a brief look at the
very notion of regularity in this new setting, so as to underline the particular
properties that are required of the function spaces [or more generally, spaces of
distributions] in question for the results familiar from the Lp-context to make
sense.

A necessary condition. First of all, one matter ought to be cleaned out
of the way. Although it is possible to formulate a notion of regularity for the
ACP with A any linear operator whatsoever, it is more convenient to work with a
(negative) generator of a C0-semigroup (T t)t≥0, or better still, a bounded analytic
semigroup. According to the classical Theorem 1.4, in order to have maximal Lp-
regularity for p ∈ ]1,∞[, it is necessary that −A is a generator, so that there is no
loss in generality in making this assumption when seeking for sufficient conditions
in that setting.

The next theorem, which is the main result of this section, shows that the
same property remains true for (H1, L1)-type regularity, as defined for general
A in the statement of the theorem. Recall that W 1,p(I;X), I ⊂ R being an
interval, is the space of all f ∈ Lp(I;X) whose distributional derivative f ′ is also
in Lp(I;X); then W 1,p

loc (R̄+;X) is the space of all f whose restriction to any finite
interval I = [0, b] ⊂ R̄+ is in W 1,p(I;X).

Theorem 3.1. Let X be a complex Banach space and A a densely defined,
closed, linear operator in X. Suppose that for every f ∈ H1(R̄+;X) there exists a
unique function u ∈ W 1,1

loc (R̄+;X) such that u(t) ∈ D(A) and u̇(t) +Au(t) = f(t)
for a.e. t ≥ 0, and moreover

‖u̇‖L1(R̄+;X) + ‖Au‖L1(R̄+;X) ≤ C ‖f‖H1(R̄+;X) .

Then −A generates a bounded analytic semigroup.
If, in addition, we always have ‖u‖L1(R̄+;X) ≤ C ‖f‖H1(R̄+;X), then A is bound-

edly invertible.

The proof will essentially copy that in [27] for the Lp case. The only difference
is that instead of the auxiliary functions fλ(t) = eλtχ[0,1/Reλ](t) used there, we
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will need [in order to ensure membership in H1] the slightly more complicated
expression

(3.2) fλ(t) := (Aλe
λt +Bλ)χ[0,1/Reλ](t) for Reλ > 0,

where the constants Aλ and Bλ are chosen in an appropriate manner.
More precisely, we want to impose the conditions

0 ≡
∫ ∞

0

fλ(t) dt = A
eλ/Reλ − 1

λ
+B

1

Reλ
=

1

Reλ

(
A
e1+iθ − 1

1 + iθ
+B

)
,

θ :=
Imλ

Reλ
,

which is the requirement fλ ∈ H1 (since fλ is bounded and compactly supported
in any case), and

1

Reλ
≡
∫ ∞

0

e−λtfλ(t) dt = A
1

Reλ
+B

1− e−λ/Reλ

λ
=

1

Reλ

(
A+B

1− e−1−iθ

1 + iθ

)
,

whose meaning will be clear later on.
[In [27], the vanishing of the first integral above is not needed, and the second

condition is satisfied simply with the choice A = 1, B = 0.] The fact that we can
choose Aλ and Bλ with the desired properties in a uniform manner follows from
the following technical lemma:

Lemma 3.3. The pair of equations{
A e1+iθ−1

1+iθ
+B = 0

A+B 1−e−1−iθ

1+iθ
= 1

has for every θ ∈ R a unique solution (A(θ), B(θ)), and |A(θ)| + |B(θ)| ≤ C for
some constant C independent of θ ∈ R.

Proof. The matrix elements being bounded functions of θ, it follows from
elementary linear algebra that a proof amounts to showing that the determinant

D(θ) :=
e1+iθ − 1

1 + iθ
· 1− e−1−iθ

1 + iθ
− 1 =

e1+iθ + e−1−iθ − 3 + θ2 − 2iθ

(1 + iθ)2

satisfies |D(θ)| ≥ c > 0. Clearly D(θ)→ −1 when |θ| → ∞, so that by continuity
and compactness it suffices to show that D(θ) has no zeros. By considering
separately the real and imaginary parts of the numerator of D(θ), we find that
D(θ) = 0 is equivalent to {

(e+ e−1) cos θ + θ2 = 3,

(e− e−1) sin θ − 2θ = 0.

One easily verifies, e.g., that the second equation has exactly the solutions θ = 0
and θ = ±θ0, where θ0 ≈ 0.968, and none of these is a solution of the first
equation. �
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Now we are ready to prove the semigroup generation. Recall (cf. e.g. [30],
Sect. II.4.a, where the terminology is slightly different though) that the condition
that −A generates a bounded analytic semigroup is equivalent to saying that A
is sectorial of angle ω < π/2. We recall the definition of sectoriality:

Definition 3.4. We say that the linear operator A, with dense domain D(A)
in X, is sectorial of angle ω ∈ ]0, π[ if

• the spectrum of A satisfies σ(A) ⊂ Σ̄ω, where Σω := {ζ ∈ C \ {0} :
|arg(ζ)| < ω}, and
• for all θ ∈ ]ω, π[ there exists a Cθ <∞ such that ‖ζ(ζ − A)−1‖L(X) ≤ Cθ

for all ζ /∈ Σ̄θ.

For later use of this condition, note in particular that the above estimate
holds with ζ ∈ iR \ {0} when ω < π/2, and then also the similar estimate with
A(ζ−A)−1 in place of ζ(ζ−A)−1, since their difference is just the identity. Then
finally to the proof:

Proof of Theorem 3.1. Let Reλ > 0 and let fλ be defined by (3.2), with
Aλ and Bλ chosen so that |Aλ|+ |Bλ| ≤ C (independent of λ) and

(3.5)

∫ ∞
0

fλ(t) dt = 0,

∫ ∞
0

e−λtfλ(t) dt =
1

Reλ
.

[That this choice is possible is the content of Lemma 3.3 and the preceding re-
marks.] Since fλ is bounded and compactly supported on the positive half-line,
with vanishing integral, it is an element of H1(R̄+), and more precisely, the norm
is estimated by

‖fλ‖H1 ≤ ‖fλ‖L∞ |supp fλ| ≤ (|Aλ| · e+ |Bλ|)
1

Reλ
≤ C

Reλ
.

Then for every x ∈ X, we have fλ(·)x ∈ H1(R̄+;X), and by the assumptions
of the theorem, to such a function corresponds a unique u =: U(fλx) with the
properties listed in the assumptions.

Let us then define

(3.6) Rλx := Reλ

∫ ∞
0

e−λtU(fλx)(t) dt =
Reλ

λ

∫ ∞
0

e−λtU̇(fλx)(t) dt,

where the existence of the second integral is clear, since u̇ ∈ L1(R̄+;X), and
then u ∈ L∞(R̄+;X), so that the existence of the first integral also follows. The
equality of the two follows from integration by parts.

With the help of (λ+ A)u = λu+ f − u̇ and (3.6), we find that

(λ+ A)Rλx = Reλ

∫ ∞
0

e−λtfλ(t) dt x = x,

using for the last step the second equality in (3.5). Thus Rλ is a right inverse
of λ + A, and the fact that it is also a left inverse follows, as in [27], from
AU(fλx) = U(fλAx) for x ∈ D(A); this equation is proved in Sect. 9.
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Thus we have C+ ⊂ ρ(−A) [the resolvent set of −A], and from (3.6) we obtain
the estimate∣∣(λ+ A)−1x

∣∣
X
≤ Reλ

|λ|

∥∥∥U̇(fλx)
∥∥∥
L1(R̄+;X)

≤ Reλ

|λ|
C ‖fλx‖H1(R̄+;X)

≤ Reλ

|λ|
C̃

Reλ
|x|X =

C̃

|λ|
|x|X .

Thus ‖λ(λ+ A)−1‖L(X) ≤ C for λ ∈ C+, and by standard resolvent arguments,

this inequality, which is uniform in the sector of angle π/2 continues to hold in a
slightly larger sector, possibly adjusting the constant. Thus −A is the generator
of a bounded analytic semigroup.

Under the extra assumption on the regularity of u, we also have from the first
form of Rλx in (3.6) that∣∣(λ+ A)−1x

∣∣
X
≤ Reλ ‖U(fλx)‖L1(R̄+;X) ≤ Reλ · C ‖fλx‖H1(R̄+;X)

≤ Reλ
C̃

Reλ
|x|X = C̃ |x|X ,

and the bounded invertibility of A follows from the uniformity of this inequality
as λ ↓ 0. �

Theorem 3.1 at our disposal, it will henceforth be assumed, in connection with
the Cauchy problem, that −A is the generator of a bounded analytic semigroup
(T t).

Different notions of regularity. As was mentioned in the Introduction, for
our treatment of the ACP on Hardy spaces, we will deviate from the commonly
used notion in the Lp-setting, where maximal regularity of the ACP is usually
defined in terms of the regularity of the mild solution, simply because the notion
of the mild solution assumes f ∈ L1

loc(R̄+;X), which in our case is not true in
general. Thus we shall only examine the regularity of the solution when the data
f is smooth enough (but requiring the quantitative estimates to be independent of
this smoothness), and we relate this to the boundedness of the operators f 7→ Au
in (1.2) and (1.3) on a dense subspace of the spaces of interest. Having examined
the most general situation, we also show that this operator-based notion still
agrees with the regularity defined in terms of the mild solution in the border-line
case of H1 and L1.

Let us first recall the following fact. The result is more or less folklore, but a
proof is nevertheless given for completeness.

Proposition 3.7. Let −A be the generator of a bounded, analytic semigroup
on X. For f ∈ C1

c (R+;X), the classical solution u of the ACP satisfies, for a.e.
ξ ∈ R,̂̇u(ξ) = i2πξ(i2πξ + A)−1f̂(ξ), Âu(ξ) = A(i2πξ + A)−1f̂(ξ) =: m(ξ)f̂(ξ).
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Proof. Estimating crudely the variation-of-constants formula, we observe
that

|u(t)|X ≤
∫ t

0

C |f(t− s)|X ds ≤ C ‖f‖1 ,

|u̇(t)|X ≤
∫ t

0

C
∣∣∣ḟ(t− s)

∣∣∣
X

ds ≤ C
∥∥∥ḟ∥∥∥

1

so that u and u̇ are bounded functions.
Let λ > 0. We want to evaluate∫ ∞

0

e−(λ+i2πξ)tu̇(t) dt = (λ+ i2πξ)

∫ ∞
0

e−(λ+i2πξ)tu(t) dt;

the equality follows from integration by parts, noting that u(0) = 0.
To manipulate this equality further, we use the variation-of-constants formula

to the result

= (λ+ i2πξ)

∫ ∞
0

e−(λ+i2πξ)t

∫ t

0

e−A(t−s)f(s) ds dt

= (λ+ i2πξ)

∫ ∞
0

e−(λ+i2πξ)s

∫ ∞
s

e−(λ+i2πξ)(t−s)e−A(t−s)f(s) dt ds

= (λ+ i2πξ)

∫ ∞
0

e−(λ+i2πξ)s(λ+ i2πξ + A)−1f(s) ds

= (λ+ i2πξ)(λ+ i2πξ + A)−1

∫ ∞
0

e−(λ+i2πξ)sf(s) ds.

We now consider the limit λ ↓ 0. Since u̇ is a bounded function supported on
[0,∞[, we have e−λtu̇(t) → u̇(t) boundedly, and hence in the sense of tempered

distributions. Thus
∫∞

0
e−(λ+i2πξ)tu̇(t) dt = F[e−λtu̇(t)](ξ)→ ̂̇u(ξ) in S ′(R;X).

By the continuity of the resolvent, we have (λ + i2πξ)(λ + i2πξ + A)−1 →
i2πξ(i2πξ + A)−1 whenever ξ 6= 0, the convergence being in the operator norm
topology. Moreover, this convergence is uniformly bounded in ξ and λ. Further-
more, it is clear that

∫∞
0
e−(λ+i2πξ)sf(s) ds → f̂(ξ), and the quantities involved

are bounded in norm by ‖f‖1 uniformly in ξ and λ.
We conclude that

(λ+ i2πξ)(λ+ i2πξ + A)−1

∫ ∞
0

e−(λ+i2πξ)sf(s) ds −→
λ↓0

i2πξ(i2πξ + A)−1f̂(ξ)

boundedly and almost everywhere (in fact, everywhere except possibly at ξ = 0).
Thus the convergence also takes place in the distributional sense, and we obtain
the first of the asserted equalities by the uniqueness of the distributional limit.
The second equation follows from the first and the equality u̇+ Au = f . �

From this proposition, we immediately deduce the equivalence of three max-
imal regularity type notions on our spaces of interest: the a priori estimate for
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the classical solution of the ACP with test function data, and the boundedness
of the operators defined by convolution with the operator-valued kernel

(3.8) k(t) := AT tχR+(t)

and by transformation with the Fourier multiplier appearing in Prop. 3.7.
In the following result we treat several function spaces at a time, since the

proofs are just the same. Thus we use the generic notation F0 and F1 for the
spaces between which we consider the problem of regularity, i.e., f ∈ F0 and (if
there is regularity) Au ∈ F1.

Proposition 3.9. Let either (F0,F1) = (Hp, Hp) with p ∈ ]0, 1], or (F0,F1) =
(H1, L1). Then the following conditions are equivalent:

Dense class estimate: For all f ∈ [D(A)⊗C∞c (R+)]∩F0(R̄+;X) and the
corresponding classical solution u of the ACP, we have Au ∈ F1(R̄+;X)
with ‖Au‖F1

≤ K ‖f‖F0
.

Integral condition: The singular integral operator

f ∈ D(A)⊗D(R) 7→ k ∗ f
extends to a bounded linear mapping from F0(R;X) to F1(R;X), of norm
at most K.

Multiplier condition: The multiplier operator

f ∈ D(A)⊗D(R) 7→ F−1(mf̂) =: Tmf

extends to a bounded linear mapping from F0(R;X) to F1(R;X), of norm
at most K.

The reader should not be confused by the typographical similarity of D (the
domain of an operator) and D (the set of test functions).

Proof. Note first that, for f ∈ D(A) ⊗ C∞c (R+) and u the corresponding
classical solution of the ACP, it follows from Prop. 3.7 and the variation-of-
constants formula that Tmf = k ∗ f = Au.

Assume the dense class estimate. If f ∈ [D(A) ⊗ C∞c (R+)] ∩ F0(R̄+;X), it
follows from this estimate that Tmf = k ∗ f = Au ∈ F1(R;X) and ‖Tmf‖F1

=
‖k ∗ f‖F1

≤ K ‖f‖F0
. Since Tm and k∗ commute with translations and the norms

of Fµ, µ = 0, 1, are translation-invariant, this inequality also holds for all f ∈
[D(A)⊗D(R)]∩F0(R;X), but this implies the multiplier and integral conditions
by density.

Conversely, suppose that either the integral or the multiplier condition holds.
For f ∈ [D(A)⊗C∞c (R+)]∩F0(R̄+;X)] and u the corresponding classical solution
of the ACP, we have Au = k ∗ f = Tmf ∈ F1(R;X) by the assumption, with
‖Au‖F1

≤ K ‖f‖F0
. Since u and hence Au is supported on R̄+, we have in fact

Au ∈ F1(R̄+;X), and the dense class estimate holds. �

With the equivalence of the regularity notions, we adopt the following defini-
tion:
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Definition 3.10. The ACP is said to have (F0,F1)-regularity if the three
equivalent conditions in Prop. 3.9 are satisfied.

We should note that, since F0(R;X) ↪→ F1(R;X) in all the cases treated, the
estimate ‖Au‖F1

≤ K ‖f‖F0
already implies the similar estimate

‖u̇‖F1
= ‖f − Au‖F1

≤ (1 +K) ‖f‖F0
,

where the first equality follows directly from the fact that u satisfies the ACP.
This justifies our imposing regularity conditions only on Au.

Let us next verify that our notion of regularity implies the usual estimates for
the mild solution in the borderline situation p = 1. What we need below is the
embedding of our spaces in L1

loc, a property that the spaces Hp fail to satisfy for
p < 1.

Proposition 3.11. Let F0 = H1 and F1 ∈ {H1, L1}. Then the (F0,F1)-
regularity of the ACP is equivalent to

Regularity of the mild solution: For every f ∈ F0(R̄+;X) and u the
corresponding mild solution of the ACP, we have u(t) ∈ D(A) for a.e.
t ∈ R̄+, Au ∈ F1(R̄+;X) with ‖Au‖F1

≤ K ‖f‖F0
. Moreover, we have

u ∈ W 1,1
loc (R̄+;X), u(0) = 0, u̇ ∈ F1(R̄+;X), and the equation u̇(t) +

Au(t) = f(t) holds for a.e. t ∈ R̄+.

Proof. The fact that the above mentioned regularity of the mild solution
implies the dense class estimate in Prop. 3.9 is obvious, since a classical solution
of the ACP is also a mild solution. Let us consider the converse.

Given f ∈ F0(R̄+;X), let fn ∈ [D(A) ⊗ C∞c (R+)] ∩ F0(R̄+;X), n ∈ N, be
a sequence of functions converging to f in F0(R̄+;X). (The existence of such
a sequence is guaranteed by Lemma 2.4.) By the dense class estimate we have
‖Aun − Aum‖F1

≤ K ‖fn − fm‖F0
→ 0; thus (Aun)∞n=1 ⊂ F1(R;X) is a Cauchy

sequence, and by completeness we have Aun → v for some v ∈ F1(R;X). Since
F1 ↪→ L1 (L1

loc would suffice), it follows, for a subsequence, that Aun(t) → v(t)
for a.e. t ∈ R. We henceforth consider this subsequence.

We also have

un(t) =

∫ t

0

T t−sfn(s) ds→
∫ t

0

T t−sf(s) ds = u(t)

for all t ∈ R+, since (T t) is bounded and fn → f in L1
loc(R;X). From un(t) →

u(t), Aun(t) → v(t) (a.e. t), and the closedness of A we conclude that u(t) ∈
D(A) and Au(t) = v(t) for a.e. t. Thus ‖Au‖F1

= ‖v‖F1
= lim ‖Aun‖F1

≤
limK ‖fn‖F0

= K ‖f‖F0
.

The last statement in the regularity of the mild solution follows with similar
reasoning from the closedness of u ∈ W 1,1([0, t];X) 7→ u̇ ∈ L1([0, t];X) and the
estimate

‖u̇n − u̇m‖F1
≤ ‖Aun − Aum‖F1

+ ‖fn − fm‖F1
≤ (K + 1) ‖fn − fm‖F0

,
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where the embedding F0 ↪→ F1 was used. �

4. R-boundedness is necessary for multipliers on H1

In this section we show the necessity of R-boundedness for an operator-valued
Fourier-multiplier from H1(Rn;X) to H1(Rn;Y ), and in fact, even for a multiplier
from H1(Rn;X) to L1(Rn;Y ). According to our definition of the regularity of
the ACP on these spaces, this result also yields the necessity of R-boundedness
for the maximal H1-regularity of the ACP.

We first recall the analogous Lp-result due to Clément and Prüss:

Theorem 4.1 ([22]). Suppose m ∈ L1
loc(R

n;L(X, Y )) is such that the multi-

plier operator Tmf := F−1[mf̂ ] acts boundedly from Lp(Rn;X) to Lp(Rn;Y ) for
some p ∈ [1,∞[. Then {m(y)| y strong Lebesgue point of m} is R-bounded.

In fact, the result is stated in [22] only for p ∈ ]1,∞[ and norm-topology
Lebesgue points, but the proof works as such also for the slight generalization
formulated above. Our purpose is to show that this assertion remains true even
for multipliers from H1(Rn;X) to L1(Rn;Y ), and this is a much larger class than
the L1-multipliers.

Theorem 4.2. Suppose m ∈ L1
loc(R

n;L(X, Y )) is such that the multiplier

operator Tmf := F−1[mf̂ ] acts boundedly from H1(Rn;X) to L1(Rn;Y ).
Then m is strongly continuous away from the origin and moreover

R ({m(y)| y 6= 0}) ≤ Cn ‖Tm‖L(H1(Rn;X);L1(Rn;Y )) ,

where the constant Cn depends only on the dimension n. In particular, m ∈
L∞(Rn;L(X, Y )).

Proof of the necessity theorem. Before we prove Theorem 4.2, we need
two lemmata. First of all, we require a tool for estimating the H1-norms we will
encounter. (Here, we are going to use the H1 norm defined in terms of atoms
of L2-type.) Let Br be the ball in Rn of radius r centered at the origin and
Ar,R := BR \Br the annulus with inner and outer radii r and R, respectively.

Lemma 4.3. Let ϕ ∈ S(Rn;X) with
∫
ϕ(x) dx = 0. Then ϕ ∈ H1(Rn;X),

and the norm is estimated by

‖ϕ‖H1(Rn;X) ≤
∞∑
k=1

|Bk|
1
2

∥∥ϕ1Ak−1,k

∥∥
L2(Rn;X)

+ (1 + 2n/2)
∞∑
k=1

∥∥ϕ1Bck
∥∥
L1(Rn;X)

It is easy to see that the sum is indeed finite for a rapidly decreasing ϕ.

Proof. Let us denote

ϕk :=

(
ϕ− 1

|Bk|

∫
Bk

ϕ(y) dy

)
1Bk =

(
ϕ+

1

|Bk|

∫
Bck

ϕ(y) dy

)
1Bk ,
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where it is clear from the first form that
∫
ϕk(x) dx = 0, and the latter equality

follows from the assumption that the total integral of ϕ vanishes. Then

|ϕ(x)− ϕk(x)|X ≤ |ϕ(x)|X 1Bck(x) +
1

|Bk|

∫
Bck

|ϕ(y)|X dy

≤ max
|y|≥k
|ϕ(y)|X +

1

|Bk|

∫
Bck

|ϕ(y)|X dy −→
k→∞

0;

thus ϕk → ϕ uniformly as k →∞.
We then define φ1 := ϕ1 and φk := ϕk − ϕk−1 for k > 1 so that

∑N
k=1 φk =

ϕN → ϕ uniformly as N →∞. Thus we have ϕ =
∑∞

k=1 φk, where suppφk ⊂ Bk

and
∫
φk(x) dx = 0. This is hence an atomic decomposition of ϕ, and we have

‖ϕ‖H1(Rn;X) ≤
∞∑
k=1

|Bk|
1
2 ‖φk‖L2(Rn;X) .

Hence it remains to estimate the L2-norm of

φk = ϕ1Ak−1,k
+

1Bk
|Bk|

∫
Bck

ϕ(y) dy −
1Bk−1

|Bk−1|

∫
Bck−1

ϕ(y) dy,

where the last term is interpreted as 0 for k = 1, and this yields

‖φk‖L2(Rn;X)

≤
∥∥ϕ1Ak−1,k

∥∥
L2(Rn;X)

+
1

|Bk|
1
2

∥∥ϕ1Bck
∥∥
L1(Rn;X)

+
1

|Bk−1|
1
2

∥∥∥ϕ1Bck−1

∥∥∥
L1(Rn;X)

.

Multiplying by |Bk|
1
2 , observing that |Bk|

1
2 / |Bk−1|

1
2 = (k/(k− 1))n/2 ≤ 2n/2 and

summing over k we obtain the asserted estimate. �

The following simple result handles the easy part of the main theorem. It is
not really crucial for the proof of the assertion concerning the R-boundedness of
the multiplier m, since the strong continuity at y 6= 0 is only exploited via the
fact that these points are strong Lebesgue points of m, and in any case we know
that almost every point is a Lebesgue point. Nevertheless, we obtain a somewhat
neater form of the theorem without the need for almost-every-qualifications.

Lemma 4.4. If m ∈ L1
loc(R

n;L(X, Y )) defines a bounded multiplier operator

Tmf := F−1[mf̂ ], which maps H1(Rn;X) boundedly into L1(Rn;Y ), then m is
strongly continuous at every y 6= 0. In particular, every y 6= 0 is a strong Lebesgue
point of m.

Proof. Let y0 6= 0. Then there exists a test function ϕ̂ ∈ D(R), which
is supported away from the origin and equals unity in a neighbourhood of y0.
Then for x ∈ X we have ϕ(·)x ∈ S(Rn;X) and

∫
ϕ(y)x dy = ϕ̂(0)x = 0. Hence

ϕ(·)x ∈ H1(R;X), and thus Tm[ϕ(·)x] ∈ L1(R;Y ). The Fourier transform of this
latter function is m(y)ϕ̂(y)x, and in a neighbourhood of y0, this is just m(y)x.
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But the Fourier transform of an L1-function is continuous, thus y 7→ m(y)x is
continuous in a neighbourhood of y0, and this being true for every x ∈ X the
assertion is established. �

Now we are ready to prove the necessity of R-boundedness:

Proof of Theorem 4.2. Let N ∈ Z+ and x1, . . . , xN ∈ X, and let first

y1, . . . , yN ∈ {y = (y1, . . . , yn) ∈ Rn| yn ≥ 0, y 6= 0},

i.e., the points are taken from the closed upper half-space, excluding the ori-
gin. Let us choose a (real-valued) test-function ψ ∈ D(Rn) with support strictly
contained in the lower half-space {y ∈ Rn| yn < 0} and such that∫

Rn

ψ2(y) dy = 1.

This function will be exploited in building an appropriate approximation of the
identity; the reason for the support condition will become clear later. Since yj is
a Lebesgue point of y 7→ m(y)xj by Lemma 4.4, we have

m(yj)xj = lim
k→∞

∫
Rn

m(y)xjψ
2(k(yj − y))kn dy,

the convergence being in the norm of Y . Thus

E

∣∣∣∣∣
N∑
j=1

εjm(yj)xj

∣∣∣∣∣
Y

= lim
k→∞

knE

∣∣∣∣∣
∫
Rn

N∑
j=1

εjm(y)ψ(k(yj − y))xjψ(k(yj − y)) dy

∣∣∣∣∣
Y

.

Note that since the Rademacher functions εj are simple random variables, the
expectation E is nothing but a weighted finite sum, and thus it certainly commutes
with limits. (Of course, for more general random variables we could have simply
invoked Fatou’s lemma to yield the above result with “= lim” replaced by “≤
lim inf”, and the rest of the proof would run in exactly the same way.)

We then write

m(y)ψ(k(yj − y))xj = m(y)FF−1[ψ(k(yj − ·))xj](y)

= m(y)F[ei2πyj ·(·)ψ̂(·/k)xj](y)/kn = FTm[ei2πyj ·(·)ψ̂(·/k)xj](y)/kn,
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and using the duality equality
∫
ĝf dy =

∫
gf̂ dy of the Fourier transform we

arrive at

E

∣∣∣∣∣
N∑
j=1

εjm(yj)xj

∣∣∣∣∣
Y

= lim
k→∞

k−nE

∣∣∣∣∣
∫
Rn

N∑
j=1

εjTm[ei2πyj ·(·)ψ̂(·/k)xj](y)e−i2πyj ·yψ̂(−y/k) dy

∣∣∣∣∣
Y

≤ lim inf
k→∞

k−n‖ψ̂‖L∞E
∫
Rn

∣∣∣∣∣
N∑
j=1

εje
−i2πyj ·yTm[ei2πyj ·(·)ψ̂(·/k)xj](y)

∣∣∣∣∣
Y

dy.

We now invoke the contraction principle to get rid of the exponential factors
e−i2πyj ·y and then the assumed boundedness of the operator Tm to yield

≤ π

2
‖ψ̂‖L∞ ‖Tm‖L(H1,L1) lim inf

k→∞
k−nE

∥∥∥∥∥
N∑
j=1

εje
i2πyj ·(·)ψ̂(·/k)xj

∥∥∥∥∥
H1(Rn;X)

=
π

2
‖ψ̂‖L∞ ‖Tm‖L(H1,L1) lim inf

k→∞
E

∥∥∥∥∥
N∑
j=1

εje
i2πkyj ·(·)ψ̂(·)xj

∥∥∥∥∥
H1(Rn;X)

,

(4.5)

where the last equality follows from the dilation property of the H1-norm.
So far the proof has been completely parallel to that in [22] concerning the

Lp situation, except for the choice of our auxiliary function ψ, but now we are
faced with the H1-norm, with which the contraction principle can no longer be
applied. Instead, we invoke Lemma 4.3 for the evaluation of this norm. Let us
first check that the assumptions of the lemma are satisfied by

ϕ(y) :=
N∑
j=1

εje
i2πkyj ·yψ̂(y)xj :

Certainly ψ̂ ∈ S(Rn) since ψ ∈ D(Rn), and since the exponential factors are C∞
with bounded derivatives of all orders, the entire function ϕ belongs to S(Rn;X).
Moreover, recognizing the formula of the inverse Fourier transform, we have∫

Rn

ei2πkyj ·yψ̂(y) dy = ψ(kyj) = 0,

since k > 0 and yj is in the upper half-space, whereas ψ is supported in the lower
half-space.
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Hence we get, for the H1-norm appearing in (4.5), the estimate

E

∥∥∥∥∥
N∑
j=1

εje
i2πkyj ·(·)ψ̂(·)xj

∥∥∥∥∥
H1(Rn;X)

≤
∞∑
`=1

|B`|1/2 E

∥∥∥∥∥
N∑
j=1

εje
i2πkyj ·(·)ψ̂1A`−1,`

(·)xj

∥∥∥∥∥
L2(Rn;X)

+ (1 + 2n/2)
∞∑
`=1

E

∥∥∥∥∥
N∑
j=1

εje
i2πkyj ·(·)ψ̂1Bc` (·)xj

∥∥∥∥∥
L1(Rn;X)

.

Now we are back to Lp-norms, and the contraction principle applies again:

≤ π

2

∞∑
`=1

|B`|1/2
(
E

∥∥∥∑ εjψ̂1A`−1,`
(·)xj

∥∥∥2

L2(Rn;X)

)1/2

+ (1 + 2n/2)
π

2

∞∑
`=1

E

∥∥∥∑ εjψ̂1Bc` (·)xj
∥∥∥
L1(Rn;X)

=
π

2

∞∑
`=1

|B`|1/2
∥∥∥ψ̂1A`−1,`

∥∥∥
L2(Rn)

(
E

∣∣∣∑ εjxj

∣∣∣2
X

)1/2

+ (1 + 2n/2)
π

2

∞∑
`=1

∥∥∥ψ̂1Bc`

∥∥∥
L1(Rn)

E

∣∣∣∑ εjxj

∣∣∣
X
.

Finally, combining (4.5) with the estimate above and applying Kahane’s in-

equality
√
E |
∑
εjxj|2X ≤

√
2E |

∑
εjxj|X (see [67, §4.1.10]), we get

E

∣∣∣∣∣
N∑
j=1

εjm(yj)xj

∣∣∣∣∣
Y

≤ Cn ‖Tm‖L(H1(Rn;X);L1(Rn;Y )) E

∣∣∣∣∣
N∑
j=1

εjxj

∣∣∣∣∣
X

,

where the constant

Cn =
π2

4
‖ψ̂‖L∞(Rn)

(
√

2
∞∑
`=1

|B`|1/2
∥∥∥ψ̂1A`−1,`

∥∥∥
L2(Rn)

+ (1 + 2n/2)
∞∑
`=1

∥∥∥ψ̂1Bc`

∥∥∥
L1(Rn)

)
<∞

depends only on the dimension n and the choice of the auxiliary function ψ, thus
fixing one ψ once and for all, only on the dimension n.

It is clear that we can repeat the same argument for points y1, . . . , yN in the
lower half-space, exploiting another auxiliary function ψ̃ ∈ D(Rn) supported in



50 Translation-invariant operators on Hardy spaces

the upper half-space (e.g., the reflection of ψ about the hyperplane {y ∈ Rn| yn =
0}). Thus we get the R-boundedness of {m(y)| y 6= 0} with an R-bound of the
asserted form. �

Remark 4.6. Theorem 4.2 gives a nice extrapolation result in the case X =
H1, Y = H2 are Hilbert spaces. Namely, if Tm ∈ L(H1(Rn;H1), L1(Rn;H2)),
the theorem tells us that m is essentially bounded, and then by Plancherel (for
p = 2) and interpolation (for p ∈ ]1, 2[) that Tm ∈ L(Lp(Rn;H1), Lp(Rn;H2)) for
p ∈ ]1, 2].

In the classical case H1 = H2 = C, this would be immediate also without
the above theorem; indeed, from duality we would obtain the boundedness of
T ∗m = Tm(·)∗ from L∞(Rn) to BMO(Rn), and it is easy to see that m(·) and m(·)∗
(the complex conjugate) are multipliers at the same time, and then the same
conclusion (in fact for all p ∈ ]1,∞[) would follow from interpolation.

However, in the general Hilbert space situation, duality gives the bounded-
ness of T ∗m = Tm(·)∗ from L∞(Rn;H2) to BMO(Rn;H1) and this is a statement
concerning an operator different from Tm and acting “in the wrong direction”,
i.e., from H2-valued functions to H1-valued, so that there is no way to use the
classical interpolation argument.

Another necessity proof for n = 1. For the one-dimensional domain, the
result of Theorem 4.2, and actually a little more, can be derived with a simpler
argument (avoiding Lemma 4.3 and the lengthy expressions following from its
use at the end of the proof of Theorem 4.2 given above). The simplified proof
we are going to give is, in fact, only a slight modification of the proof of [22] for
the necessity of R-boundedness for Lp-multipliers. Note that the one-dimensional
result is fully sufficient for application to the Cauchy problem, as well as to the
fractional-order equations (1.8).

Instead of the atomic definition of the Hardy spaces used above, we here
consider the Hardy space H̃1 defined in terms of the conjugate operation or the
Hilbert transform H, which is the Fourier-multiplier operator with multiplier
−i sgn(ξ). We set

H̃1(R;X) := {f ∈ L1(R;X)| Hf ∈ L1(R;X)}
equipped with the graph norm

‖f‖H̃1(R;X) := ‖f‖L1(R;X) + ‖Hf‖L1(R;X) .

Our assumption in the following will be the boundedness of a multiplier oper-
ator Tm from H̃1(R;X) to L1(R;X), and we shall show the R-boundedness of
{m(t)| t 6= 0}.

This result reproduces Theorem 4.2 in the case n = 1 and is a slight extension
of it for non-UMD Banach spaces. Namely, in general we have H̃1(R;X) ↪→
H1(R;X), and if X is UMD, there is an equality of spaces with equivalence of
norm. Of course, it is well-known that we have the equality H̃1(R) = H1(R) in
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the scalar-valued setting. The above mentioned results concerning the vector-
valued Hardy spaces have been shown by O. Blasco [8] for the unit circle T
in place of the real line R, but the two results quoted are proved by methods
which have direct analogues in the case of the line. Thus the assumption that Tm
be bounded from the smaller space H̃1(R;X) to L1(R;Y ) is clearly weaker than
the boundedness from the possibly larger space H1(R;X). (Indeed, the Hilbert
transform is always bounded from H̃1(R;X) to L1(R;X) by definition, but not
in general from H1(R;X) to L1(R;X).)

What makes the one-dimensional proof for H̃1 so simple, is the existence of a
large class of functions for which the evaluation of the graph norm of the Hilbert
transform is particularly easy: If the Fourier transform of f is supported only
on the positive (resp. negative) half-axis, then Hf is simply −if (resp. if), and
therefore ‖f‖H̃1(R;X) = 2 ‖f‖L1(R;X).

Now let us state and prove the result:

Proposition 4.7. Suppose m ∈ L1
loc(R;L(X;Y )) is such that the multiplier

operator Tmf := F−1[mf̂ ] acts boundedly from H̃1(R;X) to L1(R;Y ).
Then m is strongly continuous away from the origin, and the set {m(t)| t 6= 0}

is R-bounded in terms of an absolute constant times the operator norm of Tm.

Proof. The fact that m is strongly continuous outside t = 0 follows from
Lemma 4.4 and the above mentioned embedding, or one can also give a direct
proof parallel to Lemma 4.4. Indeed, if t0 6= 0 and ψ̂ ∈ D(R) is equal to unity
in a neighbourhood of t0 and supported on one half axis only, it is clear that
ψ(·)x ∈ H̃1(R;X) for all x ∈ X, and the rest of the proof is just like Lemma 4.4.

Let then N ∈ Z+, t1, . . . , tN > 0 and x1, . . . , xN ∈ X. We choose a real-
valued test-function ψ ∈ D(R) supported on ]−∞, 0[ and with the same integral
condition as in the proof of Theorem 4.2. The proof runs in exactly the same
fashion as there until we reach the estimate

E

∣∣∣∣∣
N∑
j=1

εjm(tj)xj

∣∣∣∣∣
Y

≤ π

2

∥∥∥ψ̂∥∥∥
L∞
‖Tm‖ lim inf

k→∞

1

k
E

∥∥∥∥∥
N∑
j=1

εje
i2πtj ·ψ̂(·/k)xj

∥∥∥∥∥
H̃1(R;X)

.

We then observe that the Fourier transform of the function whose H̃1-norm is to
be evaluated is given by

∑
εjkψ(k(tj−ξ))xj, and for this to be non-zero, recalling

the support condition imposed on ψ, we must have tj − ξ < 0, i.e., ξ > tj > 0.
Thus the support of the Fourier transform is contained on ]0,∞[, and so the

H̃1 norm is just twice the L1 norm. Using this and the contraction principle,
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which is valid once we get back to L1, we have

≤ 2
(π

2

)2 ∥∥∥ψ̂∥∥∥
L∞
‖Tm‖L(H̃1;L1) lim inf

k→∞

1

k
E

∥∥∥∥∥
N∑
j=1

εjψ̂(·/k)xj

∥∥∥∥∥
L1(R;X)

=
π2

2

∥∥∥ψ̂∥∥∥
L∞

∥∥∥ψ̂∥∥∥
L1
‖Tm‖L(H̃1;L1) E

∣∣∣∣∣
N∑
j=1

εjxj

∣∣∣∣∣
X

,

and a parallel argument can be used to handle the negative half-axis. �

Of course, one should note in Proposition 4.7 that the origin has to be ex-
cluded. Indeed, for a non-zero A ∈ L(X, Y ), the operator AH maps H̃1(R;X)
boundedly into L1(R;Y ), but the corresponding multiplier −i sgn(t)A is certainly
not even weakly continuous at t = 0; the origin of the frequency domain has a
genuinely special meaning in the spaces H̃1(R;X).

A sharpened necessary condition for Lp-multipliers, p > 1. The idea
of proof of Proposition 4.7 also applies to give a slightly sharpened form of the
original result of [22] concerning the Lp-multipliers. To see how this comes out,
consider the spaces

H̃p(R;X) := {f ∈ Lp(R;X)| Hf ∈ Lp(R;X)}
with the graph norm, in analogy with the case p = 1. Of course, for a UMD-space
X, we have H̃p(R;X) = Lp(R;X) with equivalence of norms for 1 < p <∞, and
this condition actually characterizes UMD-spaces, but our intention is now to
provide a piece of insight into the multiplier theory in non-UMD Banach spaces.

Now we observe the following: The proof of the result concerning the R-
boundedness of {m(t)| t 6= 0 a strong Lebesgue point of m} goes through with the
assumption Tm : H̃1(R;X) → L1(R;Y ) replaced by Tm : H̃p(R;X) → Lp(R;Y ).
We just use the (equivalent) definition of R-boundedness in terms of the pth
moment rather than the first, so that we can freely interchange the order of the
Lp-norm with respect to the Lebesgue measure on the real line and the probability
measure related to the Rademacher variables. Where we extracted the L∞-norm
of ψ̂ from the integral, we now invoke Hölder’s inequality to extract ‖ψ̂‖Lp′ , so
that in place of the L1 norm of the rest of the integrand we now have the Lp norm
and we can apply the assumption. (This is also what was done in [22].) Due to
the choice of the auxiliary function ψ, the evaluation of the H̃p-norm also reduces
to that of the Lp-norm, and we arrive at a similar conclusion as before but with
‖ψ̂‖Lp′‖ψ̂‖Lp instead of ‖ψ̂‖L∞‖ψ̂‖L1 in the constant. We formulate this result as
a corollary, but it is a consequence of the proof rather than Proposition 4.7 itself.

Corollary 4.8. If m ∈ L1
loc(R;L(X;Y )) gives rise to a bounded multiplier

operator Tm = F−1mF : H̃p(R;X)→ Lp(R;Y ) for some p ∈ ]1,∞[, then

R({m(t)| t 6= 0 a strong Lebesgue point of m}) ≤ C ‖Tm‖L(H̃p(R;X);Lp(R;Y )) .
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Thus, even if we restrict the action of our multipliers to a function class
on which non-trivial scalar-valued multipliers act boundedly (according to the
condition of the boundedness of the Hilbert transform, which lies at the heart
of H̃p(R;X)), this does not ease the problem of operator-valued multipliers in
any essential way: they will not be bounded unless the multiplier function is
R-bounded.

5. Multiplier theorems for Hardy spaces: sufficient conditions

Having examined necessary conditions for maximal regularity and multipliers
in general, we now turn to the sufficient once. In this section, we collect the
powerful machinery that will be used to deduce maximal regularity results on
Hp from a priori regularity on Lp. This machinery consists of boundedness
theorems for singular integral and multiplier operators, in the spirit of the classical
Calderón–Zygmund theory. We also comment on conditions which guarantee
the boundedness without a priori assumptions.

As indicated in the Introduction, this section contains straightforward gener-
alizations of known results, mostly due to Strömberg and Torchinsky [81].
However, since the large extent to which these results carry over to vector-valued
context appears to be unrecognised so far, it seems appropriate to allow them
some space.

We present the results in a rather general form, which is somewhat excessive
for the problems in maximal regularity which we have in mind. In particular, the
sharp form of the conditions, with a minimum number of derivatives required,
does not play a rôle in these applications where, as it turns out, infinitely many of
the conditions are automatically satisfied. But the applicability of these results
is of course not limited to maximal regularity.

Before passing to the general situation, we begin by recalling the classical
(1962) result of Benedek, Calderón and Panzone [5], which already gives
boundedness from H1 to L1, assuming boundedness on Lp̃ for some p̃ ∈ ]1,∞[:

Theorem 5.1 ([5]; [34], Theorem V.3.4). Consider an operator

T ∈ L(Lp̃(Rn;X);Lp̃(Rn;Y )),

given by Tf(t) =
∫
Rn
k(t − s)f(s) ds for f ∈ L∞c (Rn;X) and t /∈ supp f , where

k ∈ L1
loc(R

n \ {0};L(X, Y )). If k satisfies the Hörmander condition

(5.2)

∫
|t|>2|s|

|(k(t− s)− k(t))x|Y dt ≤ A |x|X

then T has bounded extensions (i) from H1(Rn;X) to L1(Rn;X), (ii) from Lp̃ ∩
L∞(Rn;X) (with L∞-norm) to BMO(Rn;X), and then by interpolation (iii) from
Lp(Rn;X) to Lp(Rn;Y ) for all p ∈ ]1,∞[.
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This result, which is stated essentially similarly in [34], does not yet appear
in the given form in the classical paper [5]; however, as noted in [34], all essential
ideas are already contained in [5].

The assertion (iii) of Theorem 5.1 was used by Sobolevskij to derive the
maximal regularity of the ACP for all p ∈ ]1,∞[ from the a priori assumption
for one p̃ ∈ ]1,∞[. Of course, exactly the same reasoning, which amounts only
to checking the Hörmander condition (5.2) for k(t) := AT tχR+(t), also gives
regularity on the pairs (H1, L1) and (L∞,BMO), using the other assertions of
the theorem. The easy verification of (5.2) for this kernel is found explicitly in
e.g. [27]. One can also find a direct proof of the (L∞,BMO)-regularity of the
ACP, assuming maximal Lp̃-regularity for some p̃ ∈ [1,∞[, in Cannarsa and
Vespri [17].

We then proceed to general Hp-Hp-results, p ∈ ]0, 1].

Hp-boundedness with an a priori assumption on Lp̃. In order to get
boundedness from Hp(Rn;X) to Hp(Rn;Y ), somewhat stronger (and more tech-
nical) assumptions than (5.2) are required. Let us consider the following set of
conditions:

Definition 5.3. We say that a function k, with values in L(X, Y ), belongs
to the class K(q, `;X,Y ) [or just K(q, `;X) if Y = X], where 1 ≤ q < ∞ and
` > 0, provided that k ∈ Cbb`cc(Rn \ {0};L(X,Y )) and satisfies

(5.4)

(
1

rn

∫
r<|t|<2r

|Dαk(t)x|qY dt

) 1
q

≤ Ar−n−|α| |x|X

for all r > 0, x ∈ X, and α ∈ Nn with |α| ≤ bb`cc, and moreover(
1

rn

∫
r<|t|<2r

|(Dαk(t)−Dαk(t− s))x|qY dt

) 1
q

≤

A
(
|s|
r

)`−bb`cc
r−n−bb`cc |x|X ` /∈ Z+

A |s|
r

log r
|s| · r

−n−bb`cc |x|X ` ∈ Z+

for all r > 0, z ∈ Rn with |s| < r/2, x ∈ X, and α ∈ Nn with |α| = bb`cc.
The corresponding conditions K(∞, `;X, Y ) are defined by replacing the Lq-

type integrals by essential suprema in the usual way.

Remark 5.5. The estimate (5.4) is verified if ‖Dαk(t)‖L(X,Y ) ≤ A |t|−n−|α|.
These conditions are defined for scalar-valued functions k in Strömberg and

Torchinsky [81], p. 151. They use the notation M̃(q, `) for what we would call
K(q, `;C).

The significance of the conditions K(q, `;X, Y ) lies in the fact that they pro-
vide very satisfactory control over the action of the convolution k ∗ · on atoms
of Hardy spaces, and then, by definition, on general elements of Hp(Rn;X). The
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following result is proved in the scalar-valued context in [81] and “generalized” to
the vector-valued case by a repetition of their argument.

Theorem 5.6 ([81]). Suppose that k ∈ K(q, `;X, Y ), where q ∈ ]1,∞[, and
that the operator of convolution by k maps

f ∈ Lq(Rn;X) 7→ k ∗ f ∈ Lq(Rn;Y ) boundedly.

Then also

f ∈ Hp(Rn;X) 7→ k ∗ f ∈ Hp(Rn;Y ) boundedly for all p ∈
]

1

1 + `/n
, 1

]
.

For the analysis of the abstract Cauchy problem, this result on convolution
operators would be sufficient for our purposes, since we have the convolution-
type variation-of-constants formula (1.2) at our disposal. However, this is not
the case with the more general fractional-order equations (1.8) nor the Laplace
equation (1.9) we have in mind, and therefore we also require extension results
where the conditions are given in terms of the Fourier multiplier. Thus, we next
define conditions similar to K(q, `;X, Y ) for the multipliers m on the Fourier
transform side, and comment on the relations of the conditions satisfied by the
multiplier and by the kernel.

Definition 5.7 ([54, 81]). We say that a function m ∈ L∞(Rn;L(X, Y ))
belongs to the class M(q, `;X, Y ) [or just M(q, `;X) if Y = X] provided that
m ∈ Cb`c(Rn \ {0};L(X, Y )) and satisfies

(5.8)

(
1

rn

∫
r<|ξ|<2r

|Dαm(ξ)x|qY dξ

) 1
q

≤ Ar−|α| |x|X

for all r > 0, α ∈ Nn with |α| ≤ b`c and x ∈ X, and moreover, if ` /∈ Z+,(
1

rn

∫
r<|ξ|<2r

|(Dαm(ξ)−Dαm(ξ − ζ))x|qY dξ

) 1
q

≤ A

(
|ζ|
r

)`−b`c
r−|α| |x|X

for all r > 0, ζ ∈ Rn with |ζ| < r/2, α ∈ Nn with |α| = b`c and x ∈ X.

Remark 5.9. The estimate (5.8) holds if ‖Dαm(ξ)‖L(X,Y ) ≤ A |ξ|−|α|.
This condition appears in Kurtz and Wheeden [54] for integer values of `,

and it was known to be related to the boundedness of multiplier operators even
earlier. See [54] for some history and references. The definition of the multiplier
condition for general ` [in the scalar-valued setting] is taken from Strömberg

and Torchinsky [81].
The usefulness of the conditions M(q, `;X, Y ) is related to the fact that m ∈

M(q, `;X, Y ) implies, in a certain sense, that k ∈ K(q̃, ˜̀;X, Y ) for certain q̃ and
˜̀, where k is the convolution kernel related to the multiplier m. Although we
are not going to give the proof, which is again a repetition of the argument in
the scalar case, it seems appropriate to outline the key lemma, since here the
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generalization of the scalar-valued argument requires an assumption concerning
the geometry of the underlying Banach space Y .

The statement of the lemma involves a dyadic partition of unity defined as
follows: Let η ∈ D(Rn) be non-negative, equal to unity in B̄(0, 1) and supported
in B̄(0, 2). Let φ(ξ) := η(ξ) − η(2ξ). Then φ(2−i·) is supported in the annulus
2i−1 ≤ |x| ≤ 2i+1, and η(ξ) +

∑∞
i=1 φ(2−iξ) = 1 for all ξ ∈ Rn.

Lemma 5.10 ([81]). Suppose that the multiplier m ∈ L∞(Rn;L(X,Y )) satis-
fies M(q, `;X, Y ), where Y has Fourier-type q ∈ [1, 2]. If we define

m0(ξ) := η(ξ)m(ξ), mi(ξ) := φ(2−iξ)m(ξ), for i ∈ Z+, and ki := m̌i,

then the kernels kN :=
∑N

i=1 ki satisfy the condition K(q′, `−n/q;X, Y ) uniformly
in N .

Remark on proof. The proof repeats the argument in the scalar context.
The only point that does not directly generalize to the vector-valued situation
is the use of the Hausdorff–Young inequality, which is valid with a given
exponent q if and only if (by definition) the underlying space has the correponding
Fourier-type, but this is handled by the assumption. �

With Lemma 5.10, the following multiplier theorem is obtained as a corollary
of Theorem 5.6.

Theorem 5.11 ([81]). Suppose m ∈ L∞(Rn;L(X, Y )), and that the corre-
sponding multiplier operator T is bounded from Lp̃(Rn;X) to Lp̃(Rn;Y ) for some
p̃ ∈ ]1,∞[. Suppose further that m ∈M(q, `;X, Y ) for some q such that

Y has Fourier-type q, 1 ≤ q ≤ p̃′ and ` > n/q.

Then T extends boundedly to

f ∈ Hp(Rn;X) 7→ Tf ∈ Hp(Rn;Y ) for all p ∈
]

1

1/q′ + `/n
, 1

]
Remark 5.12. Observe that 1/q′ + `/n > 1/q′ + 1/q = 1 under the assump-

tions, so that the asserted range of p is non-empty. Also note that only the
Fourier-type of the image space Y is relevant, and moreover the theorem always
contains the case q = 1, without any geometric conditions on the Banach spaces
in question.

Hp-boundedness without a priori assumptions. The results quoted so
far show that the problem of extending an operator to Hp, once its boundedness
is known on some Lp̃-space a priori, has been solved to a large extent. It seems
appropriate to conclude this section with a result which gives the boundedness
without an a priori assumption. After the operator-valued extension due to
Weis [87] of the classical Mihlin’s multiplier theorem, several variants are now
known which guarantee the boundedness of an operator-valued Fourier multiplier
from Lp(Rn;X) to Lp(Rn;Y ) (e.g. in [25, 36, 78]). It is then clear that one
only needs to impose on the multiplier m the union of the condition required by
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such a theorem and the conditions of Theorem 5.11. A particularly appealing
result of this kind is obtained by combining Theorem 5.11 with results from
Chapter 2, in particular Theorem 7.9 of that Chapter, where the Lp-boundedness
is derived from a set of conditions which are in the same spirit as the conditions
of Theorem 5.11. In fact, these (close to minimal) sufficient conditions for the Lp-
boundedness already imply (the conditions of Theorem 5.11 for) the boundedness
on Hp for p not too small, and always on H1! (Cf. Remark 7.14 of Chapter 2.)

A Fourier multiplier theorem giving sufficient conditions for H1-L1-bounded-
ness was also recently proved by Girardi and Weis [36], Cor. 4.6, based on
Theorem 5.1 of Benedek, Calderón and Panzone.

As has been known for some time, norm estimates are insufficient in the vector-
valued situation, and one requires R-boundedness-type conditions. Thus, in the
following Theorem 5.13, the membership in M(q, `;X, Y ) of m is not sufficient,
but we require a similar condition for the sequence-valued multiplier (m(2j·))∞−∞,
with the Rademacher classes Rad(X) and Rad(Y ) [whose definition we recall
after the statement of the theorem] in place of X and Y .

Theorem 5.13. Let X and Y be UMD-spaces with Fourier-type q ∈ ]1, 2].
Let ` > n/q, and suppose

(m(2j·))∞−∞ ∈M(q, `; Rad(X),Rad(Y )) and

(m(2j·)′)∞−∞ ∈M(q, `; Rad(Y ′),Rad(X ′)).
(5.14)

Then f ∈ X ⊗ D̂0(Rn) 7→ F−1[mf̂ ] extends boundedly to

f ∈ Lp(Rn;X) 7→ F−1[mf̂ ] ∈ Lp(Rn;Y ) for all p ∈ ]1,∞[ , and

f ∈ Hp(Rn;X) 7→ F−1[mf̂ ] ∈ Hp(Rn;Y ) for all p ∈
]

1

1/q′ + `/n
, 1

]
.

Remark 5.15. The Rademacher class Rad(X) appearing in the statement
of Theorem 5.13 is the closure in Lp(Ω;X) of the algebraic tensor product X ⊗
(εj)

∞
−∞, where (εj)

∞
−∞ is the Rademacher system on the probability space Ω.

The Rademacher classes are introduced and their properties presented in more
detail in Chapter 2; at this point we only note that by Kahane’s inequality, any
p ∈ [1,∞[ yields the same definition. In particular, taking p = q, the version of
the condition (5.8) for (m(2j·))∞−∞ ∈M(q, `; Rad(X),Rad(Y )) reads

(5.16) E

∫
r<|ξ|<2r

∣∣∣∣∣∑
j

εj2
j|α|Dαm(2jξ)xj

∣∣∣∣∣
q

Y

dξ ≤ Aqrn−|α|qE

∣∣∣∣∣∑
j

εjxj

∣∣∣∣∣
q

X

,

and the other conditions attain a similar form. By density, it suffices to restrict
to finitely non-zero sequences (xj)

∞
−∞ ∈ XZ. Also note that the condition (5.16),

as well as the corresponding dual condition, are satisfied if one assumes

{|ξ||α|Dαm(ξ)| ξ 6= 0}
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to be R-bounded for the appropriate α ∈ Nn, a randomized Mihlin-type condition
as first introduced by Weis [87].

It should be emphasized that, once the conditions of Theorem 5.13 are satis-
fied, in order to get boundedness on Hp with smaller values of p than the bound
given in Theorem 5.13, one does not need to impose more R-boundedness-type
conditions (5.14), but the weaker conditions m ∈MS(q, `;X, Y ) of Theorem 5.11
will do. Thus the assumptions of the following corollary are unnecessarily strong;
nevertheless, they are satisfied by many multipliers encountered in the applica-
tions.

Corollary 5.17. Let X, Y be UMD-spaces and m ∈ C∞(Rn \ {0};L(X, Y ))

be a multiplier such that {|ξ||α|Dαm(ξ) : ξ 6= 0} is R-bounded for every α ∈ Nn.

Then f ∈ X⊗D̂0(Rn) 7→ F−1[mf̂ ] extends to a bounded mapping from Lp(Rn;X)
to Lp(Rn;Y ) for all p ∈ ]1,∞[ and from Hp(Rn;X) to Hp(Rn;Y ) for all p ∈ ]0, 1].

6. Return to maximal regularity

We have now developed the necessary tools to prove the maximal regularity
results indicated in the Introduction. As a last preparatory step on the general
level, let us recall the following well-known (at least in the scalar-case) result,
whose short proof is given for completeness.

Lemma 6.1. Let X and Y be Banach spaces, and Tm : f 7→ F−1[mf̂ ] be
bounded from H̃1(R;X) to L1(Rn;Y ). Then Tm is also bounded from H̃1(R;X) to
H̃1(R;Y ). In particular, if X and Y are UMD-spaces, this holds with H̃1(R;Z) =
H1(R;Z), Z ∈ {X,Y }.

Proof. With C := ‖Tm‖L(H̃1(R;X),L1(R;Y )) <∞, we can estimate

‖Tmf‖L1(R;Y ) ≤ C ‖f‖H̃1(R;X)

by definition, and

‖HTmf‖L1(R;Y ) = ‖TmHf‖L1(R;Y ) ≤ C ‖Hf‖H̃1(R;X) = C ‖f‖H̃1(R;X) ,

where the commutativity of the multiplier operators H and Tm is clear when
investigated in terms of the Fourier transforms, and we used the fact that

‖Hf‖H̃1(R;X) = ‖Hf‖L1(R;X) + ‖−f‖L1(R;X) = ‖f‖H̃1(R;X) ,

since H2 = −1, which is also clear from the Fourier transforms. �

We then concentrate on the problems we had in mind in the Introduction:

The abstract Cauchy problem u̇ + Au = f . Everything will be clear
as soon as we verify that the conditions K(q, `;X) and M(q, `;X), required by
the extension results, are verified by the convolution kernel and the multiplier,
respectively, related to the ACP. In fact, it would suffice to consider just one
of them, but we give both the short proofs for purposes of illustration. The
other equations we consider below, namely (1.8) and (1.9), are treated only with
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multiplier methods, as we no longer have the variation-of-constants formula at
our disposal.

We have the following lemma:

Lemma 6.2. Let −A be the generator of a bounded analytic semigroup (T t),
and

(6.3) k(t) := AT tχR+(t), m(ξ) := A(i2πξ + A)−1,

for t ∈ R, ξ ∈ R \ {0}. Then k ∈ K(q, `;X) and m ∈ M(q, `;X) for any
q ∈ [1,∞], ` > 0.

If, moreover, {m(ξ)| ξ 6= 0} is R-bounded, then also {ξνDνm(ξ)| ξ 6= 0} is
R-bounded for all ν ∈ N.

Proof. According to Remarks 5.5 and 5.9, it suffices to verify that

‖Dνk(t)‖L(X) ≤ Cν |t|−1−ν and ‖Dνm(ξ)‖L(X) ≤ Cν |ξ|−ν ∀ ν ∈ N,

i.e., we need the estimates ∥∥A1+νT t
∥∥
L(X)
≤ Cν |t|−1−ν and

ν!(2π)ν
∥∥A(i2πξ + A)−1−ν∥∥

L(X,Y )
≤ Cν |ξ|−ν ,

but the first estimate is well-known and follows easily from ‖tAT t‖L(X) ≤ C and
the semigroup property, whereas for the second we only need recall that∥∥(λ+ A)−1

∥∥
L(X)
≤ C |λ|−1 ∀ λ with |arg(λ)| < ϑ,

where ϑ > π/2, in particular, for λ = i2πξ.
As for the last assertion, the R-boundedness of ξνDνm(ξ) = ν!(2πξ)νA(i2πξ+

A)−1−ν follows from the R-boundedness of m(ξ) in exactly the same way as the
norm boundedness of the derivatives followed from the norm boundedness of
m(ξ). �

Now the proof of Theorem 1.6 is a matter of collecting the pieces together.

Proof of Theorem 1.6 and Remark 1.7. If the ACP has maximal Lp-
regularity, p ∈ ]1,∞[, then by the classical Theorem 1.4, −A generates a bounded
analytic semigroup, and by Weis’ Theorem 1.5, the collection {A(i2πξ+A)−1| ξ 6=
0} is R-bounded. Then by Lemma 6.2, the related convolution kernel and mul-
tiplier in (6.3) satisfy infinitely many of the conditions required to apply our
extension results, and we obtain the boundedness of f 7→ k∗f from Theorem 5.6,
or equally well the boundedness of f 7→ F−1[mf̂ ] from either Theorem 5.11 or
Corollary 5.17. Thus we have C1 ⇒ C2, C4, C5.

This did not really require UMD, since the operator extension theorems work
for general Banach spaces, as soon as the boundedness on one Lp̃(R;X) is known
a priori (see Sect. 5); also the R-boundedness can be deduced from Theorem 4.1
of Clément and Prüss which holds for general X.
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Clearly C2 ⇒ C3, but we also have C1 ⇒ C3 directly from the classical
Theorem 5.1; thus the condition C1 implies all the other conditions. (Still no
UMD required!)

If the ACP has maximal (H1, L1)-regularity, then by Theorem 3.1, −A gener-
ates a bounded analytic semigroup and by Theorem 4.2, {A(i2πξ + A)−1|ξ 6= 0}
is R-bounded. Thus C3 ⇒ C4. Moreover, C4 ⇒ C1 by Weis’ Theorem 1.5, and
here we need the UMD assumption.

Summarizing, we have C2 ⇒ C3 ⇒ C4 ⇒ C1 ⇒ C2, C3, C4, C5, and this is the
theorem. �

Remark 6.4. As the reader probably observed, the proof given above offers
various alternative routes to check the conditions of our auxiliary results, either in
terms of the multiplier or the convolution kernel. The fact that one can actually
manage by investigating only the conditions for the kernel k(t) = AT tχR+(t)
from the variation-of-constants formula is worth emphasizing, since this means
that the technical Lemma 5.10 of Strömberg and Torchinsky, which is used
to derive the multiplier theorem 5.11 from the convolution theorem 5.6, can be
avoided, as long as only the Cauchy problem is concerned.

Moreover, if one is only interested in H1 and not in Hp with p < 1, then the
probably easiest argument runs as follows: C1 ⇒ C3 by the classical Theorem 5.1
of Benedek, Calderón and Panzone. C3 ⇒ C2 by Lemma 6.1, and the
converse is trivial. The implications C3 ⇒ C4 ⇒ C1 are proved as in the proof
above. (This simplified version of the proof for this particular case was pointed
out to me by L. Weis.)

The remark only applies to the Cauchy problem, for which we have the
variation-of-constants formula; the more general fractional-order equation (1.8),
which we next treat, requires the multiplier approach, as does the Laplace equa-
tion (1.9).

The fractional-order equation Dαu + Au = f , α ∈ ]0, 2[. We shall here
give a treatment of the problem (1.8), somewhat analogous to that of the Cauchy
problem (1.1), but with certain new features.

Let us first recall the relevant definition of the fractional derivative Dα ap-
pearing in our equation. (Cf. [90], §12.8 for the classical [scalar-valued] setting,
or [19, 20] for the vector-valued context.)

Definition 6.5. We say that u ∈ L1
loc(R̄+;X) has a fractional derivative of

order α > 0 provided u = gα ∗ f for some f ∈ L1
loc(R̄+;X), where

gα(t) :=
tα−1

Γ(α)
χR+(t).

When such an f exists, it is, in fact, essentially unique, and we write f =: Dαu.

Remark 6.6. It is well-known that Dα is a closed operator on Lp(R̄+;X),
p ∈ [1,∞[. Indeed, suppose uj → u, wj := Dαuj → w in Lp(R̄+;X). By
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definition, uj = gα ∗ wj, and due to the local integrability of gα, it follows that
uj = gα∗wj → gα∗w in Lploc(R̄+;X). But uj also converges to u; hence u = gα∗w,
i.e., Dαu = w.

In the Lp-setting, a result analogous to Weis’ Theorem 1.5 was proved by
Clément and Prüss:

Theorem 6.7 ([22], p. 85). The initial value problem (1.8) admits a unique
solution u ∈ Lp(R+;D(A)) for every f ∈ Lp(R+;X) provided that p ∈ ]1,∞[
and A is boundedly invertible and R-sectorial with R-angle φRA < π(1− α/2) [see
Def. 6.10]. The solution satisfies

(6.8) ‖Dαu‖Lp(R+;X) + ‖u‖Lp(R+;X) + ‖Au‖Lp(R+;X) ≤ C ‖f‖Lp(R+;X) ,

i.e., the problem (1.8) has (strong) maximal Lp-regurity for all p ∈ ]1,∞[.

As before, our aim will be the extension to Hp. In the lack of a candidate
mild solution, our line of attack will be a little different from that adopted in
treating the Cauchy problem [which is, of course, a special case of the present
one, with α = 1]. In particular, since the bounded invertibility of A was already
assumed in Theorem 6.7, we will here treat (in the spirit of Theorem 6.7) the
stronger notion of maximal regularity, in which the regularity of u and not only
of Au and Dαu is required:

Definition 6.9. We say that (1.8) possesses strong regularity from F0(R̄+;X)
to F1(R̄+;X), where F0(R̄+;X) ⊂ F1(R̄+;X) ⊂ L1

loc(R̄+;X), if for every f ∈
F0(R̄+;X), there exists a unique u ∈ F1(R̄+;X) such that u(t) ∈ D(A) for a.e.
t ≥ 0, Dαu exists and the equation (1.8), and moreover the estimate

‖Dαu‖F1(R̄+;X) + ‖u‖F1(R̄+;X) + ‖Au‖F1(R̄+;X) ≤ C ‖f‖F0(R̄+;X)

holds with C independent of f . If F1 = F0, we speak of strong maximal regularity.

Before attacking the problem, let us clarify the notion that appeared in the
assumptions of Theorem 6.7:

Definition 6.10. We say that a sectorial operator A is R-sectorial if its
range is dense (which is trivially true if A is boundedly invertible) and moreover
{A(t+A)−1| t > 0} is R-bounded, or equivalently (by a power series argument),
if {A(z+A)−1| |arg(z)| ≤ π−φ} is R-bounded for some φ < π. The R-angle φRA
of A is the infimum over all such φ ∈ ]0, π[ for which this condition holds.

The notion of R-sectoriality (R-boundedness on a sector) is connected with
the R-boundedness estimates for multipliers (functions on the line) by means of
the following lemma. It is a simple generalization of the corresponding result for
α = 1, which is proved in [25], Theorem 4.4.

Lemma 6.11. Let α ∈ ]0, 2[ and let A be sectorial of angle ω < π(1 − α/2).
Then A is R-sectorial of some angle θ < π(1 − α/2) if and only if {A((iξ)α +
A)−1| ξ ∈ R \ {0}} is R-bounded.
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Proof. Observe that, for z = re±iφ (where φ ≥ 0), we have zα = rαe±iαφ =
−rαe∓i(π−αφ) =: −λ. Here λ, by the spectral assumption on A, belongs to the
resolvent of A whenever π − αφ > ω =: π(1− α/2)− 2αε, i.e. φ < π/2 + 2ε. For
φ ≤ π/2 + ε we even know that z 7→ A(zα + A)−1 = −A(λ− A)−1 is a bounded
function. Now z 7→ zα is analytic in C \ R̄− and the resolvent operator (λ−A)−1

admits a convergent power series expansion around every λ where it exists. Thus,
for x ∈ X, x′ ∈ X ′, we know that z 7→ 〈x′, A(zα + A)−1x〉 is bounded and analytic
(in particular, harmonic) in the right half-plane. Thus it can be represented in
terms of the boundary values by the classical Poisson formula〈

x′, A(zα + A)−1x
〉

=

∫ ∞
−∞

1

π

σ

σ2 + (τ − ξ)2

〈
x′, A((iξ)α + A)−1x

〉
dξ,

z = σ + iτ ∈ C+.

Since this is true for all x′ ∈ X ′ and the corresponding Bôchner integrals exist,
we also have the above representation without the x′. But the positive Poisson
kernel has a unit integral, so that A(zα + A)−1x is then expressed as a (contin-
uous) convex combination of A((iξ)α + A)−1x, ξ ∈ R, and the R-boundedness
of {A(zα + A)−1| z ∈ C+} follows from that of {A((iξ)α + A)−1| ξ ∈ R \ {0}}
by the permanence of R-boundedness under convex hulls and strong operator
closures. The fact that we even obtain R-boundedness in a slightly larger sector
than the half-plane follows from the power series expansion of the resolvent on
the imaginary axis.

Conversely, it is obvious that the R-boundedness of

{A(λ+ A)−1 : |arg(λ)| ≤ α(π/2 + ε)} = {A(zα + A)−1 : |arg(z)| ≤ π/2 + ε}
implies in particular that of {A((iξ)α + A)−1| ξ ∈ R \ {0}}. �

To apply the multiplier techniques, we want to transform our equation (1.8),
and for this purpose we analyse the terms on the left-hand side. We first observe
the following result [which we state for Rn instead of R, since the proof is the
same and the result will also be of use in the subsequent section]:

Lemma 6.12. Let u ∈ Lp(Rn;D(A)) [i.e., u(t) ∈ D(A) for a.e. t ∈ Rn, and
u,Au ∈ Lp(Rn;X)], where p ≥ 1 is a Fourier-type for X. Then û(ξ) ∈ D(A) and
Aû(ξ) = F[Au](ξ) for a.e. ξ ∈ Rn.

Proof. Interpreting our functions as tempered distributions where appropri-
ate, we have, for every φ ∈ S(Rn),

(6.13) 〈F[Au], φ〉 =
〈
Au, φ̂

〉
=

∫ ∞
−∞

Au(t)φ̂(t) dt = A

∫ ∞
−∞

u(t)φ̂(t) dt

= A
〈
u, φ̂
〉

= A 〈û, φ〉 ,

where extracting A from the integral was legitimate due to the closedness of A
and the integrability of t 7→ u(t)φ̂(t) and t 7→ Au(t)φ̂(t).
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Taking in place of φ a sequence φn which provides an approximation of the
Dirac mass at a point ξ ∈ Rn, where ξ is a common Lebesgue point of both
F[Au] and û, we have, on the one hand, 〈û, φn〉 → û(ξ), and on the other,
A 〈û, φn〉 = 〈F[Au], φn〉 → F[Au](ξ). But then it follows from the closedness of
A that û(ξ) ∈ D(A) and Aû(ξ) = F[Au](ξ) for every such ξ, and that is, for a.e.
ξ ∈ Rn. �

It remains to compute the Fourier transform of Dαu. The result is what one
would expect from the well-known formula of the Fourier transform of a usual
derivative of integral order. [In what follows, powers are always defined in terms
of the principal branch of the logarithm.]

Lemma 6.14. Suppose that u ∈ Lp(R+;X) has a fractional derivative Dαu ∈
Lp(R+;X), where p ≥ 1 is a Fourier-type for X. Then have

F[Dαu](ξ) = (i2πξ)αû(ξ) for a.e. ξ ∈ R.
Proof. Denoting v := Dαu, we have, by Def. 6.5, u = gα ∗ v. We con-

sider instead of gα the modified kernel gµα(t) := gα(t)e−µt, where µ > 0. Then
gµα ∈ L1(R+), and hence gµα ∗ v ∈ Lp(R+;X) for v ∈ Lp(R+;X), and its Fourier
transform is a proper function in Lp

′
(R;X); in fact, it is given by

(6.15) F[gµα ∗ v](ξ) = ĝµα(ξ)v̂(ξ).

The Fourier transform of gµα can be computed explicitly, and it is given by

(6.16)

∫ ∞
0

gµα(t)e−i2πξt dt =

∫ ∞
0

tα−1

Γ(α)
e−(µ+i2πξ)t dt =

1

(µ+ i2πξ)α
,

which follows more or less directly from the definition of the Γ-function.
It is not difficult to see that gµα ∗ v → gα ∗ v in S ′(R;X) as µ ↓ 0. Indeed, we

observe that

|gα ∗ v(t)− gµα ∗ v(t)|X ≤
∫ t

0

gα(s) |v(t− s)|X (1− e−µs) ds

≤ gα ∗ |v|X (t) · (1− e−µt),
and thus

‖gα ∗ v − gµα ∗ v‖Lp(0,T ;X) ≤ ‖gα‖L1(0,T ) ‖v‖Lp(R;X) (1− e−µT )

≤ Tα

Γ(α + 1)
‖v‖Lp(R;X) µT.

Since this bound is only slowly increasing as a function of T , the convergence of∫
(gµα ∗ v)φ to

∫
(gα ∗ v)φ, for a rapidly decreasing φ, follows immeadiately.

Using (6.16), we now write (6.15) in the form

(6.17) (µ+ i2πξ)mF[gµα ∗ v](ξ) = (µ+ i2πξ)m−αv̂(ξ),

where α ≤ m ∈ Z+. On the left-hand side, we have gµα ∗ v → gα ∗ v in S ′(R;X)
as µ ↓ 0, and due to the continuity of F on S ′(R;X), the same is true for
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the Fourier transforms. Moreover, multiplication by a bounded smooth function
such as (i2πξ)k is also continuous on S ′(Rn;X), and it then follows easily [e.g.,
expanding the power of the binomial] that the left-hand side of (6.17) converges
to (i2πξ)mF[gα ∗ v](ξ) in the sense of tempered distributions as µ ↓ 0.

On the right-hand side of (6.17), on the other hand, the pointwise convergence
is obvious, and since the factor in front of v̂ is only slowly increasing as a function
of ξ, we again have convergence also in S ′(R;X).

Hence, taking the limit in the sense of tempered distributions on both sides
of (6.17), observing that both limits coincide with proper functions, and recall-
ing that proper functions can only agree as distributions if they agree almost
everywhere, we finally arrive at

(i2πξ)mF[gα ∗ v](ξ) = (i2πξ)m−αv̂(ξ) for a.e. ξ ∈ R,

which, after multiplication by (i2πξ)α−m, is the claim, since gα ∗ v = u and
v = Dαu. �

From Lemmata 6.12 and 6.14 we see that the unique solution [guaranteed by
Theorem 6.7] of (1.8) for f ∈ Lq ∩Hp(R̄+;X) [where q > 1 is a Fourier-type of
X] satisfies
(6.18)

û(ξ) = ((i2πξ)α + A)−1f̂(ξ) and F[Au](ξ) = A((i2πξ)α + A)−1f̂(ξ).

Thus we are in a position to apply our multiplier theorems to deduce maximal
regularity results similar to Theorem 6.7 also on Hp(R̄+;X), p ∈ ]0, 1].

We need one last lemma dealing with the multipliers appearing in (6.18):

Lemma 6.19. Let A be boundedly invertible and {A((i2πξ) +A)−1| ξ ∈ R} be
R-bounded. Then mν(ξ) := Aν((i2πξ) + A)−1, ν = 0, 1, satisfy the assumptions
of Corollary 5.17.

Proof. The R-boundedness of m1 is assumed, and that of m0 follows since
multiplication by the bounded operator A−1 preserves R-boundedness.

We need to investigate the derivatives of the multipliers mν . For iterated
derivatives of a composition of functions, one can show by induction that

Dk(f ◦ g) =
k∑
j=1

(Djf ◦ g)
∑
∑
j`=j∑
`j`=k

c(j`)
k
`=1

k∏
`=1

(D`g)j` ,

where the c(j`)
k
`=1

are numerical constants depending only on the parameters indi-

cated, and the second sum above runs over all sequences (j`)
k
`=1 ∈ Nk which satisfy

the conditions indicated. Since the derivatives of the resolvent (t+A)−1 have the
same form as if A were just a number, and the resolvent thus just an ordinary
rational function, we can also apply the above formula to f(t) = Aν(t + A)−1,
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g(ξ) = (i2πξ)α, to give

Dkmν(ξ) =
k∑
j=1

(−1)jj!Aν((i2πξ)α + A)−1−j

×
∑

(j`)
k
`=1

c(j`)
k
`=1

k∏
`=1

(
α · · · (α− `+ 1)(i2πξ)α−`(i2π)`

)j`
=

k∑
j=1

∑
(j`)

k
`=1

C(j, k; (j`)
k
`=1;α)Aν((i2πξ)α + A)−1−j(i2πξ)αj−k(i2π)k,

where the conditions
∑k

`=1 j` = j and
∑k

`=1 `j` = k were used in the last step.
Thus ξkDkmν(ξ) is a linear combination of terms of the form

Aν((i2πξ)α + A)−1 ·
(
(i2πξ)α((i2πξ)α + A)−1

)j
= mν(ξ)(1−m1(ξ))j,

and these are R-bounded by the R-boundedness of mν(ξ) for ν = 0, 1. This
being true for derivatives of any order, the assumptions of Corollary 5.17 are
satified. �

We get the following result:

Theorem 6.20. Let α ∈ ]0, 2[, let X be a UMD-space and A a boundedly
invertible sectorial operator of angle ω < π(1 − α/2). Then the following are
equivalent:

(F1) (1.8) has strong maximal regularity on Lp(Rn;X) for p ∈ ]1,∞[.
(F2) (1.8) has strong maximal regularity on H1(Rn;X).
(F3) (1.8) has strong regularity from H1(Rn;X) to L1(Rn;X).
(F4) {A((i2πξ)α + A)−1| ξ ∈ R} is R-bounded.

Moreover, any of the above conditions implies

(F5) For all p ∈ ]0, 1[, for all (i) f ∈ Hp ∩ Lq(R̄+;X) and all (ii) f ∈
Hp ∩ H1(R̄+;X), where q > 1 is a Fourier-type for X, the solution u
of (1.8) satisfies

(6.21) ‖Dαu‖Hp(R̄+;X) + ‖u‖Hp(R̄+;X) + ‖Au‖Hp(R̄+;X) ≤ C ‖f‖Hp(R̄+;X) .

Proof. F1 ⇒ F2, F5(i). Let first f ∈ Lq ∩ Hp(R̄+;X), where p ∈ ]0, 1] and
q > 1 is a Fourier-type for X. Let u be the solution of (1.8). Then we have the
formulae (6.18) for û and F[Au]. By Lemma 6.19, the corresponding multipliers
give bounded operators on Hp(R;X); thus u and Au and hence Dαu are also in
Hp(R̄+;X), and the estimate (6.21) is valid. This shows that F1 ⇒ F5(i).

Let then p = 1 and f ∈ H1(R̄+;X) be arbitrary. We may choose fj ∈ H1 ∩
Lq(R̄+;X) approaching f in H1(R̄+;X). Let uj be the corresponding solutions
of (1.8) with fj in place of f . Then, by the estimate established, (uj)

∞
j=1, (Auj)

∞
j=1

and (Dαuj)
∞
j=1 are Cauchy sequences in H1(R̄+;X), and then also in L1(R̄+;X).
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Denote the limits by u, v and w, respectively. By the closedness of A on X
and Dα on L1 we conclude that Au = v and Dαu = w (meaning that the left-
hand sides make sense and agree with the respective right-hand sides). But then
u solves (1.8) and satisfies the asserted estimate. That the solution is unique
follows by taking the Fourier transforms with the help of Lemmata 6.12 and 6.14,
recalling that H1(R̄+;X) ⊂ L1(R̄+;X).

F1, F2 ⇒ F5(ii). This is proved just like F1 ⇒ F5(i), only considering f ∈
H1 ∩Hp(R̄+;X).

F2 ⇒ F3 is obvious.
F3 ⇒ F4 follows from Theorem 4.2.
F4 ⇒ F1 follows from Lemma 6.11 and Theorem 6.7 of Clément and Prüss.

�

Remark 6.22. As with the Cauchy problem, the UMD-condition was not
needed for the implications F1 ⇒ F2 ⇒ F3 ⇒ F4 and F1, F2 ⇒ F5.

The abstract Laplace equation −4u + Au = f . We finally consider an
abstract partial differential equation, which will give us a chance to exploit the n-
dimensional versions of our multiplier theorems. An extensive treatment of partial
differential operators in the vector-valued setting is found in Denk, Hieber and
Prüss [25]; however, our problem is somewhat different from those treated there.

To deal with the present equation, let us first proceed in a formal manner to
Fourier transform the equation to the form

4π2 |ξ|2 û(ξ) + Aû(ξ) = f̂(ξ).

If the appropriate inverse exists, this can be solved to give

(6.23) u(t) =

∫
Rn

(4π2 |ξ|2 + A)−1f̂(ξ)ei2πξ·t dξ.

Now we observe that if f is sufficiently nice, say f ∈ S(Rn;X), and if [0,∞[
is in the resolvent of −A, then both the Laplacian 4 and the operator A can
be applied on the function defined by (6.23) under the integral, and we easily
find that −4u(t) +Au(t) = f(t), using the Fourier inversion formula. Moreover,

if f ∈ D̂0(Rn;X), it suffices to assume that the open interval ]0,∞[ is in the
resolvent of −A, and the same remark applies.

Thus the existence of a solution is guaranteed at least for f ∈ D̂0(Rn;X),
which is already dense in all Lp(Rn;X), p ∈ ]1,∞[, as well as in all Hp(Rn;X),
p ∈ ]0, 1]. If we require the solution to be sufficiently well-behaved, we also
have uniqueness, since then our formal passing from the original equation (1.9)
to (6.23) can be justified, i.e., the solution is necessarily given by (6.23). Thus
we are able to discuss whether we have dense class estimates (cf. Prop. 3.10).

From (6.23) we have

Au(t) =

∫
Rn

A(4π2 |ξ|2 + A)−1f̂(ξ)ei2πξ·t dξ,
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and thus proving a dense class estimate for the regularity of Au amounts to
showing that m1(ξ) := A(4π2 |ξ|2 +A)−1 is a multiplier between the appropriate
spaces. The relevant multiplier for the regularity of u itself is, directly from (6.23),
m0(ξ) := (4π2 |ξ|2 + A)−1. Once again these multipliers have the remarkable
property of satisfying the infinity of the Mihlin-type conditions, as soon as they
satisfy one.

Lemma 6.24. If {m1(ξ)| ξ 6= 0} resp. {m0(ξ),m1(ξ)| ξ 6= 0} is (R-)bounded,
then so is

{|ξ||α|Dαm1(ξ)| ξ 6= 0} resp. {|ξ||α|Dαm0(ξ), |ξ||α|Dαm1(ξ)| ξ 6= 0}

for all α ∈ Nn.

Proof. One can easily verify by induction that the αth partial derivative of
a smooth radial function g(x) = f(|x|2) is given by

(6.25) Dαg(x) =
∑
j≤|α|

f (j)(|x|2)
∑

L⊂{1,...,|α|}
#L=2j−|α|

c(α, L)
∏
`∈L

xα(`),

where α(`) := 1 for 0 < ` ≤ α1, α(`) := 2 for α1 < ` ≤ α1 + α2 etc., and
c(α, L) ∈ N only depend on α and L.

Since the derivatives of the resolvent (t + A)−1 have the same form as if A
were just a number, we can also apply the above formula to f(t) = Aν(t+A)−1,
to get

DαAν(|ξ|2 + A)−1 =
∑
j≤|α|

(−1)jj!Aν(|ξ|2 + A)−1−j
∑

#L=2j−|α|

c(α, L)
∏
`∈L

ξα(`).

To show that the set {|ξ||α|Dαmν(ξ) : ξ ∈ Rn \ {0}} is (R-)bounded, we need to
consider (R-)bounds for

|ξ||α|Aν(|ξ|2 + A)−1−j |ξ|#L
∏
`∈L

ξα(`)

|ξ|

=
(
Aν(|ξ|2 + A)−1

) (
|ξ|2 (|ξ|2 + A)−1

)j∏
`∈L

ξα(`)

|ξ|
,

where we used the equality #L + |α| = 2j from (6.25) in the first step. But
here the first factor is simply mν(ξ) while the second is (1−m1(ξ))j which were
assumed (R-)bounded in the assumptions. The last factor is a scalar quantity
of norm at most unity, so it is simply estimated by 1 in the norm-boundedness
case, and dealt with by Kahane’s contraction principle in the R-boundedness
case. �

Remark 6.26. Assuming m1 (R-)bounded, m0 will be (R-)bounded if and
only if A is boundedly invertible.
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Now we are going to formulate a result for the (strong) maximal regularity
of (1.9). The definition of strong maximal regularity for the present problem is
an obvious modification of the corresponding definition for the fractional-order
equation (1.8), Def. 6.9. The statement of the theorem follows the same pattern
as our previous maximal regularity results, Theorems 1.6 and 6.20. However, we
do not here have an Lp-theorem as a starting point as we did above, so that we
will have a chance to illustrate that the methods developed in this chapter can be
used to show all the required implications. Nevertheless, since our main concern
is p ≤ 1, we are going to treat p > 1 only for those p which are Fourier-types for
X.

Theorem 6.27. Let A be an invertible sectorial operator on a UMD-space X.
Then the following are equivalent:

(L1) (1.9) has strong maximal regularity on Lp(Rn;X) whenever p > 1 is a
Fourier-type for X.

(L2) (1.9) has strong maximal regularity on H1(Rn;X).
(L3) (1.9) has strong regularity from H1(Rn;X) to L1(Rn;X).
(L4) {A(t+ A)−1| t ≥ 0} is R-bounded.

Moreover, these imply

(L5) For all p ∈ ]0, 1[, q > 1 a Fourier-type for X and f ∈ Hp∩Lq(Rn;X) or
f ∈ Hp ∩ H1(Rn;X), the unique solution u of (1.9), together with 4u
and Au, also belong to this same space, and moreover

‖4u‖Hp(Rn;X) + ‖u‖Hp(Rn;X) + ‖Au‖Hp(Rn;X) ≤ C ‖f‖Hp(Rn;X)

Proof. The proof can be modelled after that of Theorem 6.20. The only
exception is the implication L4 ⇒ L1, which in the case of Theorem 6.20 was a
direct application of Theorem 6.7 of Clément and Prüss. Now we argue as
follows:

It was illustrated above that (1.9) has a solution u whenever f ∈ S(Rn;X).
From the assumptions of the theorem and Lemma 6.24 it follows that this u
satisfies the estimate ‖4u‖Lp(Rn;X) + ‖u‖Lp(Rn;X) + ‖Au‖Lp(Rn;X) ≤ C ‖u‖Lp(Rn;X).

For a general f ∈ Lp(Rn;X), we consider a sequence fj ∈ S(Rn;X) which tends to
f in Lp(Rn;X). Then the solution u of (1.9) is obtained as the limit of the Cauchy
sequence (uj)

∞
j=1, just like in the proof of Theorem 6.20. This existence argument

did not use the Fourier-type in any way. However, we show the uniqueness of the
solution u by taking the Fourier transform, which shows that û(ξ) = (4π2 |ξ|2 +

A)−1f̂(ξ) whenever u,Au,4u, f ∈ Lp(Rn;X), and u is a solution of (1.9). The
formal argument becomes precise when we have the Fourier-type p to assure that
the Lp-functions above are boundedly mapped into Lp

′
-functions by the Fourier

transform, and using Lemma 6.12 together with F[4u](ξ) = −4π2 |ξ|2 û(ξ). �

7. Final remarks

We mention two directions of simple extensions of the present theory:
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Remark 7.1. With the help of the vector-valued H1-BMO-duality, one can
also obtain boundedness results from L∞(Rn;X), or even from BMO(Rn;X), to
BMO(Rn;Y ). However, since the duality arguments involved are rather straight-
forward and quite standard, it seems appropriate to leave them as exercises for
the reader. For more information concerning the H1-BMO-duality in the vector-
valued setting, we refer to Blasco [8] (cf. also Bourgain [12]). An L∞-BMO
multiplier theorem (using duality as well) was also recently proved by Girardi

and Weis [36], Cor. 4.6.

Remark 7.2. One can also consider the maximal regularity problem, as well
as Fourier multipliers in general, in the periodic situation of the unit-circle T
instead of R. A good reference for the periodic Lp-case is Arendt and Bu [2]. In
analogy with Prop. 4.7, one can show the necessity of R-boundedness of {mk| k ∈
Z \ {0}} for (mk)k∈Z ⊂ L(X,Y )Z to be a Fourier multiplier from H̃1(T;X) to
L1(T;Y ); in fact, it is obtained from the Lp-proof in [2] by a similar modification
that yielded the proof of Prop. 4.7 from its Lp-version (Theorem 4.1 of Clément

and Prüss).

8. Appendix: Proofs of two lemmata on Hardy spaces

Proof of Lemma 2.3. Let S ′-
∑∞

k=0 λkak be any atomic decomposition of
the distribution f ∈ Hp(R;X), where supp f ⊂ R̄+, and let N be the required
number of vanishing moments for these atoms. Let a+

k := akχR̄+
, a−k := akχR− .

Consider the generalized reflections

ã−k :=
N∑
j=0

bja
−
k (−cj·), bj ∈ R, cj > 0.

We have∫ ∞
0

tαã−k (t) dt =
N∑
j=0

bj

∫ ∞
0

tαa−k (−cjt) dt =
N∑
j=0

bj(−1)αc
−(α+1)
j

∫ 0

−∞
tαa−k (t) dt.

We require the conditions
∑N

j=0 bj(−1)αc
−(α+1)
j = 1, i.e.,

∑N
j=0 bjc

−(α+1)
j =

(−1)α, for α = 0, 1, . . . , N , in which case ã−k has the same moments, up to the
Nth, as a−k . For a fixed choice of the cj, j = 0, 1, . . . , N , this is a linear system
of N + 1 equations and N + 1 unkowns (the bj’s), and it can be solved for
the bj whenever the positive quantities cj are all distinct [since then the matrix
to be inverted is essentially that occuring in the uniquely solvable problem of
polynomial fit].

When the reflection coefficients are chosen as above, we have∫
tα(a+

k (t) + ã−k (t)) dt =

∫
tαa+

k (t) dt+

∫
tαa−k (t) dt =

∫
tαak(t) dt = 0

for α = 0, 1, . . . , N.
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This shows that Ak := a+
k +ã−k , which is supported on R̄+, has the same vanishing

moments as ak.
Concerning the atomic size condition of the Ak’s, it is clear that Ak is sup-

ported on a ball B̄k, whose size is at most c
∣∣B̄k

∣∣, where B̄k is the smallest ball
containing supp ak and c a constant depending on the choice of the reflection
coefficients cj. Moreover, we have

‖Ak‖Lq ≤
∥∥a+

k

∥∥
Lq

+
N∑
j=0

|bj|
∥∥a−k (−cj·)

∥∥
Lq

=
∥∥a+

k

∥∥
Lq

+
N∑
j=0

|bj| c−1/q
j

∥∥a−k ∥∥Lq
≤

(
1 +

N∑
j=0

|bj|
c

1/q
j

)
‖ak‖Lq =: C ‖ak‖Lq .

It follows that f̃ := S ′-
∑∞

k=0 λkAk defines an element of Hp(R;X), whose p-norm

satisfies ‖f̃‖Hp(R;X) ≤ C̃
∑∞

k=0 |λk|
p.

Since supp f ⊂ R̄+, we have (by definition) 〈f, ψ〉 = 0 whenever ψ ∈ S(R) is
supported on R−. This means, again by definition, that

∑∞
k=0 λk

∫
a−k (t)ψ(t) dt =

0 for such ψ, and by reflection, it follows that
∑∞

k=0 λk
∫
ã−k (t)ψ(t) dt = 0 for

ψ ∈ S(R) with support on R+. From the definition of f̃ it is clear that
〈
f̃ , ψ

〉
= 0

for suppψ ∈ R−. Combining these facts we see that
〈
f̃ , ψ

〉
= 〈f, ψ〉 whenever

ψ ∈ S(R) is supported away from the origin, which means that supp(f̃−f) ⊂ {0}.
However, we also have f̃ − f ∈ Hp(R;X), and this cannot hold for a distribution
supported only at the origin unless the distribution vanishes. This can be seen
as follows: Denoting g := f̃ − f , just note that, for x′ ∈ X ′, we have x′g ∈ Hp(R)
and obviously supp x′g ⊂ {0}, where 〈x′g, φ〉 := x′(〈g, φ〉). Thus we only need
to know that a scalar-valued distribution x′g ∈ Hp(Rn) with one-point support
must vanish (for which fact, see e.g. [77], Ch. III, §5.5(c)) in order to conclude
that x′(〈g, φ〉) = 〈x′g, φ〉 = 0 for all φ ∈ S(R) and x′ ∈ X ′; thus 〈g, φ〉 = 0 for all
φ ∈ S(R), and hence g vanishes as an element of S ′(R;X).

We have shown that f = f̃ has a decomposition of the asserted form, and this
completes the proof. �

Proof of Lemma 2.4. Let us first consider Rn, and then indicate the ap-
propriate modifications for R̄+ in the end.

It follows from the atomic definition of the Hp norm that finite linear com-
binations of atoms are dense in Hp(Rn;X). The Hp norm of an atom can be
controlled (from above) if its Lq norm can be controlled, preserving the appropri-
ate moment and support conditions. Simple functions being dense in Lq(B̄;X)
for q < ∞, given a (p, q)-atom a supported on the ball B̄, we can find a simple
function s =

∑
xkχEk with Ek ⊂ B̄ measurable and ‖s− a‖Lq < ε. Clearly, if we

replace the xk by zk ∈ Z taken sufficiently close to the respective xk, we get a new
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simple function, still denoted by s, which approximates a as closely as desired in
the Lq norm and belongs to Z ⊗ Lq(B̄).

For g ∈ Lq(B̄;X), let Pg denote the unique polynomial (with X-coefficients)
of degree at most N and satisfying∫

B̄

(g(t)− Pg(t))tα dt = 0 for |α| ≤ N.

It is easy to see that P is a bounded operator on Lq(B̄;X), and moreover, it
maps Z ⊗ Lq(B̄) to itself.

Now s − Ps is an appropriate approximation of a: It is supported on the
same ball B̄, it has the appropriate number of vanishing moments by the very
definition of P provided N is chosen large enough, and finally

‖(s− Ps)− a‖Lq(B̄;X) ≤ ‖s− a‖Lq + ‖Ps− Pa‖Lq
≤ (1 + ‖P‖L(Lq(B̄;X))) ‖s− a‖Lq(B̄;X) ,

where the first estimate exploits the fact that Pa = 0, since a already has the
appropriate vanishing moments. Since s can be chosen as close to a as desired,
the same will be true of b := s− Ps.

Replacing each of the finite number of atoms ai in the truncated atomic series
of a given f ∈ Hp(Rn;X) by the corresponding bi constructed as above, we can
estimate f as closely as desired by a finite sum

f̃ =
M∑
i=1

λibi =
M∑
i=1

λi

mi∑
j=1

zi,jfi,j, zi,j ∈ Z, fi,j ∈ Lqc(Rn).

Since there are only finitely many of the zi,j, all of them belong to some finite-
dimensional subspace E of Z, for which we can find a basis e1, . . . , em. Expressing
each zi,j as a linear combination of the ek, the sum above gets the form f̃ =∑m

k=1 ekfk, where the fk are compactly supported scalar Lq functions. Integrating
this equality multiplied by tα and using the linear independence of the ek, we find
that the fk have (at least) the same vanishing moments as f̃ . A compactly
supported Lq function with appropriate moment conditions is clearly an atom,
up to scaling, thus in particular an element of Hp(Rn).

Thus, so far an arbitrary f ∈ Hp(Rn;X) has been approximated with any
desired precision by

∑m
k=1 ekfk, with ek ∈ Z and fk ∈ Hp(Rn). It is clear that

if the fk are now replaced by suitable gk in the dense subspace G of Hp(Rn), we
can retain arbitrarily good approximation, and clearly

∑m
k=1 ekgk ∈ Z ⊗ G, as

desired.
To see the density of D(Rn) ∩ Hp(Rn) in Hp(Rn), it suffices to convolute

a truncated atomic series by a smooth, compactly supported approximation of
the identity, observing that the amount in which this disturbes the supports of
the atoms can be made as small as desired, that the vanishing moments are not
disturbed by convolutions at all, and that approximation in Lq norm is reached
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by definition. The fact that D̂0(Rn) is a dense subspace of Hp(Rn) can be found
in [81].

The case of the half-line R̄+. This is essentially the same as that of the whole
space, as we can use Lemma 2.3 to give us an atomic decomposition, also sup-
ported on R̄+. Since the series converges to the given f in Hp, truncations of the
series yield arbitrarily good approximations. Moreover, translation g 7→ g(· − h)
is strongly continuous on Lq, so that we can shift the finite number of atoms in
the truncated series slightly to the right, preserving a good approximation and
ensuring that the new truncated series is supported strictly right from the origin.
The replacement of the atoms ak ∈ Lq(B̄k;X) by bk ∈ Z ⊗ Lq(B̄k) can be done
with the same algorithm as above, so as to yield an approximation

∑m
k=1 ekfk,

with fk now Lq functions compactly supported on ]0,∞[, and they can be further
replaced by gk in the desired dense class G of Hp(R̄+).

To see that C∞c (R+) ∩ Hp(R̄+) is dense in Hp(R̄+), we can argue as in the
case of Rn but now starting from the shifted truncated atomic series and noticing
that if f , compactly supported in ]0,∞[, is convoluted with an approximation of
the identity φε := ε−1φ(ε−1·) with compact support, then also φε ∗ f is supported
on ]0,∞[ as soon as ε is small enough.

Now all the assertions are verified. �

9. Appendix: Proof of AU(fλx) = U(fλAx)

It was noted in the proof of Theorem 3.1 that the crucial step in proving that
Rλ is a left inverse of λ+ A is to show that

(9.1) U(fλ(·)Ax) = AU(fλ(·)x) whenever x ∈ D(A).

Indeed, once this is shown, it follows (for x ∈ D(A)) that

Rλ(λ+ A)x = Reλ

∫ ∞
0

e−λtU(λfλ(·)x+ fλ(·)Ax)(t) dt

= Reλ

∫ ∞
0

e−λt(λ+ A)U(fλ(·)x) dt = (λ+ A)Rλx = x,

since we already knew that Rλ is a right inverse.
We then turn to the proof of the equation (9.1). It is established in a sequence

of three lemmata. The idea of the proof is the same as that of Lemma 2.3 in
G. Dore [28]; however, that result is not directly applicable to the present
purposes since the situation now only involves weak (H1, L1) regularity instead
of maximal regularity.

Lemma 9.2. Let Reµ > 0, f ∈ H1(R̄+;X) and

g(t) = (µ+D)−1f(t) =

∫ t

0

e−µsf(t− s) ds.
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Then g ∈ H1(R̄+;X) and moreover ‖g‖H1(R̄+;X) ≤ C ‖f‖H1(R̄+;X) with C < ∞
independent of f .

Proof. The convolution kernel k(s) = e−µsχR+ is integrable, so that the
estimate ‖k ∗ f‖Lp(R̄+;X) ≤ C ‖f‖Lp(R̄+;X) holds for all p ∈ [1,∞]. Moreover,

the kernel satisfies the bounds |Dνk(s)| = |µ|ν e−Reµs ≤ Cν(µ) |s|−1−ν (a very
crude estimate!) for all ν ∈ N, so that Theorem 5.6 of Chapter 1 guarantees the
boundedness of k∗ acting on H1(R̄+;X). (Since the convolution by e−µsχR+ is
a translation-invariant operator, it makes no difference in norm of this operator
whether we take it to act on function spaces on R̄+ or on the whole line R.) �

Lemma 9.3. Let the assumptions of Theorem 3.1 be satisfied, and let U be
the solution operator (as in the proof of that theorem). That is, we have Uf = u
if and only if

• f ∈ H1(R̄+;X),
• u ∈ W 1,1

loc (R̄+;X), u(t) ∈ D(A) for a.e. t ∈ R+ and u̇, Au ∈ L1(R̄+;X).
• u̇(t) + Au(t) = f(t) for a.e. t ∈ R+ and u(0) = 0.

Then (µ+D)−1Uf = U(µ+D)−1f for every Reµ > 0 and f ∈ H1(R̄+;X).

Proof. Note first that, by Lemma 9.2, (µ+D)−1f ∈ H1(R̄+;X), so that it
makes sense to apply the solution operator U to this quantity.

Denote u := Uf , and v(t) := (µ+D)−1u(t) =
∫ t

0
e−µsu(t−s) ds. Then clearly

v(0) = 0; moreover, since u is a solution of the ACP, we can evaluate

v̇(t) =

∫ t

0

e−µsu̇(t− s) ds (using u(0) = 0) and Av(t) =

∫ t

0

e−µsAu(t− s) ds

for a.e. t ∈ R̄+. Since u̇, Au ∈ L1(R̄+;X), it follows from the above formulae that
also v̇, Av ∈ L1(R̄+;X). Finally, we can add the two formulae above and use the
fact that u = Uf to get v̇(t)+Av(t) = (µ+D)−1f(t), and thus v = U(µ+D)−1f .
Since v = (µ+D)−1Uf , as well, the assertion is established. �

Lemma 9.4. Let x ∈ D(A) and f ∈ H1(R̄+). Then U [f(·)Ax] = AU [f(·)x].

Proof. Manipulating the left side of the asserted equality, we get

U [f(·)Ax] = (µ+D)(µ+D)−1U [f(·)Ax]

= (µ+D)U(µ+D)−1f(·)Ax by Lemma 9.3

= (µ+D)UA(µ+D)−1f(·)x
= (µ+D)U((D + A)− (µ+D) + µ)(µ+D)−1f(·)x.

Now note that F (·) := (D + A)(µ + D)−1f(·)x = f(·)x − µ(µ + D)−1f(·)x +
(µ + D)−1f(·)Ax ∈ H1(R̄+;X) (since all the summands are in this space). Now
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(µ + D)−1f(·)x satisfies the ACP with data F by definition, and thus UF (·) =
(µ+D)−1f(·)x. Using this, we can continue our chain of equalities:

= (µ+D)(µ+D)−1f(·)x− (µ+D)Uf(·)x+ µ(µ+D)U(µ+D)−1f(·)x
= f(·)x− (µ+D)U [f(·)x] + µU [f(·)x] by Lemma 9.3

= f(·)x−DU [f(·)x]

= AU [f(·)x] by the definition of a solution.

This completes the proof. �



CHAPTER 2

Operator-valued singular integrals on UMD Bôchner
spaces

We study operators f 7→ Kf of the form

(Kf)(t) =

∫
Rn

k(t− s)f(s) ds,

where f is a vector-valued function and k an operator-valued sin-
gular kernel. Sufficient conditions for boundedness on Lp-spaces
of UMD-valued functions are given in terms of a Hörmander-
type condition involving R-boundedness. The results cover large
classes of kernels and also provide new proofs of some recent
operator-valued Fourier multiplier theorems. Moreover, they
give new information about families of singular integral opera-
tors.

This chapter is based on the joint paper [47] with L. Weis.

1. Introduction

Singular integrals have been the object of extensive study since the pioneer-
ing work of A. P. Calderón and A. Zygmund [16] in the 50’s. Their results
showed that large classes of singular integral operators are automatically bounded
on the whole scale of the reflexive Lp(Rn) spaces (i.e., p ∈ ]1,∞[) as soon as they
are bounded on L2(Rn) and the kernels satisfy certain conditions which hold
and can be verified for many operators appearing in applications. Moreover, the
required L2-boundedness is obtained for free (and therefore goes often almost
without being mentioned) with the help of the Fourier transform and Planche-

rel’s theorem.
The first results of Calderón and Zygmund concerning convolutions by

homogeneous kernels k(t) = Ω(t0)/ |t|n, t0 := t/ |t|, have been generalized in
several directions by the same authors and many others, and useful sufficient
conditions for Lp-boundedness are now known both in terms of the kernel k (as in

the original results) and in terms of the multiplier or the symbol m = k̂ (Fourier
transform in the sense of distributions). A classical theorem giving sufficient
conditions in terms of the multiplier is due to S. G. Mihlin, and a variant
was later proved by L. Hörmander as a corollary of his results on singular
integrals [43]. In this connection Hörmander gave the world the condition

75
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bearing his name, today usually formulated as

(1.1)

∫
|t|>2|s|

|k(t− s)− k(t)| dt ≤ A <∞,

and being a sufficient condition on k to boundedly extend the operator f 7→ k∗f ,
bounded on Lp̃(Rn) for one p̃ ∈ ]1,∞[, to the whole scale of the spaces Lp(Rn),
p ∈ ]1,∞[.

The question of whether these results could be extended to the Lebesgue–
Bôchner spaces Lp(Rn;X) of vector-valued functions was taken up by several
authors already in the 60’s. It was observed by A. Benedek, A. P. Calderón

and R. Panzone [5] that the boundedness on Lp̃(Rn;X) for one p̃ ∈ ]1,∞[ of a
convolution operator, together with Hörmander’s condition, implies the bounded-
ness on Lp(Rn;X) for all p ∈ ]1,∞[ also in the general situation of vector-valued
functions and an operator-valued kernel. However, to actually get the bound-
edness, without a priori assumptions, even for the single p̃ (something that was
immediate for p̃ = 2 in the scalar-valued, or more generally, a Hilbert space
setting) turned out to be a significantly more difficult task.

By the 80’s it was understood that the boundedness of vector-valued singular
integrals, in particular, the prototype example given by the Hilbert transform, is
intimately connected with the geometry of Banach spaces. Indeed, it was shown
by D. L. Burkholder and J. Bourgain that the boundedness of the Hilbert
transform on Lp(T;X), p ∈ ]1,∞[, is equivalent to the so called UMD-property of
the underlying Banach space X. Moreover, the boundedness of this one operator
could already be used to show the boundedness of large classes of multipliers.
In particular, the classical multiplier theorem of Mihlin was generalized (by
F. Zimmermann [89] to the full generality on Rn, based on the deep results of
Bourgain in the one-dimensional case) to the setting of scalar-valued multipliers
acting on UMD-valued functions.

However, the general situation of operator-valued kernels or multipliers, which
is of interest in the theory of evolution equations, remained open until the turn of
the millennium. As the näıve generalization of the classical Mihlin condition by
means of replacing absolute values by norms was found, by G. Pisier (unpub-
lished), to imply the desired boundedness only in the Hilbert space setting, a new
idea was required to build a condition strong enough to get the desired conclusion
but reasonable enough to cover a wide range of relevant applications. This idea
turned out to be the notion of R-boundedness, already implicit in the work of
Bourgain and later Zimmermann and explicitly formulated by Ph. Clément,

B. de Pagter, F. A. Sukochev and H. Witvliet [21] and by L. Weis [87]
who first generalized the Mihlin theorem to allow for operator-valued multipliers
but requiring R-boundedness instead of norm boundedness in reformulating Mih-

lin’s conditions. Clément and J. Prüss [22] showed that the R-boundedness
of the range of the multiplier is also necessary.
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The realization of R-boundedness as the right notion for operator-valued mul-
tiplier theorems has spurred significant activity in the field, leading to several
generalizations and improvements of the first results in this direction, as well
as to applications in differential equations (see [25], [53] for a survey). In the
present chapter, we make use of these ideas to attack the operator-valued ver-
sions of the problems originally treated by Calderón and Zygmund, i.e., to
search for conditions on the operator-valued singular kernel k to yield a bounded
operator f 7→ k ∗ f from Lp(Rn;X) to Lp(Rn;Y ).

In the scalar-valued context it follows from Plancherel’s theorem that k∗
is bounded on L2(Rn) if and only if k̂ is bounded, and in the general situation

we know from Clément and J. Prüss [22] that the range of k̂ must even be
R-bounded. Thus it is natural to impose the condition

(1.2) R({k̂(ξ)| ξ ∈ Rn}) ≤ A <∞,

where R(T) denotes the R-bound (cf. Def. 3.2) of the set T.
In the context of multiplier theorems, appropriate additional conditions are

obtained by imposing Mihlin-type bounds, but replaced by R-bounds, for the
derivatives of k̂ (see [2, 36, 40, 80, 87]). However, we now search for conditions
directly on the convolution kernel k, and it will be shown (Theorem 4.1) that
sufficient conditions are obtained by incorporating the notion of R-boundedness
into the classical Hörmander conditions so as to require that
(1.3)∫
|t|>2|s|

R({2−nj(k(2−j(t− s))− k(2−jt))| j ∈ Z}) log(2 + |t|) dt ≤ A log(2 + |s|),

Besides the R-bound, the new feature compared to the classical situation is the
additional logarithmic factor, which arises from the use of a deep result of Bour-

gain concerning UMD-spaces. Nevertheless, this condition is still satisfied by
large classes of singular kernels (cf. Theorem 5.12), and it also gives new infor-
mation about collective properties (the R-boundedness) of families of singular
integral operators (Theorem 6.4).

Besides being of interest in their own right, the results for the convolution
operators can also be used to derive some recent operator-valued multiplier the-
orems (e.g. from [36], cf. Theorem 7.9). This is not surprising in view of the
historical fact that Hörmander used his results on singular integrals to derive
a variant of the theorem of Mihlin on Fourier multipliers. As a general remark,
which will be given more quantitative content in the body of the chapter, it seems
that the understanding of the multipliers and convolution integrals greatly ben-
efits from the interaction of the two different points of view. As an additional
illustration of its usefulness, we give an alternative proof of the characterization
(from [87]) of maximal regularity in terms of R-boundedness (Example 5.15).
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2. A framework for vector-valued singular integrals

In this section we set up a convenient framework for vector-valued singular
integrals of the form

(2.1) Kf(t) =

∫
Rn

k(t− s)f(s) ds, t ∈ Rn,

which will allow us to use the basic tools of harmonic analysis.
In the scalar case it is customary to assume that k is a tempered distribution

which agrees on Rn \ {0} with a locally integrable function. For φ ∈ S(Rn), one
interprets (2.1) as

Kφ(t) := (k ∗ φ)(t) = 〈k, φ(t− ·)〉 , t ∈ Rn.

If one can prove an Lp-estimate ‖Kφ‖Lp ≤ C ‖φ‖Lp for all φ ∈ S(Rn), then by
the density of S(Rn) in Lp(Rn), 1 ≤ p < ∞, the operator K can be extended
to a bounded operator on Lp(Rn), and we can think of this operator as formally
given by (2.1).

In this chapter, we are typically interested in the case where k is an operator-
valued function, say t ∈ Rn \ {0} 7→ k(t) ∈ L(X, Y ), and f is in Lp(Rn;X).
To give a meaning to (2.1), we therefore assume that k is an operator-valued
distribution in

(2.2) S ′(Rn;L(X;Y )) := L(S(Rn);L(X;Y )).

But to avoid annoying technicalities about the convolutions of vector-valued dis-
tributions, we choose a special class of test-functions, namely X ⊗ S(Rn): for
x ∈ X and φ ∈ S(Rn) we define a linear functional x⊗ φ on S ′(Rn;L(X, Y )) by

[x⊗ φ](k) := 〈k, φ〉x,

and extend this definition by linearity from X × S(Rn) to the algebraic tensor
product X ⊗ S(Rn). In particular, for f = x ⊗ φ, we can now interpret (2.1)
as 〈k, φ(t− ·)〉x, which we may also write as k ∗ φ(t)x or k ∗ xφ(t) or even
k(·)x ∗ φ(t), whichever seems convenient in a particular context. Recall that the
convolution k ∗ φ(t) := 〈k, φ(t− ·)〉 of a tempered distribution k with a Schwartz
function φ ∈ S(Rn) is an infinitely differentiable function with polynomially
bounded derivatives of all orders; the vector-valued situation does not bring any
complications at this point, and one can simply repeat the standard proofs from
the scalar-valued theory.

Note that X ⊗ S(Rn) is dense in Lp(Rn;X) for 1 < p <∞, so that the class
X ⊗S(Rn) is sufficient to prove the boundedness of the operator K in (2.1) from
Lp(Rn;X) to Lp(Rn;Y ). For that matter, it will be enough to consider the even

smaller class X ⊗ D̂0(Rn), where

D̂0(Rn) :=
{
ψ ∈ S(Rn)

∣∣∣ ψ̂ ∈ D(Rn), 0 /∈ supp ψ̂
}
.
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This leads us to the following basic assumption for the kernel of a singular
integral operator as in (2.1):

Assumption 2.3. For every x ∈ X, the distribution k(·)x ∈ S ′(Rn;Y ) (de-
fined by 〈k(·)x, φ〉 := 〈k, φ〉x) agrees away from the origin with a locally inte-
grable Y -valued function, which we denote by the same symbol k(·)x. That is,
we have

〈k(·)x, φ〉 =

∫
Rn

k(t)xφ(t) dt for φ ∈ S(Rn), 0 /∈ suppφ.

Remark 2.4. (i) By the definition of the convolution, and linearity, this gives

k ∗ f(t) =

∫
Rn

k(s)f(t− s) ds for f ∈ X ⊗ S(Rn), t /∈ supp f.

It is easy to see that, for t /∈ supp f , the representation
∑
xj⊗φj of f ∈ X⊗S(Rn)

can be chosen in such a way that t /∈ suppφj for any j.
(ii) It might seem a little technical to assume the integrability of the point-

evaluations k(·)x only, rather than k(·) itself as an operator-valued function.
However, this is essential to include many of the natural examples of operator-
valued kernels. For instance, the function t ∈ R 7→ τt ∈ L(Lp(R)), where
τtf(x) := f(x − t) and p ∈ [1,∞[, is strongly continuous and hence strongly
integrable, but it is not Bôchner integrable as an operator-valued function. To
see this, recall ([26]) that the differentiation theorem of Lebesgue is also true
for the Bôchner integral.

However, we have(
1

2h

∫ 2h

0

τtχ[0,h](x) dt

)
(x) =

1

2h

∫ 2h

0

χ[t,h+t](x) dt =
1

2h

∫ 2h∧x

0∨(x−h)

dt ≤ 1

2
,

and thus∥∥∥∥χ[0,h] −
1

2h

∫ 2h

0

τtχ[0,h] dt

∥∥∥∥p
Lp(R)

≥
∫ h

0

(
1

2

)p
dx = 2−ph = 2−p

∥∥χ[0,h]

∥∥p
Lp(R)

.

It follows that∥∥∥∥τx − 1

2h

∫ x+2h

x

τt dt

∥∥∥∥
L(Lp(R))

=

∥∥∥∥I − 1

2h

∫ 2h

0

τt dt

∥∥∥∥
L(Lp(R))

≥ 1

2
,

and hence 1
h

∫ x+h

x
τt dt 6→ τx as h → 0 for any x ∈ R, whereas, if x 7→ τx were

Bôchner integrable as an operator-valued function, the convergence should take
place for a.e. x ∈ R.

Let us look at some examples of singular integral operators satisfying our
assumptions.

Example 2.5. Repeating the argument for the scalar-valued situation, e.g.
pp. 193–4 of [34], one can show that the following prominent class of operators
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provides singular integrals in the sense of the above definition: Let t 7→ k(t) ∈
L(X;Y ) be strongly locally integrable on Rn \ {0} and satisfy the conditions∫

r<|t|<2r

|k(t)x|Y dt ≤ A1 |x|X for all r > 0, x ∈ X,(2.6) ∣∣∣∣∫
r<|t|<R

k(t)x dt

∣∣∣∣
Y

≤ A2 |x|X for all R > r > 0, x ∈ X, and(2.7)

lim
r↓0

∫
r<|t|<1

k(t)x dt exists as a norm limit in Y for all x ∈ X.(2.8)

Then the operator p.v.-k defined on φ ∈ S(Rn) by

(2.9) 〈p.v.-k, φ〉x := lim
ε↓0

∫
|t|>ε

k(t)xφ(t) dt

gives a well-defined tempered distribution p.v.-k ∈ S ′(Rn;L(X;Y )); actually
(2.10)

|〈p.v.-k, φ〉x|Y ≤
(

2A1(‖∇φ(t)‖L∞(dt) + ‖|t|φ(t)‖L∞(dt)) + A2 |φ(0)|
)
|x|X .

It is obvious from the definition that this distribution satisfies Assumption 2.3.

While the previous example showed that certain results simply carry over to
the operator-valued situation with essentially no modifications, the purpose of
the next one is to illustrate the new phenomena not present in the scalar-valued
context.

Example 2.11. We show that the integrability conditions for t 7→ k(t)x of
the previous example do not imply anything similar for t 7→ k(t)f(t), where
f ∈ L∞(Rn;X), even compactly supported away from the origin. This fact
motivates the procedure adopted above first to define our operators on the rather
restricted algebraic tensor products, where they make sense without any further
assumptions. It is then a different matter to search for conditions guaranteeing
the boundedness of these operators; it seems wise to do the hard work with the
theorems and not the definitions.

Consider X := `p(Z), 1 ≤ p < ∞, which we identify with Lp(R, σ([0, 1) +
Z), ds) in the obvious way, and let Y := K, the field of scalars. Note in particular
that the example includes `2(Z), the prototype of all separable Hilbert spaces, so
that there is certainly nothing pathological in the geometry of the Banach spaces
in question.

For t > 0, log2 t /∈ Z + 1/2, we set α(t) := tan(π log2(t)); this map restricted
to any of the intervals (2j−1/2, 2j+1/2) with j ∈ Z is an increasing bijection onto
(−∞,∞). Let further g ∈ `p

′
(Z) \ `1(Z). We can then define the operators

k(t) : X → Y by

k(t)x := sgn(t) · x(α(|t|)) · g(α(|t|)) · α′(|t|)
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for t 6= 0, log2(|t|) /∈ Z + 1/2, and k(t)x := 0, say, for the countably many
values of t just mentioned. Clearly these operators are linear, and moreover
‖k(t)‖X→Y = |g(α(|t|))|α′(|t|) (or 0 for the countably many special cases).

The kernel k(·) is manifestly odd, so that it satisfies (2.7) and (2.8) rather
trivially, and moreover∫ 2r

r

|k(t)x|Y dt =

(∫ 2j+1/2

r

+

∫ 2r

2j+1/2

)
|x(α(t))| · |g(α(t))|α′(t) dt

=

(∫ ∞
α(r)

+

∫ α(2r)

−∞

)
|x(s)| · |g(s)| ds =

∫ ∞
−∞
|x(s)| · |g(s)| ds

≤ ‖x‖Lp ‖g‖Lp′ = c |x|X ,

where j is the unique integer such that log2 r ≤ j + 1/2 < log2(2r) = log2 r + 1,
and we have taken into account that α(r) = α(2r) by the π-periodicity of the
tangent.

Now we define our function f ∈ L∞(Rn;X). Let η ∈ D(R) be = 1 in [−1, 1],
have range [0, 1] and vanish outside [−2, 2], and define

f(t)(s) := f(t, s) :=

{
η(α(|t|)− bsc) if t 6= 0, log2(|t|) /∈ Z+ 1/2,

0 else.

This f is actually not only bounded, but it is C∞ in the regions (2j−1/2, 2j+1/2),
j ∈ Z.

Since our integrability conditions concern compact subsets of R \ {0}, we can
take f to be compactly supported away from 0 by simply making a cut-off outside
our domain of integration. We then have∫ √2

1/
√

2

|k(t)f(t)|Y dt =

∫ √2

1/
√

2

|f(t, α(t))| · |g(α(t))|α′(t) dt

=

∫ √2

1/
√

2

η(α(t)− bα(t)c) |g(α(t))|α′(t) dt

=

∫ ∞
−∞

η(s− bsc) |g(s)| ds =

∫ ∞
−∞
|g(s)| ds =∞,

since g /∈ L1(R, ds), and this shows quite explicitly that k(·)f(·) is not integrable.
Note that the failure of integrability in the last computation in no way de-

pended on the singularity of k(·) at the origin. In fact, we could have defined
k as above only in the annulus 1/

√
2 < |t| <

√
2, say, and set k(t) := 0 else-

where. Then we would have even global integrability
∫∞
−∞ |k(t)x|Y dt ≤ c |x|X for

every fixed x ∈ X, and yet a blow-up of even the local integrals for a function
f ∈ L∞(R;X) in place of x, as above.
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3. Some estimates for random series

In this section we review some techniques related to vector-valued random
series that have proved to be fundamental for the vector-valued extension of
classical results of harmonic analysis.

Denote by εj, j ∈ Z, the Rademacher system of independent random variables
on a probability space (Ω,Σ,P) verifying P(εj = 1) = P(εj = −1) = 1/2. Let
E :=

∫
(·) dP be the corresponding expectation.

For a Banach space X, let Rad(X) be the closure in L2(Ω;X) of the alge-
braic tensor product X ⊗ span(εj)

∞
−∞ equipped with the norm of L2(Ω;X). By

Kahane’s inequality, any p ∈ [1,∞) in place of 2 gives the same space (as a set)
with an equivalent norm.

If X is B-convex, then various useful properties of Rad(X) follow readily from
the boundedness of the Rademacher projection

(3.1) (Rf )(ω) :=
∞∑
−∞

E[εjf ]εj(ω);

in fact, the property that the operator R above is well-defined and bounded on
L2(Ω;X) can be taken as the definition of the B-convexity of X. See [67], §4.14.
The theorem of Pisier contained there also shows that X is B-convex if and only
if it does not contain uniformly the spaces `1(r), r ∈ Z+. Then the argument
given in Chapter 1, p. 35, shows that every UMD space is B-convex. Thus we
do not get any new geometric restrictions, since the places where we exploit
serious analytic (as opposed to algebraic) properties of Rad(X) are such that the
UMD-condition is required anyway. Note that the boundedness of R implies the
uniform boundedness of its partial sum projections by the Banach–Steinhaus

theorem.
Denoting by R(R) the range of R, it is obvious that X⊗span(εj)

∞
−∞ ⊂ R(R).

On the other hand, the fact that the partial sums of the series in (3.1) (which
are in X ⊗ span(εj)

∞
−∞ by definition) converge to Rf for every f ∈ L2(Ω;X)

shows that R(R) ⊂ X ⊗ span(εj)∞−∞. Finally, since R as a bounded projection
has a closed range, we conclude that Rad(X) = R(R : L2(Ω;X) → L2(Ω;X))
whenever X is a B-convex space. This allows us to identify f = Rf ∈ Rad(X)
with the sequence appearing in (3.1),

f = Rf ≈ (E[εjf ])∞−∞ ∈ XZ.

The density of finitely non-zero sequences in Rad(X) follows from the very defi-
nition of Rad(X) as the closure of X ⊗ span(εj)

∞
−∞.

Let us make a useful observation concerning the dual of Rad(X). Since the
unit ball of L2(Ω;X ′) is norming for L2(Ω;X) ⊃ Rad(X), we have, for f = Rf ∈
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Rad(X),

‖f‖Rad(X) = sup
‖g‖L2(Ω;X′)≤1

〈g,Rf〉〈L2(Ω;X′),L2(Ω;X)〉

= sup 〈Rg, f〉 ≤ sup
h∈Rad(X′)
‖h‖L2(Ω;X)≤C

〈h, f〉 ≤ C ‖f‖Rad(X)

where the easily verified self-adjointness of R was used, and C is the operator
norm of R on L2(Ω;X), thus also the norm of its adjoint. This shows that the
unit ball of Rad(X ′) is equivalently norming for Rad(X).

As a consequence of Fubini’s theorem and the equivalence of the definitions
of Rad(X) in terms of different exponents we also have

Lp(Γ; Rad(X)) ≈ Rad(Lp(Γ;X))

whenever Γ is a σ-finite measure space. (We really need this only for Γ = Rn.)
The Rademacher classes Rad(X), Rad(Y ) provide a straightforward but oc-

casionally useful reformulation of the concept of R-boundedness, whose definition
we recall:

Definition 3.2. A collection T ⊂ L(X,Y ) is called R-bounded if, for some
C <∞, the inequality

(3.3)

E ∣∣∣∣∣
N∑

j=−N

εjTjxj

∣∣∣∣∣
p

Y

 1
p

≤ C

E ∣∣∣∣∣
N∑

j=−N

εjxj

∣∣∣∣∣
p

X

 1
p

holds for all N ∈ N and all xj ∈ X, Tj ∈ T and some [equivalently, all] p ∈ [1,∞[.
The smallest constant C [when p = 1, say] is called the R-bound of T and denoted
by R(T).

With the understanding that xj = 0 for |j| > N ,we can write (3.3) as∥∥(Tjxj)
∞
−∞
∥∥

Rad(Y )
≤ C

∥∥(xj)
∞
−∞
∥∥

Rad(X)
,

and by the density of finitely non-zero sequences (xj)
∞
−∞ ∈ Rad(X), the condition

is simply that of boundedness of the diagonal operators (Tj)
∞
−∞ from Rad(X) to

Rad(Y ).
The following permanence property of R-boundedness will be useful.

Lemma 3.4. Let X be a B-convex space and T ⊂ L(X;Y ) be R-bounded.
Then T′ := {T ′| T ∈ T} ⊂ L(Y ′;X ′) is also R-bounded, and more precisely
R(T′) ≤ CR(T), where C is a geometric constant.
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Proof. For g ∈ L2(Ω;X), we have

E

〈
N∑
−N

εjT
′
jy
′
j, g

〉
= E

N∑
−N

〈
εjT

′
jy
′
j, εjE[εjg]

〉
= E

〈
N∑
−N

εjy
′
j,

N∑
−N

εiTiE[εig]

〉

≤

E ∣∣∣∣∣
N∑
−N

εjy
′
j

∣∣∣∣∣
2

X′

1/2

R(T)

E ∣∣∣∣∣
N∑
−N

εjE[εjg]

∣∣∣∣∣
2

X

1/2

≤

E ∣∣∣∣∣
N∑
−N

εiy
′
i

∣∣∣∣∣
2

X′

1/2

R(T)C ‖g‖L2(Ω;X) ,

recalling the uniform boundedness of the partial sum projections of the Rade-
macher projection R. Taking supremum over g ∈ L2(Ω;X) of unit norm, we find
that R(T′) ≤ CR(T), where C is the same constant as above. �

We also recall (e.g. from [87]) that the family T̃ of canonical extensions
(T̃ f)(t) := T [f(t)] of T ∈ T ⊂ L(X;Y ) to Lp(Γ;X) → Lp(Γ;Y ) is R-bounded
whenever T is, with the same R-bound and without any geometric assumptions.
(This is easy to see.)

An R-bounded collection is always uniformly bounded, but the converse is not
true in general. Perhaps the simplest example of a uniformly bounded, non-R-
bounded family of operators is the group of translations acting on Lp(Rn), p 6= 2.
However, there is a remarkable result due to Bourgain [12] providing a partial
substitute of this R-boundedness of translations under appropriate restrictions
on the support of the Fourier transforms of the functions involved. This result
plays an important rôle in Bourgain’s paper [12], as well as in the present work.
The difficult part of the proof, the case n = 1 for the unit-circle T in place of Rn,
is given in [12], Lemma 10. The transference to Rn uses standard methods and
is detailed in [36], Lemma 3.5.

Lemma 3.5 ([12, 36]). Let X be a UMD-space and (fj)
∞
−∞ ⊂ Lp(Rn;X) a

finitely non-zero sequence such that supp f̂j ⊂ B̄(0, 2j). Let (hj)
∞
−∞ ⊂ Rn be a

sequence, lying on the same line through the origin and such that |hj| < K2−j

for some constant K. Then

E

∥∥∥∑ εjfj(· − hj)
∥∥∥
Lp(Rn;X)

≤ C log(2 +K)E
∥∥∥∑ εjfj

∥∥∥
Lp(Rn;X)

.

Remark 3.6. Although we do not need it, we mention that one can get away
from the assumption that the hj lie on the same line, with the cost of getting
logn(2 + K) in place of log(2 + K). While the case n = 1 is obviously handled
already, the case of n > 1 dimensions can be reached by induction on n.
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To ensure the support condition of the Fourier transforms for the application
of Bourgain’s lemma, we will exploit (a smooth version of) a Littlewood–Paley-
type dyadic decomposition. Let η ∈ D(Rn) have range [0, 1], equal 1 for |ξ| < 1/4
and vanish for |ξ| > 1/2. Let then ϕ̂0(ξ) := η(ξ) − η(2ξ), and ϕ̂j(ξ) := ϕ̂(2−jξ).
Then

∑∞
−∞ ϕ̂j(ξ) = 1 for ξ 6= 0 and ϕ̂j is supported in the annulus 2j−3 ≤ |ξ| ≤

2j−1. Moreover, Φ̂j := ϕ̂j−1 + ϕ̂j + ϕ̂j+1 is equal to unity on the support of ϕ̂j,
and is supported in the annulus 2j−4 ≤ |ξ| ≤ 2j. Our indices are slightly shifted
from the usual choice, the sole purpose of which being to ensure the condition
supp Φ̂j ⊂ [−2j, 2j]n so as to avoid playing with indices when applying Lemma 3.5.

The next lemma allows us to estimate deterministic Lp-norms with random-
ized ones, i.e., to incorporate the Rademacher functions εj into our equations.
Slight variants of this lemma and the next one appear in several papers, cf. e.g.
Girardi and Weis [36], Cor. 3.3.

Lemma 3.7. Let X be a UMD-space, 1 < p <∞, and

(gj)
∞
−∞ ⊂ (S ′ ∩ L1,loc)(Rn;X)

be a finitely non-zero sequence. Assume further that ĝj is supported in the annulus
|ξ| ∈ 2j[a, b] for some 0 < a < b. Then

(3.8)
∥∥∥∑ gj

∥∥∥
Lp(Rn;X)

≤ CE
∥∥∥∑ εjgj

∥∥∥
Lp(Rn;X)

,

where the constant depends only on a and b (and the geometry of X).

Proof. Let us first observe that we can assume that gj ∈ Lp(Rn;X) for all
j, since otherwise the right-hand side is ∞. Indeed, let Em := {t ∈ Rn| |t| ≤
m, |gj(t)|X ≤ m for all j}. Then

‖gi1Em‖Lp(Rn;X)

≤ 1

2

∥∥∥∥∥
(
gi +

∑
j 6=i

gj

)
1Em

∥∥∥∥∥
Lp(Rn;X)

+
1

2

∥∥∥∥∥
(
gi −

∑
j 6=i

gj

)
1Em

∥∥∥∥∥
Lp(Rn;X)

.

As m → ∞, the left-hand side becomes the Lp(Rn;X)-norm of gi, whereas on
the right-hand side we have two terms appearing on the right-hand side of (3.8).
Should we have ‖gi‖Lp(Rn;X) =∞, the right-hand side of (3.8) would also be ∞,
and there is nothing to prove.

Let us hence assume that gj ∈ Lp(Rn;X) for all j. We choose N ∈ N large
enough so that 2N > b/a. Then, by the triangle inequality,

(3.9)

∥∥∥∥∥
∞∑

j=−∞

gj

∥∥∥∥∥
Lp(Rn;X)

≤
N−1∑
k=0

∥∥∥∥∥∥
∑

j≡k(mod N)

gj

∥∥∥∥∥∥
Lp(Rn;X)

.

The motivation for this rearrangement is the fact that the supports of ĝj for
j ≡ k(mod N) are disjoint for any fixed k.
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Choose φ ∈ D(Rn) with range [0, 1], equal to unity in [a, b] and with support
in [2−Nb, 2Na]. Then ĝj = φ(2−j·)ĝj and φ(2−i·)ĝj = 0 for i 6= j. Thus, for
(εj)

∞
−∞ ∈ {−1, 1}Z,

∑
j≡k

εj ĝj =
∑
j≡k

εjφ(2−j·)ĝj =

(∑
i≡k

εiφ(2−i·)

)∑
j≡k

ĝj =: m
∑
j≡k

ĝj,

and the Fourier multiplierm satisfies infinitely many of the Mihlin-type conditions

|ξ||α| |Dαm(ξ)| ≤
∑
j≡k

|ξ||α| 2−j|α|
∣∣(Dαφ)(2−jξ)

∣∣ ≤ 2 sup
ξ
|ξ||α| |Dαφ(ξ)| <∞,

where the factor 2 follows from the fact that at most two of the functions φ(2−j·),
j ≡ k, are supported at any given point.

The UMD-space version of Mihlin’s multiplier theorem (which is due to
Zimmermann [89]) implies that∥∥∥∥∥∑

j≡k

εjgj

∥∥∥∥∥
Lp(Rn;X)

≤ K

∥∥∥∥∥∑
j≡k

gj

∥∥∥∥∥
Lp(Rn;X)

,

and the inequality is readily seen to be two-sided by taking εjgj in place of gj.
Then, taking εj := εj(ω) and integrating over ω ∈ Ω, we have∥∥∥∥∥∑

j≡k

gj

∥∥∥∥∥
Lp(Rn;X)

≤ KE

∥∥∥∥∥∑
j≡k

εjgj

∥∥∥∥∥
Lp(Rn;X)

≤ KE

∥∥∥∥∥
∞∑

j=−∞

εjgj

∥∥∥∥∥
Lp(Rn;X)

,

where the last inequality follows from Kahane’s contraction principle.
Combining this with (3.9), we have the assertion with C = NK. �

We also need to be able to get rid of the randomization, and for this we have
the following:

Lemma 3.10. For f ∈ Lp(Rn;X) we have

E

∥∥∥∑ εjΦj ∗ f
∥∥∥
Lp(Rn;X)

≤ C ‖f‖Lp(Rn;X) .

Proof. Since F
∑
εjΦj ∗ f =

∑
εjΦ̂j f̂ =: mf̂, and

|ξ||α| |Dαm(ξ)| ≤
∑
|ξ||α| 2−j|α|

∣∣∣(DαΦ̂0)(2−jξ)
∣∣∣ ≤ 3 sup

ξ
|ξ||α|

∣∣∣DαΦ̂0(ξ)
∣∣∣ <∞,

even a stonger result with the expectation replaced by the supremum norm over
the random variables εj is an immediate consequence of the Mihlin–Zimmer-

mann theorem. �
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4. A Hörmander-type condition for singular integrals

The classical result for scalar-valued singular integral operators (see Hör-

mander [43]) states that the formal convolution (2.1), interpreted as explained

in Sect. 2, defines a bounded operator on Lp(Rn), 1 < p < ∞, if k̂ is bounded
and k satisfies the Hörmander condition (1.1). Our main result in this section is
the following version of this theorem for operator-valued kernel functions:

Theorem 4.1. Let X, Y be UMD-spaces. Assume that k ∈ S ′(Rn;L(X;Y ))

has a Fourier-transform k̂ ∈ L∞str(Rn;L(X, Y )) (strongly measurable, essentially
bounded) and satisfies Assumption 2.3, as well as the following conditions:

(4.2) R
(
{k̂(ξ)| ξ ∈ Rn}

)
≤ A0,

and

(4.3)

∫
|t|>2|s|

R
(
{2−nj(k(2−j(t− s))− k(2−jt))| j ∈ Z}

)
w(t) dt ≤ A1w(s),

where w(t) = log(2 + |t|).

Then f ∈ X ⊗ D̂0(Rn) 7→ k ∗ f extends to a bounded linear operator

f ∈ Lp(Rn;X) 7→ k ∗ f ∈ Lp(Rn;Y )

with norm at most C(A0 + A1), where C is a geometric constant.

Remark 4.4. (i) For X = Y and n = 1, the Hilbert transform H =

(p.v.-1/πt)∗, with k(t) = 1/πt, k̂(ξ) = −i sgn(ξ), is easily seen to verify the
conditions of the theorem – note in particular that the R-boundedness reduces to
uniform boundedness for a scalar kernel – which shows that the UMD-assumption
is necessary in this case. On the other hand, if Z is a UMD-space, A ∈ L(X,Z)
and B ∈ L(Z, Y ), then the singular integral operator of the special form BHA :
Lp(R;X)→ Lp(R;Y ) satisfies the conclusion of the theorem for arbitrary Banach
spaces X and Y .

(ii) The operator f 7→ k ∗ f can also be interpreted as a Fourier multiplier

transformation f̂ 7→ k̂f̂ , with operator-valued multiplier k̂ ∈ L∞(Rn;L(X;Y )).
Thus a result of Clément and Prüss [22] shows that the R-boundedness con-

dition (4.2) of the operators k̂(ξ) is necessary.
(iii) The R-boundedness assumption in our version of the Hörmander con-

dition enables us to use the Littlewood–Paley decomposition, whereas the loga-
rithmic factor is forced on us by Lemma 3.5. Note that while the usual Hörman-
der condition (1.1) is sufficient (also in the vector-valued context) to obtain the
boundedness on the whole scale p ∈ ]1,∞[ as soon as the boundedness is known
for one Lp̃, we do not assume any a priori boundedness.
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(iv) For the verification of the weighted Hörmander condition (4.3) in concrete
situations, it is useful to note the estimate

(4.5)

∫ ∞
r

t−(1+δ) log(2 + t) dt ≤ C(δ)r−δ log(2 + r) for all r, δ > 0,

whose verification is elementary calculus.

Theorem 4.1 will be a special case of Theorem 4.21 below. As a preparation
for the proof, we first give a somewhat technical condition for the boundedness
of singular integral operators. It is a version of Proposition 3.7 in Girardi and
Weis [36].

Proposition 4.6. Let X, Y be UMD-spaces and k ∈ S ′(Rn;L(X;Y )) satisfy
Assumption 2.3. Define, for every t ∈ Rn, an operator from Rad(X) to Rad(Y )
by

(4.7) K(t) := ((ϕ0 ∗ 2−njk(2−j·))(t))∞j=−∞,

and assume that the Banach adjoints K(t)′ : Rad(Y ′) → Rad(X ′), canonically
extended to Lp

′
(Rn; Rad(Y ′))→ Lp

′
(Rn; Rad(X ′)), satisfy the condition

(4.8)

∫
Rn

‖K(t)′g‖Lp′ (Rn;Rad(X′)) w(t) dt ≤ A ‖g‖Lp′ (Rn;Rad(Y ′)) ,

with w(t) := log(2 + |t|), for every g ∈ Rad(Lp
′
(Rn;X)).

Then f ∈ X ⊗ D̂0(Rn) 7→ k ∗ f extends to a bounded linear operator from
Lp(Rn;X) to Lp(Rn;Y ), of norm at most CA, where C is a geometric constant.

Proof. We have F[k ∗ f ] = k̂f̂ =
∑∞
−∞ ϕ̂j k̂f̂ , where the sum contains only

finitely many non-zero terms for f ∈ D̂0. Moreover, we have ϕ̂j k̂f̂ = ϕ̂j k̂ Φ̂j f̂ =
F[(ϕj ∗ k) ∗ (Φj ∗ f)]. Denoting fj := Φj ∗ f , we have the decomposition k ∗ f =∑∞
−∞(ϕj ∗ k) ∗ fj.
As a last preparatory manipulation, we write

(ϕj ∗ k) ∗ fj(t) =

∫
Rn

(ϕj ∗ k)(2−js)fj(t− 2−js)2−jn ds

=

∫
Rn

2−jn(ϕ0 ∗ k(2−j·))(s)fj(t− 2−js) ds,

where a simple change of variable was performed, recalling that ϕ̂j = ϕ̂(2−j·),
whence ϕj = 2jnϕ(2j·). A functional notation is used to denote the dilation of
the distribution k for simplicity, but this is defined by the duality 〈k(δ·), φ〉 :=
〈k, δ−nφ(δ−1·)〉.
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We now invoke the UMD-property by means of the Littlewood–Paley decom-
position (more precisely, Lemma 3.7), which allows us to write∥∥∥∥∥

∞∑
−∞

(ϕj ∗ k) ∗ fj

∥∥∥∥∥
Lp(Rn;X)

≤ CE

∥∥∥∥∥
∞∑
−∞

εj(ϕj ∗ k) ∗ fj

∥∥∥∥∥
Lp(Rn;Y )

= CE

∥∥∥∥∥
∞∑
−∞

εj

∫
Rn

2−jn[ϕ0 ∗ k(2−j·)](s)fj(· − 2−js) ds

∥∥∥∥∥
Lp(Rn;Y )

= C

∥∥∥∥∫
Rn

K(s)
(
fj(· − 2−js)

)∞
−∞ ds

∥∥∥∥
Rad(Lp(Rn;Y ))

,

where we recalled the definition of our auxiliary sequence-valued kernel K from
equation (4.7).

To estimate the norm on the right of the previous inequality, we pick an
arbitrary g ∈ Rad(Lp

′
(Rn;Y ′)). We have

(4.9)

〈
g,

∫
Rn

K(s)
(
fj(· − 2−js)

)∞
−∞ ds

〉
〈Lp′ (Rn;Rad(Y ′)),Lp(Rn;Rad(Y ))〉

=

∫
Rn

ds
〈
K(s)′g,

(
fj(· − 2−js)

)∞
−∞

〉
〈Lp′ (Rn;Rad(X′)),Lp(Rn;Rad(X))〉

≤
∫
Rn

ds ‖K(s)′g‖Lp′ (Rn;Rad(X′))

∥∥∥(fj(· − 2−js)
)∞
−∞

∥∥∥
Rad(Lp(Rn;X))

.

The second factor can be estimated with the help of Bourgain’s lemma to the
result

E

∥∥∥∥∥
∞∑
−∞

εjfj(· − 2−js)

∥∥∥∥∥
Lp(Rn;X)

≤ C log(2 + |s|)

∥∥∥∥∥
∞∑
−∞

εjfj

∥∥∥∥∥
Lp(Rn;X)

≤ C̃ log(2 + |s|) ‖f‖Lp(Rn;X) ,

the last step being again a consequence of the Littlewood–Paley decomposition
for UMD-valued functions (more precisely, Lemma 3.10).

It remains to estimate the integral over s in (4.9) by means of the assumption,
invoke the assumption (4.8), and consider the supremum over all appropriate
g ∈ Rad(Lp

′
(Rn;X)) of norm at most unity, to conclude that

‖k ∗ f‖Lp(Rn;X) ≤ CA ‖f‖Lp(Rn;X)

for all f in the dense subspace considered. Thus the proposition is proved. �

In the previous proposition, the boundedness of a singular integral operator
acting on the space Lp(Rn;X) was related to a boundedness condition of another
operator acting on the Rademacher class Rad(X) and related spaces. The new
kernel K(t) in (4.7) has some special structure, in particular, the convolution
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with a nice test function ϕ0. To be able to exploit this particular structure, so
as to find a sufficient condition more explicitly in terms of the original kernel k,
we need the following decomposition lemma, which is a variant of Lemma 4.3 in
Chapter 1.

Lemma 4.10. Let ϕ ∈ S(Rn) have a vanishing integral. Then there exists a
decomposition ϕ =

∑∞
m=0 ψm with the following properties:

ψm ∈ D(Rn), suppψm ⊂ B̄(0, 2m),

∫
ψm(y) dy = 0,

and for every pair of multi-indices α, β ∈ Nn and every M > 0 the sequence of
Schwartz norms

‖ψm‖α,β :=
∥∥xβDαψm(x)

∥∥
∞ ,

as well as
∥∥∥ψ̂m∥∥∥

α,β
, is O(2−mM) as m→∞.

In particular, for every p ∈ [1,∞] and every M > 0, the sequence of Lebesgue

norms ‖ψm‖Lp, as well as
∥∥∥ψ̂m∥∥∥

Lp
, is O(2−mM) as m→∞.

Proof. Fix η ∈ D(Rn), with range [0, 1], equal to 1 for |x| ≤ 1/2 and
vanishing for |x| ≥ 1. We set, for r > 0,

ϕr(x) := η(x/r)

(
φ(x) +

1

rn
∫
η(y) dy

∫
ϕ(y)(1− η(y/r)) dy

)
.

Then ϕr has a vanishing integral since ϕ does, and ϕr is supported in B̄(0, r) by
the support condition imposed on η. Moreover,

|ϕr(x)− ϕ(x)| ≤ |η(x/r)− 1| · |ϕ(x)|+ η(x/r)

rn
∫
η(y) dy

∫
|ϕ(y)| (1− η(y/r)) dy

≤ max
|y|≥r
|φ(y)|+ cr−n

∫
|y|≥r
|ϕ(y)| dy,

which tends to zero as r →∞; thus ϕr → ϕ uniformly.
We next set ψ0 := ϕ1 and ψm := ϕ2m −ϕ2m−1 for m > 0; whence

∑∞
m=0 ψm =

limm→∞ ϕ2m = ϕ, uniformly. Explicitly, for m > 0, we have

(4.11) ψm(x) := ϕ(x)
(
η(2−mx)− η(2−(m−1)x)

)
+

η(2−mx)

2nm
∫
η(y) dy

∫
ϕ(y)(1− η(2−my)) dy

− η(2−(m−1)x)

2n(m−1)
∫
η(y) dy

∫
ϕ(y)(1− η(2−(m−1)y)) dy.

It remains to estimate the order of the size of the Schwartz norms of the terms
appearing here.

Let us first have a look at the last two terms in (4.11). We have, by a simple
change of variable, ‖η(2−m·)‖α,β = 2m(|β|−|α|) ‖η‖α,β, which looks a little bad for
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|β| > |α|. However, the thing that settles the matters is the constant factor,
whose size is estimated by∫

|ϕ(y)| (1− η(2−my)) dy ≤
∫
|y|>2m

|ϕ(y)| dy

≤ C(M,n, ϕ)

∫
|y|>2m

|y|−M−n dy = C̃2−Mm.

We then turn to estimate the first term in (4.11) and denote for simplicity
φ(x) := η(x)− η(2x), so that this term is ϕ(x)φ(2−mx). Note that φ ∈ D(Rn) is
supported away from the origin. By Leibniz’ rule we have

(4.12) xβDα
x (ϕ(x)φ(2−mx)) =

∑
θ≤α

(
α

θ

)
xβDα−θϕ(x)2−m|θ|Dθφ(2−mx).

Let us make a Taylor expansion of Dθφ(2−mx) at the origin; since Dϑφ(0) = 0
for all ϑ ∈ Nn, all we get is the error term:

Dθφ(2−mx) =
∑
|ϑ|=M

2−mMxϑ

ϑ!

∫ 1

0

Dθ+ϑφ(u2−mx)M(1− u)M−1 du.

Now a typical term in the sum in (4.12) is estimated as∑
|ϑ|=M

2−mM
1

ϑ!

∣∣xβ+ϑDα−θϕ(x)
∣∣ ∫ 1

0

∣∣Dθ+ϑφ(u2−mx)
∣∣M(1− u)M−1 du

≤ 2−mM
∑
|ϑ|=M

1

ϑ!
‖ϕ‖α−θ,β+ϑ ‖φ‖θ+ϑ,0 .

Summing over the finite number of bounds of this type, we have established the
desired rate of convergence of the sequence ‖ψm‖α,β as m→∞.

The assertion concerning the Schwartz norms of the Fourier transforms ψ̂m
follows from the continuity of the Fourier transform on S(Rn). The assertion
concerning the Lebesgue norms follows by estimating ‖ψm‖Lp by a finite number
of Schwartz norms. �

Remark 4.13. (i) The result is equally valid for vector-valued functions, with
the same proof, but we only need it here for scalar-valued ones.

(ii) The decomposition established is an atomic decomposition of ϕ, and shows
the well-known fact that ϕ ∈ S(Rn) belongs to the Hardy space H1(Rn) provided
it has a vanishing integral. However, more than this we are interested in the
particular type of the decomposition, with the rapid rate of convergence.

Lemma 4.14. Consider a mapping t ∈ Rn 7→ L(X;Y ) having the form

K(t) := k ∗ ϕ(t)
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where ϕ ∈ S(Rn) with
∫
ϕ(y) dy = 0, and k ∈ S ′(Rn;L(X;Y )) is an operator-

valued tempered distribution satisfying Assumption 2.3, and moreover k̂ agrees
with a function in L∞(Rn;L(X;Y )). In addition, suppose that

∥∥∥k̂(ξ)
∥∥∥
X→Y

≤ A0 for a.e. ξ ∈ Rn,

(4.15)

∫
|t|>2|s|

|(k(t− s)− k(t))x|Y w0(t) dt ≤ A1w1(s) |x|X ∀ s ∈ Rn \ {0}, x ∈ X1,

(4.16)

where w0 and w1 are positive, measurable and polynomially bounded functions,
and X1 ⊂ X.

Then, for every x ∈ X1,∫
|K(t)x|Y w0(t) dt ≤ (A0C(ϕ,w0) + A1C(ϕ,w1)) |x|X ,

where the C’s are finite quantities depending only on the objects indicated.

Proof. We apply Lemma 4.10 to write ϕ =
∑∞

m=0 ψm, where the ψm have
the properties stated in that lemma. Then we devide K(t) into the pieces

Km(t) := k ∗ ψm(t),

and investigate each of them separately.
Recall that ψm is supported in the ball B̄m := B̄(0, 2m). We first investigate

the integral of |Km(t)x|Y , with x ∈ X1, well away from this ball, i.e., outside the
larger ball B̄m+1:∫

B̄cm+1

|Km(t)x|Y w0(t) dt =

∫
B̄cm+1

dt w0(t)

∣∣∣∣∫
B̄m

k(t− s)xψm(s) ds

∣∣∣∣
Y

.

Since the integral of ψm vanishes, we can continue with

=

∫
B̄cm+1

dt w0(t)

∣∣∣∣∫
B̄m

(k(t− s)− k(t))xψm(s) ds

∣∣∣∣
Y

≤
∫
B̄m

ds |ψm(s)|
∫
|t|>2|s|

|(k(t− s)− k(t))x|Y w0(t) dt

≤
∫
B̄m

ds |ψm(s)|A1w1(s) |x|X ≤ A1 ‖ψm‖L∞ ν1(B̄m) |x|X ,

where we have denoted dν1(t) := w1(t) dt.
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Inside the ball B̄m+1 we argue as follows, with the obvious definition of ν0:∫
B̄m+1

|Km(t)x|Y w0(t) dt ≤ ν0(B̄m+1) ‖Km(·)x‖L∞(Rn;Y )

≤ ν0(B̄m+1)
∥∥∥K̂m(·)x

∥∥∥
L1(Rn;Y )

= ν0(B̄m+1)

∫
Rn

∣∣∣k̂(ξ)x ψ̂m(ξ)
∣∣∣
Y

dξ

≤ A0ν0(B̄m+1)
∥∥∥ψ̂m∥∥∥

L1
|x|X .

Summing over the estimates, we have∫
Rn

|K(t)x|Y w0(t) dt ≤
∞∑
m=0

(
A1ν1(B̄m) ‖ψm‖L∞ + A0ν0(B̄m+1)

∥∥∥ψ̂m∥∥∥
L1

)
|x|X .

The convergence of the series follows from the properties of the decomposition
ϕ =

∑∞
m=0 ψm. Indeed, the at most polynomial growth of wi guarantees that

νi(B̄(0, r)) ≤ CrN as r → ∞; hence ν0(B̄m+1), ν1(B̄m) ≤ C2mN , but we have

‖ψm‖L∞ ,
∥∥∥ψ̂m∥∥∥

L1
≤ CM2−mM for any M > 0, so it suffices to take M > N . This

completes the proof. �

Remark 4.17. (i) The result of the lemma is rather general, since no condi-
tions on the Banach space geometry are required.

(ii) Although our application of the lemma is to the boundedness of operators
acting on the usual Bôchner spaces with respect to the plain Lebesgue measure,
where a specific choice of the weight w is relevant, the above result itself has
some taste of a more general weighted norm inequality. The assumption that
the weights wi be polynomially bounded is exploited via the growth condition of
the size of the balls B̄(0, r) in terms of the measures dνi(t) := wi(t) dt. Such
a growth estimate would also follow from the doubling condition ν(B̄(x, 2r)) ≤
Cν(B̄(x, r)), which is the usual regularity assumption when dealing with more
general measure spaces.

The following corollary simply specializes Lemma 4.14 to the spaces Rad(X)
and Rad(Y ) in place of X and Y . The subset X1 ⊂ X that appeared in
Lemma 4.14 will now be the set X ⊗ span(εj)

∞
−∞ of finitely non-zero elements

of Rad(X).

Corollary 4.18. Consider a mapping t ∈ Rn 7→ L(Rad(X); Rad(Y )) having
the form

K(t) := (kj ∗ ϕ(t))∞−∞

where ϕ ∈ S(Rn) with
∫
ϕ(y) dy = 0, and kj ∈ S ′(Rn;L(X;Y )) are operator-

valued tempered distributions satisfying Assumption 2.3, and moreover k̂j agrees
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with a function in L∞(Rn;L(X;Y )) for every j ∈ Z. In addition, suppose that∥∥∥(k̂j(ξ))
∞
−∞

∥∥∥
Rad(X)→Rad(Y )

≤ A0 for a.e. ξ ∈ Rn,(4.19)

∫
|t|>2|s|

∥∥((kj(t− s)− kj(t))xj)∞−∞
∥∥

Rad(Y )
wo(t) dt ≤ A1w1(s) ‖x‖Rad(X)

(4.20)

for all s ∈ Rn \ {0} and x ∈ X ⊗ span(εj)
∞
∞, where w0 and w1 are positive,

measurable and polynomially bounded.
Then∫

‖K(t)x‖Rad(Y ) w0(t) dt ≤ (A0C(ϕ,w0) + A1C(ϕ,w1)) ‖x‖Rad(X)

for all x ∈ X ⊗ span(εj)
∞
−∞.

Combining Corollary 4.18 with Proposition 4.6, we have the following result,
which contains Theorem 4.1 as a special case, as shown below:

Theorem 4.21. Let X, Y be UMD-spaces, k ∈ S ′(Rn;L(X;Y )) satisfy As-

sumption 2.3, k̂ ∈ L∞str(Rn;L(X;Y )), and p ∈ ]1,∞[. Let the following conditions
be satisfied:

(4.22)
∥∥∥(k̂(2jξ))∞j=−∞

∥∥∥
Rad(X)→Rad(Y )

≤ A0 for a.e. ξ ∈ Rn,

and

(4.23)

∫
|t|>2|s|

∥∥(2−nj(k(2−j(t− s))′ − k(2−jt)′)gj)
∞
j=−∞

∥∥
Rad(Lp

′ (Rn;X′))
w(t) dt

≤ A1w(s) ‖g‖Rad(Lp′ (Rn;Y ′))

for all s ∈ Rn \ {0} and x ∈ X ⊗ span(εj)
∞
−∞, where w(t) := log(2 + |t|).

Then f ∈ X ⊗ D̂0(Rn) 7→ k ∗ f extends to a bounded linear operator

f ∈ Lp(Rn;X) 7→ k ∗ f ∈ Lp(Rn;Y )

with norm at most C(A0 + A1), where C is a geometric constant.

Proof. By the permanence properties of R-bounds (see Lemma 3.4 and the
paragraph after it), we also have analogue of conditions (4.22) valid for the ex-

tensions of the adjoint operators k̂(ξ)′ to Lp
′
(Rn;Y ′)→ Lp

′
(Rn;X ′). Let us then

define kj(t) := 2−njk(2−jt), whence (4.23) is the same as (4.20) with Lp
′
(Rn;Y ′) in

place of X and Lp
′
(Rn;X ′) in place of Y . Moreover, k̂j(ξ) = k̂(2jξ), so that (4.22)

implies the analogue of (4.19) with the same substitutions. Thus Corollary 4.18
shows that the kernel K(t) defined in (4.7) satisfies the assumption (4.8) of Propo-
sition 4.6, and hence that proposition implies the assertion of the theorem. �

Now we can also give
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Proof of Theorem 4.1. Clearly the assumption (4.2) implies (4.22). As
for the condition (4.3), we can again use the permanence properties of R-bounds
to obtain the same condition first for k(·)′ : Y ′ → X ′ in place of k(·), and
finally for the extension k(·)′ : Lp

′
(Rn;Y ′) → Lp

′
(Rn;X ′). Thus (4.3) implies

the operator norm version of the strong condition (4.23), and hence Theorem 4.1
follows as a special case of Theorem 4.21. �

Remark 4.24. As we saw in the proof of Theorem 4.21, the Hörmander con-
dition (4.3) with operator norms could be used to deduce the more technical
condition (4.23). While it is nice to have the sufficiency of the strong condi-
tion (4.23) for its own sake, the sufficiency of strong estimates becomes essential
when applying Theorem 4.21 to prove multiplier theorems. Namely, as soon as
our Banach space X has a Fourier-type q > 1 (and a UMD-space always has), the

Hausdorff–Young inequality allows us to pass from estimates for ‖f̂‖Lq(Rn;X)

to those for ‖f‖Lq′ (Rn;X), i.e., we are able to transform strong estimates for the

q-norm in the frequency domain to strong estimates for the q′-norm in the spatial
domain. However, the operator spaces L(X) only have trivial Fourier-type, and
thus the transference of norm conditions does not work.

5. Application to special classes of singular integrals

For the application of Theorem 4.21 to classical operator-valued kernels (see
Theorem 5.12, Cor. 5.14), we first provide criteria for checking the condition (4.22)

without the need to know the Fourier transform k̂ of the distribution of interest.
This is done in the following lemma, the core of whose proof is simply a repetition
of the classical argument. Nevertheless, we need to consider several technical
points to reduce the considerations to this classical situation.

Lemma 5.1. Consider a principal value distribution p.v.-k ∈ S ′(Rn;L(X;Y ))
as in (2.6)–(2.9), whose related sequence valued kernel K(t) := (2−njk(2−jt))∞−∞
verifies the analogues of the properties (2.6)–(2.7). More precisely, assume that,
for every finitely non-zero x = (xj)

∞
−∞ ∈ Rad(X) we have∫

r<|t|<2r

‖K(t)x‖Rad(Y ) dt ≤ A ‖x‖Rad(X) for all r > 0,(5.2) ∥∥∥∥∫
r<|t|<R

K(t)x dt

∥∥∥∥
Rad(Y )

≤ A ‖x‖Rad(X) for all R > r > 0,(5.3)

and moreover

(5.4)

∫
|t|>2|s|

‖(K(t− s)−K(t))x‖Rad(Y ) dt ≤ A ‖x‖Rad(X) .

Then, given that Y has the Radon–Nikodým property, the Fourier transform k̂
(taken in the sense of distributions) is identified with an essentially bounded
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strongly measurable function, and actually

(5.5) K̂(ξ) := (k̂(2jξ))∞−∞ satisfies
∥∥∥K̂(ξ)

∥∥∥
Rad(X)→Rad(Y )

≤ cA

for a.e. ξ ∈ R, where c is a numerical constant.

Remark 5.6. (i) Of course, the assumption of the conditions (2.6)–(2.7),
which are related to the existence of the principal value integral (2.9), is super-
fluous, since they follow from the stronger estimates (5.2)–(5.3). On the other
hand, the analogue of (2.8),
(5.7)

lim
r↓0

∫
r<|t|<1

K(t)x dt exists as in Rad(Y ) for finitely non-zero x ∈ Rad(X),

already follows from (2.8), since we have the existence of the finite number of
non-zero limits

lim
r↓0

∫
r<|t|<1

2−njk(2−jt)xj dt = lim
r↓0

∫
2−jr<|t|<2−j

k(t)xj dt,

and we just add them up.
(ii) The assumption (5.4) obviously follows if we have (4.23). The condi-

tions (5.3) and (5.7) are trivial if k is odd, or slightly more generally, if its strong
integral vanishes over almost every origin-centered sphere rSn−1.

(iii) In the situation where we use the lemma, Y is already required to be
UMD, hence reflexive, and thus has the RNP automatically. (See e.g. [26] for
more on the RNP.)

Proof of Lemma 5.1. The same classical argument, which could be re-
peated to show that the conditions (2.6)–(2.8) imply that (2.9) gives a well-defined
tempered distribution p.v.-k : X ×S(Rn)→ Y verifying the estimate (2.10), can
equally well be used to give from (5.2), (5.3) and (5.7) the analogous estimates
with X and Y replaced by Rad(X) and Rad(Y ). Thus we have

p.v.-K ∈ S ′(Rn;L(Rad(X); Rad(Y ))).

We then make a cut-off to define

Kε,R(t) := K(t)χε<|t|<R for R > ε > 0.

We claim that
(5.8)〈
Kε,R, φ

〉
x −→
ε↓0,R↑∞

〈K,φ〉x in Rad(Y ) ∀ φ ∈ S(Rn), x ∈ X ⊗ span(εj)
∞
−∞.
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Indeed, for a finitely non-zero x ∈ Rad(X),〈
Kε,R, φ

〉
x =

∑
εj

∫
ε<|t|<R

2−njk(2−jt)xj φ(t) dt

=
∑

εj

∫
2−jε<|s|<2−jR

k(s)xj φ(2js) ds

→
∑

εj p.v.-

∫
Rn

k(s)xj φ(2js) ds =
∑

εj p.v.-

∫
Rn

2−njk(2−jt)xj φ(t) dt

= 〈K,φ〉x,
since we can separately take each of the finite number of limits whose existence
we know, and add them up.

With these technicalities out of the way, we are effectively in the classical
situation, and the proof of [34], pp. 206–7, can merely be reproduced to estimate
the integrals defining the Fourier transform of Kε,R(·)x with x ∈ X⊗ span(εj)j∈J
and J ⊂ Z a finite subset, to the result∥∥∥K̂ε,R(·)x

∥∥∥
L∞(Rn;Rad(Y ))

≤ cA ‖x‖Rad(X) .

By the obvious estimate, this implies for φ ∈ S(Rn)∥∥∥〈Kε,R, φ̂
〉
x
∥∥∥

Rad(Y )
=
∥∥∥〈K̂ε,R, φ

〉
x
∥∥∥

Rad(Y )
≤ cA ‖x‖Rad(X) ‖φ‖L1(Rn) ,

and it follows from (5.8) that the same inequality holds with Kε,R replaced by
K. But this means that φ ∈ S(Rn) 7→ 〈K,φ〉x ∈ Y ⊗ span(εj)j∈J extends to a
bounded linear operator, of norm at most cA ‖x‖Rad(X),

φ ∈ L1(Rn) 7→
〈
K̂, φ

〉
x ∈ Y ⊗ span(εj)j∈J ,

where the closed subspace Y ⊗ span(εj)j∈J ≈ Y J of Rad(Y ) is equipped with the
norm of Rad(Y ).

Now we can invoke the RNP of Y , or actually of Y J which follows, by means
of the equivalent condition of validity of the vector-valued Riesz Representation
Theorem; see [26], Theorem III.1.5. (It is easy to see that the finiteness of the
measure space, assumed in the theorem cited, can be replaced by σ-finiteness.)
This gives an essentially unique g[x](·) =

∑
εjgj[x](·) ∈ L∞(Rn;Y ⊗ span(εj)j∈J)

such that

(5.9)
〈
K̂, φ

〉
x =

∫
Rn

g[x](ξ)φ(ξ) dξ

and

(5.10) ‖g[x](·)‖L∞(Rn;Rad(Y )) =
∥∥∥φ 7→ 〈

K̂, φ
〉
x
∥∥∥
L1(Rn)→Rad(Y )

≤ cA ‖x‖Rad(X) .

It follows easily that the jth component gj[x] of g[x] depends only on the jth
component xj of x, and the mappings xj ∈ X 7→ gj[xjεj](ξ) =: Gj(ξ)xj ∈ Y are
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linear, and by (5.10) they are bounded uniformly in ξ ∈ Rn, disregarding a set of
measure zero. If we consider the particular case with x = εjxj, then (5.9) yields〈

k̂(2j·), φ
〉
xj =

∫
Rn

Gj(ξ)xj φ(ξ) dξ

Thus k̂(2j·) = Gj, and in particular k̂ = G0, with the equality in the sense of
distributions. This gives the asserted identification, and (5.10) gives the asserted

estimate (5.5), now that we know that g[x](ξ) = K̂(ξ)x. �

With Theorem 4.21 and Lemma 5.1 at our disposal, it becomes a routine task
to obtain operator-valued generalizations of classical results on the boundedness
of singular integrals, with the receipt “replace any boundedness assumption by
R-boundedness”. In this spirit, we have the following:

Lemma 5.11. Suppose that for k ∈ L1,loc
str (Rn \ {0};L(X;Y )) and some δ > 0,

the collection

T := {|t|n+δ |s|−δ (k(t− s)− k(t)) : |t| > 2 |s| > 0}

is R-bounded. Then the condition (4.23) holds with a constant c(n, δ)R(T).

Proof. We have

R({2−nj(k(2−j(t− s))− k(2−jt))}∞j=−∞)

= R({(2−j |t|)n+δ(2−j |s|)−δ(k(2−j(t− s))− k(2−jt))}∞−∞) |t|−(n+δ) |s|δ

≤ R(T) |t|−(n+δ) |s|δ ,

and with this estimate, (4.23) follows by integrating in the polar coordinates and
using (4.5). �

Theorem 5.12. Let X and Y be UMD-spaces and suppose

k ∈ L1,loc
str (Rn \ {0};L(X;Y ))

is an odd kernel satisfying

R({|t|n k(t), |t|n+δ |s|−δ (k(t− s)− k(t)) : |t| > 2 |s| > 0}) =: A <∞.

Then k gives rise to a tempered distribution p.v.-k in the sense of (2.9), and
f ∈ X ⊗ S(Rn) 7→ p.v.-k ∗ f extends to a bounded mapping from Lp(Rn;X) to
Lp(Rn;Y ), for all p ∈ ]1,∞[, of norm at most CA with C geometric.

Proof. By Lemma 5.11, k satisfies the condition (4.23) of Theorem 4.21.
Since k is odd, to verify the assumptions of Lemma 5.1 so as to get the con-
dition (4.22), only (5.2) needs checking, but this follows immediately from the
assumed R-boundedness of {|t|n k(t) : t 6= 0}. �
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Remark 5.13. (i) With X = Y = C, Theorem 5.12 is classical. Observe
that, despite its general geometric setting and the complications on the way here,
our theorem is strong enough to recover the classical result, since R-boundedness
then reduces to uniform boundedness.

(ii) A generalization to the vector-valued situation, with Y = X a UMD-
space, but with a scalar-valued kernel, is first due to Bourgain [12], who con-
siders the periodic domain T.

As in the classical case, Theorem 5.12 has the following immediate corollary
which is sufficient for many concrete examples of kernels.

Corollary 5.14. Let X and Y be UMD-spaces, k ∈ C1(Rn \ {0};L(X;Y ))
be odd and

R({|t|n k(t), |t|n+1∇k(t) : t 6= 0}) =: A <∞.
Then k satisfies the conclusion of Theorem 5.12

While Theorem 5.12 was, for simplicity, formulated for an odd kernel k, in
which case the conditions (5.3) and (2.8) (or (5.7)) of Lemma 5.1 were trivially
satisfied, the general theory we have developed is powerful enough to handle more
general situations. We next give an illustration of a situation where the kernel is
manifestly not odd.

Example 5.15 (R-bounded semigroups). The question of maximal regularity
for the abstract Cauchy problem (cf. [27, 87], or Chapter 1)

u̇(t) = Au(t) + f(t) for t ≥ 0, u(0) = 0,

with A the generator of a bounded analytic semigroup and f a given function,
leads one to consider the mild solution given by the variation-of-constants formula

(5.16) Au(t) =

∫ t

0

AT t−sf(s) ds.

This is obviously a (singular) convolution integral with the kernel

k(t) :=

{
AT t t > 0,

0 t ≤ 0,

When (T t) is bounded and analytic, R(T t) ⊂ D(A) for t > 0, and the AT t

are bounded operators whose norm behaves like 1/t; thus tAT t are uniformly
bounded operators for t > 0. If we assume a little more, i.e., R-boundedness
of T t and tAT t instead of uniform boundedness, then |t| k(t) is obviously R-
bounded, and in this special case, this already implies that |t|2 k′(t) = t2A2T t =
4(t/2)2A2(T t/2)2 = 4(t/2AT t/2)2 is also R-bounded. Hence the assumptions of
Cor. 5.14 are verified, except for the oddness of k, which is clearly false. In
view of the proof of Theorem 5.12 we nevertheless know that k then satisfies
the Hörmander condition (4.23) of Theorem 4.21, as well as (5.2) and (5.4) of
Lemma 5.1. Thus only the conditions (5.3) and (2.8) need verification.
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As for (5.3), we have∫ R

r

K(t)x dt =
∑

εj

∫ R

r

2−jAT 2−jtxj dt =
∑

εj

∫ 2−jR

2−jr

AT txj dt

=
∑

εj

∫ 2−jR

2−jr

dT txj
dt

dt =
∑

εj(T
2−jR − T 2−jr)xj,

and (5.3) follows from the R-boundedness of T t, t > 0.
Concerning (2.8), we have [and here the R-boundedness conditions play no

rôle] ∫ 1

r

k(t)x dt =

∫ 1

r

AT tx dt =

∫ 1

r

dT tx

dt
dt = T 1x− T rx −→

r↓0
T 1x− x,

which shows the existence of the limit required in (2.8).
Thus we have shown that, on a UMD-space, the mapping f 7→ Au defined

by (5.16) maps Lp(R̄+;X) to Lp(R̄+;X) [and hence the Cauchy problem has max-
imal Lp-regularity] whenever A is the generator of the analytic semigroup (T t) for
which the sets {T t| t > 0} and {tAT t| t > 0} are R-bounded. Thus our results on
singular integrals provide a direct approach to the recent maximal regularity re-
sults, allowing one to work with the variation-of-constants formula (5.16) instead
of Fourier multipliers.

6. R-boundedness of families of singular integral operators

An interesting general phenomenon in the world of vector-valued inequali-
ties is that they almost immediately self-improve to give related statements for
large families of kernels; cf. e.g. [34], p. 493. In the more specific context of R-
boundedness, this was observed by Girardi and Weis [37], and following these
ideas, we next show how Theorem 5.12 can in fact be used to derive not only
boundedness of certain singular integrals but in fact R-boundedness of families of
singular integral operators which satisfy the assumptions of the theorem in such
a way that the ranges of the kernels belong to the same R-bounded set T.

The precise formulation of the result vaguely described above requires Pisier’s
notion of the property (α) from the geometry of Banach spaces. We exploit this
notion via the following lemma which is essentially in [21], Lemma 3.13. The
“traditional” definition of the property (α) can also be found in this same article
(Def. 3.11), but actually, for Y = X, one could (equivalently) take the assertion
of the lemma as the definition of X having the property (α). While the property
(α) is independent of the UMD-condition, it is also satisfied by the most common
reflexive spaces appearing in analysis; cf. [21, 37].

Lemma 6.1. Let X and Y be Banach spaces with property (α). Then

EE
′

∣∣∣∣∣
N∑

i,j=−N

εiε
′
jTijxij

∣∣∣∣∣
Y

≤ α(X)α(Y )R(T)EE′

∣∣∣∣∣
N∑

i,j=−N

εiε
′
jxij

∣∣∣∣∣
X
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whenever N ∈ N, xij ∈ X, Tij ∈ T ⊂ L(X;Y ), and the (εi) and (ε′j) are two
independent systems of Rademacher functions, the related expectation operators of
which are denoted by E and E′, respectively. Here α(X), α(Y ) <∞ are geometric
constants.

Corollary 6.2. Let T ⊂ L(X;Y ) be R-bounded, where the Banach spaces
X and Y have the property (α). Then

(6.3) T̃ := {(Tj)∞−∞ finitely non-zero, Tj ∈ T} ⊂ L(Rad(X); Rad(Y ))

is R-bounded, and in fact R(T̃) ≤ α(X)α(Y )R(T).

Proof. For N ∈ N, T̃i = (Tij)
∞
j=−∞ ∈ T̃ and x̃i = (xij)

∞
j=−∞ ∈ X ⊗

span(εj)
∞
−∞ we have

E

∥∥∥∥∥
N∑

i=−N

εiT̃ix̃i

∥∥∥∥∥
Rad(Y )

= EE′

∣∣∣∣∣∑
i,j

εiε
′
jTijxij

∣∣∣∣∣
Y

≤ α(X)α(Y )R(T)EE′

∣∣∣∣∣∑
i,j

εiε
′
jxij

∣∣∣∣∣
X

= α(X)α(Y )R(T)E

∥∥∥∥∥
N∑

i=−N

εix̃i

∥∥∥∥∥
Rad(X)

,

as a direct consequence of Lemma 6.1. �

Now we are ready to state and prove the theorem.

Theorem 6.4. Let X and Y be UMD-spaces with property (α), and kλ ∈
L1,loc

str (Rn \ {0};L(X;Y )), where λ ∈ Λ (any index set), be odd kernels which
satisfy

{|t|n kλ(t), |t|n+δ |s|−δ (kλ(t− s)− kλ(t))) | |t| > 2 |s| > 0} ⊂ T,

where T ⊂ L(X;Y ) is R-bounded. Then the family

{kλ∗ : Lp(Rn;X)→ Lp(Rn;Y )| λ ∈ Λ}
is R-bounded for all p ∈ ]1,∞[.

Proof. Let kj := kλj for some λj ∈ Λ when |j| ≤ N , and kj := 0 otherwise.

Consider the sequence-valued kernel K(t) := (kj(t))
∞
j=−∞. With T̃ defined as

in (6.3), it is clear that

{|t|nK(t), |t|n+δ |s|−δ (K(t− s)−K(t))} ⊂ T̃.

But then by Corollary 6.2 and Theorem 5.12, the operator f ∈ Rad(X) ⊗
D̂0(Rn) 7→ K ∗ f extends to a bounded linear operator from Lp(Rn; Rad(X)) ≈
Rad(Rn;X) to Lp(Rn; Rad(Y )) ≈ Rad(Lp(Rn;Y )), of norm at most CR(T). But
this boundedness means, by definition, that

E

∥∥∥∥∥
N∑

j=−N

εjkλj ∗ fj

∥∥∥∥∥
Lp(Rn;Y )

≤ CR(T)E

∥∥∥∥∥
N∑

j=−N

εjfj

∥∥∥∥∥
Lp(Rn;X)
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for all fj ∈ X ⊗ D̂0(Rn). In the above argument, the N ∈ N and the λj ∈ Λ
were fixed but arbitrary, and hence the result obtained is exactly the asserted
R-boundedness of the collection {kλ ∗ | λ ∈ Λ}. �

Let us note some immediate consequences of this theorem:

Remark 6.5. (i) The conclusion of the theorem follows in particular if

{|t|n kλ(t), |t|n+1∇kλ(t)| t 6= 0} ⊂ T.

(ii) If X and Y are Hilbert spaces, the R-boundedness assumptions reduce to
the norm-boundedness of T.

(iii) If all the kernels kλ are scalar-valued (but the spaces X and Y are any
UMD-spaces with property (α)), then again the R-boundedness means just norm-
boundedness of T.

If X = Y = C, then it is well-known that R-boundedness of operators on
Lp(Rn) is equivalent to square-function estimates (see [25], Prop. 3.3, or [53],
Sect. 2, for details). Therefore Theorem 6.4 implies classical results of the follow-
ing kind (cf. [34], pp. 494–5):

Corollary 6.6. For all λ ∈ Λ (any index set), let kλ ∈ L1,loc(Rn) be odd
kernels satisfying

|kλ(t)| ≤
A

|t|n
, |kλ(t− s)− kλ(t)| ≤ A

|s|δ

|t|n+δ

for all |t| > 2 |s| > 0. Then the family

{kλ∗ : Lp(Rn)→ Lp(Rn)| λ ∈ Λ}
is R-bounded for all p ∈ ]1,∞[; equivalently, we have the square-function inequal-
ity

(6.7)

∥∥∥∥(∑∣∣kλj ∗ fj(·)∣∣2)1/2
∥∥∥∥
Lp(Rn)

≤ CA

∥∥∥∥(∑ |fj(·)|2
)1/2

∥∥∥∥
Lp(Rn)

for all fj ∈ Lp(Rn;X) and λj ∈ Λ.

7. Application to Fourier multipliers

We can also use Theorem 4.21 to obtain sufficient conditions for the Lp-
boundedness of an operator f 7→ k ∗ f entirely in terms of the symbol k̂ =: m.
We present a Hörmander-type multiplier theorem in a rather general form, with
a continuous smoothness parameter `. The Hölder continuity assumptions (7.12)
and (7.13) of the highest derivatives, which can be used to relax by one the
number of classical derivatives required, is introduced in the classical context
by Strömberg and Torchinsky [81]. An operator-valued multiplier theorem
with the slightly stronger assumptions (7.3) and (7.4) for all |α| ≤ bn/qc + 1
is proved by Girardi and Weis [36] as a consequence of a general multiplier
theorem assuming Besov norm estimates for the multiplier function. Instead
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of using this result, we follow here an alternative approach which is closer to
the classical proof of these theorems in the scalar setting, as found e.g. in [34],
and which sheds some light on the interplay of multiplier theorems and singular
integrals.

We first formulate a somewhat technical result, nevertheless containing the
essential flavour of the actual theorem which is then readily derived from this
intermediate result.

Proposition 7.1. Let X and Y be UMD-spaces and Y have Fourier type
q ∈ ]1, 2]. Let ` > n/q,

(7.2) m ∈ Cb`cstr (Rn \ {0};L(X;Y )) and M(ξ) := (m(2jξ))∞j=−∞.

Suppose further that

‖M(ξ)‖Rad(X)→Rad(Y ) ≤ A for a.e. ξ ∈ Rn,(7.3) (
1

rn

∫
r<|ξ|<2r

‖DαM(ξ)′g‖qRad(Lq(Rn;X′)) dξ

)1/q

≤ Ar−|α| ‖g‖Rad(Lq(Rn;Y ′))(7.4)

for all |α| ≤ b`c, and finally

(7.5)

(
1

rn

∫
r<|ξ|<2r

‖(DαM(ξ − ζ)′ −DαM(ξ)′)g‖qRad(Lq(Rn;X′)) dξ

)1/q

≤ Ar−` |ζ|`−b`c ‖g‖Rad(Lq(Rn;Y ′)) for |α| = b`c, |ζ| ≤ r/2,

where (7.4)–(7.5) are assumed for all finitely non-zero g ∈ Rad(Lq(Rn;Y ′)) and
all r ∈ ]0,∞[.

Then f ∈ X ⊗ D̂0(Rn) 7→ F−1[mf̂ ] extends to a bounded linear mapping

f ∈ Lp(Rn;X) 7→ F−1[mf̂ ] ∈ Lp(Rn;Y )

for all p ∈ [q′,∞[, with norm at most CpA, where Cp is a geometric constant.

Remark 7.6. (i) From the “periodicity” of the sequence-valued multiplier M
[in the sense that the sequence M(2iξ) = (m(2i+jξ))∞j=−∞ is just the sequence

M(ξ) = (m(2jξ))∞j=−∞ with indexing shifted by i steps], it follows easily that
the conditions (7.4) and (7.5) for a general r ∈ ]0,∞[ are already implied by the
corresponding conditions for (say) r = 1.

(ii) Using, as in the proof of Theorem 4.21, the permanence properties of R-
bounds, it is immediate that the conditions (7.4) and (7.5) are verified if instead
of (7.4) we assume(

1

rn

∫
r<|ξ|<2r

‖DαM(ξ)‖qRad(X)→Rad(Y ) dξ

)1/q

≤ Ar−|α| for |α| ≤ b`c,

and instead of (7.5) a similar modification obtained in the obvious way.
(iii) Recall that UMD-spaces automatically have some Forier-type q ∈ ]1, 2].
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It is also possible to verify (7.4) and (7.5) by strong integral conditions instead
of operator norm conditions, yet avoiding considerations of the extended operators
acting on Lq(Rn;Y ′). Indeed, assume

(7.7)

(
1

rn

∫
r<|ξ|<2r

‖DαM(ξ)′y′‖qRad(X′) dξ

)1/q

≤ Ar−|α| ‖y′‖Rad(Y ′) .

Then(
1

rn

∫
r<|ξ|<2r

‖DαM(ξ)′g(·)‖qRad(Lq(Rn;X′)) dξ

)1/q

≤ C

(
1

rn

∫
r<|ξ|<2r

(∫
Rn

‖DαM(ξ)′g(t)‖qRad(X′) dt

)
dξ

)1/q

= C

(∫
Rn

(
1

rn

∫
r<|ξ|<2r

‖DαM(ξ)′g(t)‖qRad(X′) dξ

)
dt

)1/q

≤ C

(∫
Rn

(Ar−|α| ‖g(t)‖Rad(Y ′))
q dt

)1/q

≤ C̃A r−|α| ‖g‖Rad(Lp
′
(Rn;Y ′)) ,

where we used the isomorphism of Rad(Lp
′
(Rn;Z)) and Lp

′
(Rn; Rad(Z)) in the

first and last steps, Fubini’s theorem in the second, and the assumption (7.7) in
the third. What we have proved is that (7.7) (for all |α| ≤ b`c) implies (7.4), and
exactly the same reasoning yields out of

(7.8)

(
1

rn

∫
r<|ξ|<2r

‖(DαM(ξ − ζ)′ −DαM(ξ)′)y′‖qRad(X′) dξ

)1/q

≤ Ar−` |ζ|`−b`c ‖y′‖Rad(Y ′)

(for appropriate α and ζ) the condition (7.5).
These remarks lead us to the following refinement of Corollaries 4.9 and 4.10

in Girardi and Weis [36], where one takes ` = bn/qc+ 1 so that the difference
estimates below are replaced by having some more derivatives, and moreover the
pair of strong conditions as in (7.10), (7.11) is replaced by a single norm condition.

Theorem 7.9. Let X and Y be UMD-spaces with Fourier-type q ∈ ]1, 2].
Let ` > n/q, and assume (7.2), (7.3), and moreover the conditions [for all x ∈
X ⊗ span(εj)

∞
−∞, y′ ∈ Y ′ ⊗ span(εj)

∞
−∞]∫

1<|ξ|<2

‖DαM(ξ)x‖qRad(Y ) dξ ≤ Aq ‖x‖qRad(X) for |α| ≤ b`c(7.10) ∫
1<|ξ|<2

‖DαM(ξ)′y′‖qRad(X′) dξ ≤ Aq ‖y′‖qRad(Y ′) ” ”(7.11)
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(7.12)

∫
1<|ξ|<2

‖(DαM(ξ − ζ)−DαM(ξ))x‖qRad(Y ) dξ ≤ Aq ‖x‖qRad(X)

for |α| = b`c, |ζ| < 1

2

(7.13)

∫
1<|ξ|<2

‖(DαM(ξ − ζ)′ −DαM(ξ)′)y′‖qRad(X′) dξ ≤ Aq ‖y′‖qRad(Y ′)

” ”

Then f ∈ X ⊗ D̂0(Rn) 7→ F−1[mf̂ ] extends to a bounded linear mapping

f ∈ Lp(Rn;X) 7→ F−1[mf̂ ] ∈ Lp(Rn;Y ) for all p ∈ ]1,∞[

with norm at most CpA, where Cp is a geometric constant.

Proof. By the computations before the statement of the theorem, (7.11)
implies (7.4) and (7.13) implies (7.5). Using Remark 7.6(i), Proposition 7.1 yields
the assertion for p ∈ [q′,∞[. On the other hand, the conditions (7.10) and (7.12)
are the analogues, respectively, of (7.11) and (7.13) for the dual multiplier ξ 7→
m(ξ)′ ∈ L(Y ′, X ′). Moreover, the condition (7.3) already implies its analogue
for m(·)′ by the permanence properties of R-bounds. Thus we also obtain the
boundedness of

g ∈ Lp(Rn;Y ′) 7→ F−1[m(·)′f̂ ] ∈ Lp(Rn;X ′) for p ∈ [q′,∞[.

By a well-known duality argument, the boundedness of the operator corre-
sponding to the multiplier m(·)′ from Lp

′
(Rn;Y ′) to Lp

′
(Rn;X ′) is equivalent to

the boundedness of the operator with multiplier m from Lp(Rn;X) to Lp(Rn;Y ).
Thus we also obtain the assertion of the theorem for p ∈ ]1, q]. If q = 2, we have
already covered all p ∈ ]1,∞[, and otherwise the boundedness for the remaining
exponents p ∈ ]q, q′[ is obtained by interpolation. �

Remark 7.14. Combining Theorem 7.9 with results from Chapter 1 shows
that the same assumptions already imply the boundedness also from the Hardy
spaces Hp(Rn;X) to Hp(Rn;Y ) for all p ∈ ](1/q′ + `/n)−1, 1], in particular, from
H1(Rn;X) to H1(Rn;Y ) since ` > n/q =⇒ `/n + 1/q′ > 1/q + 1/q′ = 1. It is
shown in Chapter 1 that a multiplier operator satisfying (7.10) and (7.12) [some-
what weaker conditions without randomization will do], and which is bounded
from Lp̃(Rn;X) to Lp̃(Rn;Y ) for some p̃ ∈ ]1,∞[, extends boundedly to the
scale of the Hardy spaces mentioned. See Theorem 5.13 of Chapter 1; also [36],
Cor. 4.6.

As a very particular case of Theorem 7.9, we state the following corollary
which was already proved in [36].
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Corollary 7.15. Let X, Y be UMD-spaces and Y have Fourier type q > 1.
If m ∈ Cbn/qc+1(Rn \ {0};L(X;Y )) satisfies

R({|ξ||α|Dαm(ξ)| ξ ∈ Rn \ {0}) ≤ A for all |α| ≤ bn/qc+ 1,

then m is a Fourier multiplier from Lp(Rn;X) to Lp(Rn;Y ) with norm at most
CpA.

We then return to prove our Proposition 7.1 [which was already used to prove
Theorem 7.9]. The proof becomes a simple modification of the reasoning in the
scalar-valued context (cf. [43] or [34], §II.6), as soon as one realizes the right way
to make these modifications. Let us elaborate a little on this.

In the scalar-valued case, the R-boundedness-type assumptions (7.3)–(7.5) are
unnecessary, and one simply assumes the same conditions with m in place of M .
The idea of the proof is to smoothly cut the multiplier m into pieces, say mj,
which are well-behaved enough so that they correspond to Fourier transforms
of integrable functions kj. It remains to investigate how the multiplier condi-
tions (7.3)–(7.5) transform to the properties of the kernels kj, so that results on
singular integral operators (classical analogues of Theorem 4.21) can be applied.

In the present situation, the assumptions involve the sequence-valued mul-
tiplier M , and also in the case of singular integral, the sequence-valued kernel
K. Yet the actual operators of interest are defined in terms of the multiplier m
and the kernel k. To make sense of our passing from the Fourier domain to the
non-transformed domain, some truncations are to be first performed, as in the
scalar-case. However, it is not at all the same whether we first truncate m and
then form the corresponding sequence-valued multiplier, or if we first form the
sequence M , and perform a cut-off (in the variable ξ) on this sequence. In fact,
we shall need to apply both types of truncations mentioned, in the appropriate
order.

In the following lemma, the new features compared to the classical situation
are the Fourier-type condition required to use the Hausdorff–Young inequal-
ity (which is, of course, a mere additional statement), and the weight function
log(2 + t) arising from Bourgain’s lemma (which is also easily dealt with).

Lemma 7.16. Let X have Fourier type q ≥ 1 and let ` > n/q. Let k ∈
(L1,loc ∩ S ′)(Rn;X) and let its Fourier transform be Cb`c and satisfy(∫

Rn

∣∣∣Dαk̂(ξ − ζ)−Dαk̂(ξ)
∣∣∣q
X

dξ

)1/q

≤ A |ζ|`−b`c for |α| = b`c, |ζ| ≤ δ.

Then, with w(t) := w(|t|) := log(2 + |t|), we have∫
|t|>r
|k(t)|X w(t) dt ≤ CArn/q−`w(r) for r ≥ 1

4δ
.

Proof. Observe that
∑n

i=1 |sin(πti)| = 0 if and only if t ∈ Zn. Thus, for
0 < a ≤ |t| ≤ b < 1, we have, by compactness,

∑n
i=1 |sin(πti)| ≥ c(a, b) > 0.
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Thus, when the variable t is appropriately restricted, we can majorize unity by
the sum of sines, and we use this idea to estimate∫

2jr<|t|≤2j+1r

|k(t)|X w(t) dt ≤ C
n∑
i=1

∫
2jr<|t|≤2j+1r

∣∣k(t) sin(πti/2
j+2r)

∣∣
X
w(t) dt

≤ C
n∑
i=1

∑
|α|=b`c

(∫
2jr<|t|≤2j+1r

∣∣∣tαk(t)(e2πt·ei/2j+2r − 1)
∣∣∣q′
X

dt

)1/q′

×

(∫ 2j+1r

2jr

wq(ρ)ρ−`q+n−1 dρ

)1/q

.

Using the assumptions and the Hausdorff–Young inequality, the first factor
is estimated by(∫

Rn

∣∣∣Dαk̂(ξ − ei/2j+2r)−Dαk̂(ξ)
∣∣∣q
X

dξ

)1/q

≤ A 2−j−2r−1,

provided 2−j−2r−1 ≤ δ, which holds for j ∈ N, since r ≥ 1/4δ, and the second
factor is easily seen to be bounded by c(1 + j)w(r)2j(n/q−`)rn/q−`.

Summing over j ∈ N we get the desired conclusion, since the series
∑∞

j=0(1 +

j)2j(n/q−`) converges to a finite quanitity for n/q − ` < 0. �

In the next two lemmata, we present the two kinds of cut-offs we perform on
the multiplier. The proofs involve straightforward computations, and we merely
mention the new features compared to the classical situation. It is convenient to
adopt the abbreviations

(7.17) U := Lq(Rn;X ′), V := Lq(Rn;Y ′),

since for the proof these are just two Banach spaces, whose “internal structure” is
of no interest to us. Note, however, that the spaces U and V (as well as Rad(U)
and Rad(V ) have Fourier-type q ∈ ]1, 2] whenever X and Y have.

Lemma 7.18. For m as in Proposition 7.1 and φ ∈ S(Rn), the new multipliers
m(·)φ(δ·), δ > 0, satisfy the assumptions of Proposition 7.1 uniformly in δ. More
precisely, the inequalities (7.3)–(7.5) hold with M(ξ) = (m(2−jξ))∞j=−∞ replaced

by (m(2−jξ)φ(δ2−jξ))∞j=−∞ with a constant C(φ)A in place of A.

Sketch of proof. The proof uses straighforward estimates. The only new
feature related to the sequence-valuedness of the kernel is the use of Kahane’s
contraction principle: Leibniz’ rule yields terms of the form

(7.19) (Dθ
ξ [m(2jξ)](δ2j)|α|−|θ|Dα−θφ(δ2jξ)xj)

∞
−∞,

and since the scalar quantities (δ2j |ξ|)|α|−|θ|Dα−θφ(δ2−jξ) are bounded by a con-
stant C(φ), the contraction principle gives a bound of the form

C(φ) |ξ||θ|−|α|
∥∥Dθ

ξ(m(2jξ)′gj)
∞
−∞
∥∥

Rad(U)
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for the Rademacher norm of the quantity in (7.19). Using estimates of this type,
the proof is a routine computation along entirely classical lines. �

Lemma 7.20. For M as in Proposition 7.1, and
∑∞

µ=−∞ ϕ̂0(2−µξ) = 1 the par-

tition of unity used in the radial Littlewood–Paley decomposition, denote Mµ(ξ) :=
M(ξ)ϕ̂0(2−µξ). Then we have the inequalities
(7.21)(∫

Rn

‖DαMµ(ξ)′g‖qRad(U) dξ

)1/q

≤ CA 2µ(n/q−|α|) ‖g‖Rad(V ) for |α| ≤ b`c,

and

(7.22)

(∫
Rn

‖(DαMµ(ξ − ζ)′ −DαMµ(ξ)′)g‖qRad(U) dξ

)1/q

≤ CA 2µ(n/q−`) |ζ|`−b`c ‖g‖Rad(V ) for |α| = b`c

as well as

(7.23)

(∫
Rn

∥∥Dα
ξ [Mµ(ξ)′(ei2πs·ξ − 1)]g

∥∥q
Rad(U)

dξ

)1/q

≤ CA 2µ(n/q−|α|+1) |s| ‖g‖Rad(V ) for |α| ≤ b`c, |s| ≤ 2−µ,

and finally

(7.24)

(∫
Rn

∥∥(Dα[Mµ(·)′(ei2πs·(·) − 1)](ξ − ζ)

− Dα[Mµ(·)′(ei2πs·(·) − 1)](ξ))g
∥∥q

Rad(U)
dξ
)1/q

≤ CA 2µ(n/q−`+1) |s| · |ζ|`−b`c ‖g‖Rad(V ) for |α| = b`c, |s| ≤ 2−µ,

where C is a numerical constant, and the inequalities hold for all finitely non-zero
g ∈ Rad(V ) := Rad(Lp

′
(Rn;Y ′)).

Note on proof. The proof is straightforward and entirely classical. The
fact that M and Mµ are sequence-valued plays no rôle here. A direct computation
only gives (7.22) and (7.24) for |ζ| ≤ c2µ [with c a numerical constant] but for
|ζ| > c2µ one can obtain the corresponding estimates by the triangle inequality
from (7.21) or (7.23), respectively. �

As the final preparatory step towards proving Proposition 7.1, we note the
following reduction:

Lemma 7.25. Without loss of generality, the multiplier m is compactly sup-
ported in Rn \ {0}. Thus, without loss of generality, m is strongly integrable and
k := m̌, taken in the strong sense, is a strongly measurable, essentially bounded
function.
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Proof. To see this, let η ∈ D(Rn), as before, have range [0, 1], be 1 for
|ξ| ≤ 1/2 and 0 for |ξ| ≥ 1. Then η(·/R)− η(·/ε) will have the same range, be 1
for ε ≤ |ξ| ≤ R/2 and 0 for |ξ| < ε/2 or |ξ| > R. Thus, mR

ε (ξ) := m(ξ)(η(ξ/R)−
η(ξ/ε)) is compactly supported in Rn \{0}, and for any f ∈ X⊗D̂0(Rn), we have

mf̂ = mR
ε f̂ as soon as ε is small and R large enough. Moreover, by Lemma 7.18,

the multipliers mR
ε satisfy the same conditions as those assumed for m, with

a constant CA in place of A. Thus, provided we can prove the assertion of
Proposition 7.1 with the additional support condition on m, then for a general
m and f ∈ X ⊗ D̂0(Rn), we have∥∥∥F−1[mφ̂]

∥∥∥
Lp(Rn;Y )

= lim
ε↓0, R↑∞

∥∥∥F−1[mR
ε φ̂]
∥∥∥
Lp(Rn;Y )

≤ CA ‖φ‖Lp(Rn;X) ,

and hence also the general form of the assertion follows.
That m is strongly integrable is clear, since it is strongly measurable [being

even strongly continuous by (7.2)], essentially bounded [by (7.3)] and compactly
supported. �

Now we are ready to prove the multiplier theorem, and with Lemma 7.25
at our disposal, it is reduced to showing that k := m̌ satisfies the appropriate
conditions required for an integral kernel to give a bounded operator.

Proof of Proposition 7.1. We need to show that k := m̌ satisfies the
Hörmander condition (4.23) of Theorem 4.21. DenoteK(t) := (2−njk(2−jt))∞j=−∞;

i.e., K := M̌ , and moreover Kµ := M̌µ, where the Mµ are the pieces of M from
the radial Littlewood–Paley decomposition, as in Lemma 7.20.

We derive two different estimates for

(7.26)

∫
|t|>2|s|

‖(Kµ(t− s)′ −Kµ(t)′)g‖Rad(U)w(t) dt,

which are useful for different ranges of s and µ:
As a first case, we can make the crude estimate by

2

∫
|t|>|s|

‖Kµ(t)′g‖Rad(U) w(t) dt.

The Fourier transform of Kµ(t)′g is Mµ(ξ)′g, which satisfies (7.22), and so, ap-
plying Lemma 7.16, we get the bound

(7.27) CA 2µ(n/q−`) |s|n/q−`w(s) ‖g‖Rad(V ) .

As a second case, we observe that the Fourier transform of t 7→ Kµ(t− s)′g−
Kµ(t)′g is Mµ(ξ)′(ei2πs·ξ − 1)g, which satisfies (7.24); whence Lemma 7.16 gives
the bound

(7.28) CA 2µ(n/q−`+1) |s| · |s|n/q−`w(s) ‖g‖Rad(V ) .
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Using one of the two estimates (7.27) or (7.28) for (7.26) when appropriate,
we have

∞∑
µ=−∞

∫
|t|>2|s|

‖(Kµ(t− s)′ −Kµ(t)′)g‖Rad(U) w(t) dt

≤ CAw(s) ‖g‖Rad(V )

 ∑
µ: 2µ|s|≥1

(2µ |s|)n/q−` +
∑

µ: 2µ|s|<1

(2µ |s|)n/q−`+1

 .

We recall that n/q − ` > 0 by the assumption in Proposition 7.1. On the other
hand, since the assumptions of Proposition 7.1 are the stronger the larger ` we
have, we may assume that ` < n/q + 1, i.e., n/q − ` + 1 > 0. When this is the
case, the two geometric series above are bounded by finite quanities depending
only on n, q and `.

The estimate established shows that the sequence-valued kernels

Kν :=
ν∑

µ=−ν

Kµ

satisfy uniformly the weighted Hörmander condition

(7.29)

∫
|t|>2|s|

‖(Kν(t− s)′ −Kν(t)′)g‖Rad(U) w(t) dt ≤ CAw(s) ‖g‖Rad(V ) .

The Fourier transform of Kν(t)′g is

ν∑
µ=−ν

Mµ(ξ)′g =
ν∑

µ=−ν

M(ξ)′ϕ̂0(2−µξ)g =

(
m(2jξ)′

ν∑
µ=−ν

ϕ̂0(2−µξ)gj

)∞
j=−∞

.

We recall that m is compactly supported away from 0; hence also ξ 7→ m(2jξ)′

has the same property. Thus, for any finitely non-zero g = (gj)
∞
−∞ ∈ Rad(V ) :=

Rad(Lp
′
(Rn;Y ′)), we observe that

∑ν
µ=−ν ϕ̂0(2−µξ) = 1 for ξ on the union of the

supports of m(2jξ)′gj, as soon as ν is large enough. Whence for all large enough
ν (depending on g), Kν(·)′g = K(·)′g, and we find that the weighted Hörmander
condition (4.23) (with p′ = q), which we need in order to apply Theorem 4.21, is
already contained in the uniform estimate (7.29). Thus the assertion for p = q′

follows from Theorem 4.21.
To show the assertion for p ∈ ]q′,∞[, we invoke the classical theory of singular

integrals. We take in the estimate (4.23), which we already proved, g = g0ε0,
where g0(·) = ψ(·)y′ for some non-zero ψ ∈ Lq, and some y′ ∈ Y ′. In this case,
(4.23) reduces to ∫

|t|>2|s|
|(k(t− s)′ − k(t)′)y′|X′ dt ≤ CA |y′|Y ′ ;
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we also dropped the weight w, as we clearly can, since the weighted condition
is stronger than the unweighted one. But this is just the vector-valued gener-
alization of the usual Hörmander condition for the kernel k(·)′. Moreover, it is
well-known (from a duality argument) that the operator k(·)∗ belongs to

L(Lq
′
(Rn;X), Lq

′
(Rn;Y ))

if and only if k(·)′∗ belongs to L(Lq(Rn;Y ′), Lq(Rn;X ′)) and the operator-norms
agree.

We conclude, by duality, that k(·)′∗ is bounded from Lq(Rn;Y ′) to Lq(Rn;X ′),
and then from the fact that k(·)′ satisfies Hörmander’s condition that it is bounded
from Lp

′
(Rn;Y ′) to Lp

′
(Rn;X ′) for p′ ∈ ]1, q], with a constant CpA. Finally,

again by duality, we have that k(·)∗ is bounded from Lp(Rn;X) to Lp(Rn;Y ) for
p ∈ [q′,∞[, and this completes the proof. �





CHAPTER 3

Singular integrals on Besov spaces

The boundedness of singular convolution operators f 7→ k ∗ f is
studied on Besov spaces of vector-valued functions, the kernel k
taking values in L(X, Y ). The main result is a Hörmander-type
theorem giving sufficient conditions for the boundedness of such
an operator on these spaces.

The chapter is based on the joint manuscript [48] written
with L. Weis.

1. Introduction

The scale of Besov spaces has the remarkable property that these function
spaces retain their good character in the vector-valued setting, even when the
underlying Banach space lacks all “good” properties such as reflexivity, separa-
bility, etc. Not surprisingly thus, before the right line of attack to the multiplier
theorems on the vector-valued Lp spaces was found, the setting of the Besov
spaces Bs,p

q was found to be more fertile, as explained in Chapter 0 and briefly
recalled:

Whereas in the X-valued Lp spaces the analogues of the classical multiplier
theorems require special geometry of the underlying Banach space X, it was ob-
served (independently) by H. Amann [1] and L. Weis [85] (see also [35]) in the
second half of the 90’s that the situation was quite different for the Besov spaces.
In fact, even operator-valued multiplier theorems were obtained on Bs,p

q (X) (the
Besov space of X-valued functions) with no geometric restrictions on the underly-
ing Banach space X. Moreover, norm boundedness conditions on the derivatives
of the multiplier function (imitating the classical ones due to Mihlin and Hör-

mander, and some generalizations) were found to be sufficient to give the bound-
edness of the associated operator on Bs,p

q (X). In a sharp contrast to this, recent
studies [21, 22, 87] of operator-valued Lp(X)-multipliers have revealed the ne-
cessity of a strengthened notion of uniform boundedness, namely R-boundedness,
in this connection.

Now that the situation is better understood on both scales of spaces, the
results on Lp(X) and Bs,p

q (X) are seen to complement each other: Although it
is perhaps desirable to work with the more concrete and familiar Bôchner spaces
when this is possible, it is not always possible, and one is therefore forced to use
substitute results when X is non-reflexive, or more generally, non-UMD. On the

113
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other hand, the results on the Besov spaces remain invariant, to a large extent at
least, under the geometry of the underlying Banach space X. Continuity results
on more classical function spaces can then be derived using sharp embedding
theorems by which spaces such as Lp(X) and BUC are related to the Besov scale.
Moreover, the Besov spaces include as subscales several “semi-classical” function
spaces such as BUCs (= Bs,∞

∞ ) and W s,p (= Bs,p
p , p ∈ [1,∞[) for non-integral

values of s > 0. The reader is referred to [1] for details on these points.
The philosophy of the present chapter is to adopt the convolution-integral

point of view to the translation-invariant operators on Bs,p
q (X), i.e., instead of

thinking f 7→ F−1[mf̂ ] (the Fourier multiplier point of view), we write this di-
rectly as f 7→ k ∗ f , where k = F−1m, and the goal is to find sufficient conditions
for the boundedness on Bs,p

q (X) in terms of the (singular) convolution kernel k.
This approach has several advantages: First of all, operators appear in appli-

cations which are naturally given in the convolution form, so that it is desirable
to be able to determine the boundedness from the structure of the convolution
kernel, without the need to first transform everything to the frequency domain.
Second, such an approach helps to decouple the boundedness conditions in the
theorems from certain properties of the underlying Banach space X. In fact, when
the conditions are expressed in terms of the multiplier m, the minimal order of
smoothness required for the boundedness of the associated operator depends on
the Fourier-type of the underlying Banach space X (see [35]). On the other hand,
the Fourier-type does not enter the present results in any way; yet these results
are strong enough to be used to rederive many of the multiplier theorems in [35].
The Fourier-type only enters the scene when we want to show that the conditions
assumed on the multiplier actually imply the kind of conditions we need on the
corresponding kernel, so as to apply the convolution results. (We are not going to
consider this point any further here, but dedicate this chapter [except for the last
section] to the convolution point-of-view. Multiplier theorems on Besov spaces
are then derived, using the results of this chapter, in Chapter 4.)

The chapter is organized as follows: Sect. 2 collects preliminary results and
notation, including the definition of the vector-valued Besov spaces and the op-
erators to be studied. In Sect. 3, we formulate the problems we address and we
study the convolution operators k∗ on Bs,p

q (X) in rather general terms. The main
result of this section, Theorem 3.15, gives a characterization of the convolutors
(see Def. 3.11) on Bs,p

q (X) in terms of convolutors on Lp(X). In this way, the orig-
inal problem of boundedness is reduced to a sequence of subproblems on Lp(X)
(related to the “dyadic pieces” of the kernel k obtained from a Littlewood–Paley
decomposition). Sect. 4 collects some results for the treatment of the above-
mentioned Lp-subproblems, and the results so far combine to give Theorem 4.10,
where the sufficient conditions for k to be a Bs,p

q -convolutor are expressed more
explicitly, without reference to Lp-convolutors. This result is used in Sect. 5 to
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derive our Hörmander-type Theorem 5.7, where the sufficient conditions are ex-
pressed in a style as classical as possible. Although this is no longer an exact
characterization, partial converse results are proved along the way which show
that the assumptions cannot be essentially weakened in general.

An application to evolutionary integral equations is considered in Sect. 6,
showing that the conditions of Theorem 5.7 are also satisfied by operators natu-
rally arising from that field. In Sect. 7, some counterexamples are given to further
demonstrate the necessity of some of the conditions imposed. Finally, Sect. 8 aims
at clarifying the difference between the theories of translation-invariant operators
on vector-valued Besov and Bôchner spaces—this comparison seems to be most
easily carried out in the multiplier set-up which is hence adopted in this last
section of the present chapter.

2. Preliminaries

Spaces of functions and distributions. We are mostly concerned with functions
(or distributions) defined on all of Rn, where n is arbitrary but fixed throughout
the discussion. Hence the domain Rn will not be indicated explicitly, and we
write, e.g., Lp(X) for the space of Bôchner measurable X-valued functions on

R
n, with ‖f‖p :=

(∫
|f(t)|pX dt

)1/p
< ∞. Here and below an integral always

refers to integration over the whole space Rn, unless another domain is specified
explicitly.
S(X) is the Schwartz space of smooth, X-valued, rapidly decreasing functions,

and S := S(C). S(X) is endowed with its usual topology generated by the
countable collection of seminorms ‖ψ‖α,β :=

∥∥t 7→ tβDαψ(t)
∥∥
∞, α, β ∈ Nn. D(X)

consists of the compactly supported elements of S(X). The space of X-valued
tempered distributions is S ′(X) := L(S, X).

As with S, we write more generally F := F(C) for the scalar-valued version of
any function (or distribution) space F ∈ {D, Lp,S ′, . . .}. In some rare occasions
where the vector-valuedness of a function space is immaterial, we may depart from
this convention and simply write F even for the vector-valued function-space, but
this is always indicated explicitly.

Rather than S(X), our most important test-function class will be the smaller
algebraic tensor product X ⊗ S, a reason for which will appear below. We note
that this is dense in S(X) w.r.t. its usual topology. A sketch of the proof is as
follows: First, it is well known that D(X) is dense in S(X); thus it suffices to
approximate a compactly supported ψ by functions in X ⊗ S. We take a (fine
enough) finite partition of unity (ϕj)

m
j=1 of the support of ψ. Let ψj be the Nth

degree Taylor expansion of ψ at tj (a point chosen from the support of ϕj), where
N is chosen large enough. Then ψj(·)ϕj(·) ∈ X ⊗ S, and

∑m
j=1 ϕjψj can be

chosen as close to ψ as desired, the closedness being measured in terms of any
preassigned finite collection of the seminorms ‖·‖α,β.
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Fourier transform and convolutions. The Fourier transform is defined by

f̂(ξ) ≡ Ff(ξ) :=

∫
f(t)e−i2πt·ξ dt

for f ∈ L1(X). It is an isomorphism on S(X), and on S ′(X) where it is defined by
duality: 〈Ff, ψ〉 := 〈f,Fψ〉. The inverse Fourier transform is denoted f̌ ≡ F−1f .

We recall the identity F2f = f̃ , where f̃(t) = f(−t).
The convolution of a tempered distribution k ∈ S ′(X) and a Schwartz func-

tion ψ ∈ S is defined pointwise by k ∗ ψ(t) := 〈k, ψ(t− ·)〉. It can be shown,
and the vector-valued situation brings no complications at this point, that k ∗ ψ
is a smooth, slowly increasing function. It can be identified with a tempered

distribution, and satisfies 〈k ∗ ψ, ϕ〉 =
〈
k, ψ̃ ∗ ϕ

〉
Besov spaces. The Besov spaces Bs,p

q (X) can be defined in various ways. For
the Fourier analytic definition which we use, we require the following Littlewood–
Paley-type decomposition: Let (ϕj)

∞
j=0 be a resolution of the identity, defined

(in terms of the corresponding Fourier transforms) as follows: Let ϕ̂0 ∈ D be
radial, equal to unity in B̄(0, 1), and supported in B̄(0, 2). (The definition of the
Besov spaces is [up to equivalence of norms] independent of this choice; in fact,
one could allow much more general resolutions of the identity than considered
here.) Denote φ̂ := ϕ̂0 − ϕ̂0(2·) and ϕ̂j := φ̂(2−j·) for j = 1, 2, . . . We can then

decompose f̂ =
∑∞

j=0 f̂ ϕ̂j, i.e., f =
∑∞

j=0 f ∗ ϕj, where the series converges in

S(X) for f ∈ S(X) and in S ′(X) for f ∈ S ′(X). Then, for s ∈ R, p, q ∈ [1,∞]
the space Bs,p

q (X) consists of those f ∈ S ′(X) for which

‖f‖s,p;q :=

∥∥∥∥(2js ‖f ∗ ϕj‖p
)∞
j=0

∥∥∥∥
`q

is finite.
We have S(X) ↪→ Bs,p

q (X) ↪→ S ′(X), where ↪→ denotes continuous embed-
ding, and Bs,p

q (X) are Banach spaces for all values of the indices as above.
It is convenient to define χj := ϕj−1 + ϕj + ϕj+1 (where ϕ−1 := 0), so that

χ̂j = 1 on the support of ϕ̂j.
The operators of interest. We study convolution transformations f 7→ k ∗

f , where k ∈ S ′(L(X, Y )). These are initially defined on the algebraic tensor
product X ⊗ S as follows: For ψ ∈ S and k ∈ S ′(L(X, Y )), the convolution
k ∗ ψ is defined as above; for every t ∈ Rn, we have a well-defined pointwise
value k ∗ ψ(t) ∈ L(X, Y ). Then also [k ∗ ψ(t)]x is well-defined for x ∈ X. Thus
(k ∗ f)(t) := [k ∗ ψ(t)]x for f = x⊗ ψ, and this definition extends to f ∈ X ⊗ S
by linearity. The transformation f 7→ k ∗ f maps X ⊗S into the subset of S ′(Y )
consisting of smooth, slowly increasing functions.

We note in passing that there is an elaborate method for defining the action
of k∗ on the whole of S(X) instead of only X ⊗ S. An interested reader should
consult the paper of Amann [1] for this. However, the more modest approach
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adopted here suffices for our purposes. In fact, it is shown in [1] that S(X)
is dense in Bs,p

q (X) iff both p < ∞ and q < ∞, and the same argument can
be used to show the density of the smaller class X ⊗ S in exactly the same
range of Besov spaces. Actually, since X ⊗ S is dense in S(X) w.r.t. the usual
topology of S(X), which is stronger than the topology of Bs,p

q (X), the Bs,p
q (X)-

closures of X ⊗S and S(X) always coincide. Thus, to have an a priori estimate
‖k ∗ f‖s,p;q ≤ C ‖f‖s,p;q for all f ∈ X ⊗ S is just as good as the corresponding

estimate for all f ∈ S(X): When p, q <∞, either one allows us to conclude the
existence of a unique extension T ∈ L(Bs,p

q (X), Bs,p
q (Y )) s.t. T |X⊗S = k∗. When

p or q is infinite, we only get an extension to a closed subspace of Bs,p
q (X), and

this subspace is the same irrespective of whether we started with X⊗S or S(X).
To have an extension to the whole space, we require an extra argument in either
case.

3. General theory

In this section we investigate general conditions for the boundedness of con-
volution operators from Bs,p

q (X) to Bs,p
q (Y ). The task is essentially two-fold: For

k ∈ S ′(L(X,Y )), our operator k∗ is initially defined on the subspace X ⊗ S of
Bs,p
q (X). Thus the first problem is

Problem 3.1. When do we have k ∗ f ∈ Bs,p
q (Y ) and ‖k ∗ f‖s,p;q ≤ C ‖f‖s,p;q

for all f ∈ X ⊗ S, with C <∞ independent of f ?

Of course, this is the only problem if X ⊗ S is dense in Bs,p
q (X), since a

unique operator T ∈ L(Bs,p
q (X), Bs,p

q (Y )) with the property Tf = k ∗ f for all
f ∈ X ⊗S is then determined by k, as soon as k satisfies the condition searched
in Problem 3.1. However, we know that the density holds iff p, q <∞. Thus, in
general, we are faced with another problem:

Problem 3.2. When and how can we extend k∗ to T ∈ L(Bs,p
q (X), Bs,p

q (Y ))
s.t. Tf = k ∗ f for all f ∈ X ⊗ S ?

Moreover, it is natural to ask

Problem 3.3. Is the extension T unique? If not, is it possible to choose
it in some canonical manner so as to have uniqueness by requiring some addi-
tional property? Is the extended operator translation-invariant, like the original
operator T |X⊗S = k∗ was?

By translation-invariance, we will mean not only the property T (f(· − h)) =
(Tf)(· − h) for h ∈ Rn, but also T (ψ ∗ f) = ψ ∗ Tf for all ψ ∈ S. Formally, the
latter property is a consequence of the former, but making this precise requires
suitably continuity, and it is easier to study the validity of this condition directly.
Moreover, it appears that the property T (ψ ∗ f) = ψ ∗ Tf is actually the more
useful of the two in applications. Both these properties are easily seen to be
satisfied by the operator k∗ acting on X ⊗ S.
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We first consider Problem 3.1. To facilitate notation related to this problem,
we denote

L◦(F(X),F(Y )) := {T : X ⊗ S → F(Y )| ‖Tf‖F ≤ C ‖f‖F ∀f ∈ X ⊗ S},
where F means either Lp or Bs,p

q , and ‖T‖L◦(F(X),F(Y )) is the smallest possible C,
as usual. Moreover, since the vector-valuedness plays no rôle in the proof of the
next result, we make even further simplification, and only write Bs,p

q instead of
Bs,p
q (X), and L◦(Bs,p

q ) instead of L◦(Bs,p
q (X);Bs,p

q (Y )) in the proof.
Since the membership and the norm of a distribution f in the spaces Bs,p

q is
determined solely in terms of the Lp norm of its dyadic pieces, it is not surprising
that the boundedness of a convolution operator k∗ on Bs,p

q depends only on the
boundedness on Lp of the convolution operators induced by the dyadic pieces of
k. More precisely, the following proposition holds:

Proposition 3.4. For arbitrary Banach spaces X and Y , there is an equiv-
alence of norms

‖k∗‖L◦(Bs,pq (X),Bs,pq (Y )) ≈ sup
j
‖(k ∗ ϕj)∗‖L◦(Lp(X),Lp(Y ))

≈ sup
j
‖(k ∗ χj)∗‖L◦(Lp(X),Lp(Y )) ,

and the constants of equivalence depend only on s and q.

Proof. The latter comparability is elementary, since

‖(k ∗ χj)∗‖L◦(Lp) ≤
j+1∑
i=j−1

‖(k ∗ ϕi)∗‖L◦(Lp) ,

and as to the other direction, we have ‖(k ∗ ϕj)∗‖L◦(Lp) = ‖ϕj ∗ (k ∗ χj)∗‖L◦(Lp) ≤
‖ϕj‖1 ‖(k ∗ χj)∗‖L◦(Lp), and ‖ϕj‖1 ≤ C.

In view of the fact that χ̂j = 1 on supp ϕ̂j, we have

‖(k ∗ f) ∗ ϕj‖p = ‖(k ∗ χj) ∗ (f ∗ ϕj)‖p ≤ sup
i
‖(k ∗ χi)∗‖L◦(Lp) ‖f ∗ ϕj‖p ,

and thus

‖k ∗ f‖Bs,pq =

∥∥∥∥(2js ‖k ∗ f ∗ ϕj‖p
)
j

∥∥∥∥
`q

≤ sup
i
‖(k ∗ χi)∗‖L◦(Lp)

∥∥∥∥(2js ‖f ∗ ϕj‖p
)
j

∥∥∥∥
`q

= sup
i
‖(k ∗ χi)∗‖L◦(Lp) ‖f‖Bs,pq ,

which shows that ‖k∗‖L◦(Bs,pq ) ≤ supi ‖(k ∗ χi)∗‖L◦(Lp).

For the converse inequality, note first that all is clear if ‖(k ∗ ϕj)∗‖L◦(Lp) = 0

for all j. Otherwise, we fix an index j0 with ‖(k ∗ ϕj0)∗‖L◦(Lp) > 0, consider an

arbitrary positive M < ‖(k ∗ ϕj0)∗‖L◦(Lp), and let g ∈ S \ {0} satisfy

(3.5) ‖(k ∗ ϕj0) ∗ g‖p ≥M ‖g‖p .
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(Note that such choices can be made whether ‖(k ∗ ϕj0)∗‖L◦(Lp) is finite or infi-

nite.) Take f := g ∗ χj0 ∈ S. Then f̂ = ĝ on supp ϕ̂j0 , and hence (k ∗ ϕj0) ∗ g =
(k ∗ ϕj0) ∗ f . This equality in combination with (3.5) shows that f is non-zero.

Moreover, we have

‖ϕj ∗ f‖p ≤ ‖ϕj ∗ χj0‖1 ‖g‖p ≤ C ‖g‖p ,

and in fact ϕj ∗ f = 0 for |j − j0| > 1, again by considering the supports of the
Fourier transforms. These facts show that

‖f‖Bs,pq =

∥∥∥∥(2(j0+i)s ‖f ∗ ϕj0+i‖p
)1

i=−1

∥∥∥∥
`q
≤ 2j0sC(s, q) ‖g‖p .

Finally, we have

‖k ∗ f‖Bs,pq =

∥∥∥∥(2js ‖(k ∗ f) ∗ ϕj‖p
)∞
j=0

∥∥∥∥
`q
≥ 2j0s ‖(k ∗ ϕj0) ∗ f‖p

= 2j0s ‖(k ∗ ϕj0) ∗ g‖p ≥ 2j0sM ‖g‖p ≥ C−1(s, q)M ‖f‖Bs,pq .

Since this holds for arbitrary j0 and any M < ‖(k ∗ ϕj0)∗‖L◦(Lp), with some non-

zero f ∈ S, we conclude that ‖k∗‖L◦(Bs,pq ) ≥ C−1(s, q) supj ‖(k ∗ ϕj)∗‖L◦(Lp). �

The proposition shows that the question of boundedness of the convolution
operator k∗ in the Bs,p

q -norm reduces to the problem of Lp-boundedness of the
convolution operators (k ∗ϕj)∗, which will be studied in detail in the subsequent
section. For a while, we turn to Problems 3.2 and 3.3. As mentioned above,
these only require consideration if either p or q is infinite. The rest of this section
will be concerned with developing a theory applicable to these cases. Thus, a
reader mainly interested in the case p, q < ∞ might wish to move immediately
to the beginning of the next section. For those who stay, we are next going to
give a preliminary result for the solution of Problem 3.3 when p =∞; it has also
some use in understanding Problem 3.2, which is the reason for taking up this
consideration at this early stage.

Lemma 3.6. Let T be a linear and σ(Lp(X), Lp
′
(X ′))-to-σ(S ′(Y ), Y ′ ⊗ S)-

continuous operator from Lp(X) to S ′(Y ), such that T |X⊗S = k∗, for some k ∈
S ′(L(X,Y )). Then ψ ∗Tg = T (ψ ∗g) and (Tg)(·−h) = T [g(·−h)] for all ψ ∈ S,
h ∈ Rn.

Proof. Suppose g ∈ X ⊗ S. Then F[ψ ∗ Tg] = F[ψ ∗ (k ∗ g)] = ψ̂k̂ĝ, and

F[T (ψ ∗ g)] = F[k ∗ (ψ ∗ g)] = k̂ψ̂ĝ, so everything is clear.
For arbitrary g ∈ Lp(X), we consider a sequence gn ∈ X ⊗S which converges

to g in σ(Lp(X), Lp
′
(X ′)). Observe that X ⊗ S is σ(Lp(X), Lp

′
(X ′))-dense in

Lp(X); for p ∈ [1,∞[ it is even norm-dense, as is well known, and for p =∞ the
verification of this assertion is an exercise in vector-valued integration.

Now Tgn → Tg in σ(S ′(Y ), Y ′⊗S), i.e., y′(〈Tgn, φ〉)→ y′(〈Tg, φ〉) for all y′ ∈
Y ′, φ ∈ S. With ψ̃ ∗ φ in place of φ this gives y′(〈ψ ∗ Tgn, φ〉)→ y′(〈ψ ∗ Tg, φ〉).
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From gn → g in σ(Lp(X), Lp
′
(X ′)) we easily have ψ ∗ gn → ψ ∗ g in the same

topology. By assumption then, y′(〈T (ψ ∗ gn), φ〉) → y′(〈T (ψ ∗ g), φ〉) for all y′

and φ as above.
Since the assertion was shown for the gn and the limit is unique, we conclude

that y′(〈ψ ∗ Tg, φ〉) = y′(〈T (ψ ∗ g), φ〉) for all y′ ∈ Y ′, g ∈ Lp(X), ψ, φ ∈ S, and
this implies ψ ∗ Tg = T (ψ ∗ g) as tempered distributions, thus a.e. (since both
sides are locally integrable functions), and this is the assertion for convolutions.
The proof for the translations is similar. �

Remark 3.7. For p ∈ [1,∞[, the same conclusion follows from the continuity
assumption T ∈ L(Lp(X), Lp(Y )); indeed, for these p, the class X ⊗ S is norm-
dense in Lp(X), and we could have simply argued that T (ψ∗g) = limT (ψ∗gn) =
limψ ∗ Tgn = ψ ∗ Tg, and similarly for translations.

However, the same is not true for p =∞ (counterexamples can be constructed
with the help of Banach limits; see Sect. 7), and this is the reason for establishing
the result for weak-to-weak-type continuity.

We are now in a position to present the extension procedure to obtain from
the original convolution operator k∗ ∈ L◦(Bs,p

q (X), Bs,p
q (Y )) an operator T ∈

L(Bs,p
q (X), Bs,p

q (Y )). The idea of the method comes from Amann [1], and Gi-

rardi and Weis [35]. The previous Lemma 3.6 will play a rôle in establishing
that the equivalence of the two slightly differing extensions used by these authors
do agree under mild weak-to-weak-continuity assumptions. We note that we al-
ways obtain an extension, as soon as k∗ ∈ L◦(Bs,p

q (X), Bs,p
q (Y )); however, under

the additional assumptions, as illustrated in the subsequent results, we are more
justified to call it the extension.

Proposition 3.8. Let Tj|X⊗S = (k ∗ χj)∗. Suppose that ‖Tj‖L(Lp(X),Lp(Y )) ≤
κ <∞ for all j ∈ N. Then, for every f ∈ Bs,p

q (X), the formal series

Tf :=
∞∑
j=0

χj ∗ Tj(ϕj ∗ f)

converges in Bs,p
q (Y ) if q < ∞ and always in S ′(Y ) to an element of Bs,p

q (Y ) of
norm at most Cκ. We have T |X⊗S = k∗.

If, moreover, either p < ∞, or p = ∞ and each Tj is σ(L∞(X), L1(X ′))-to-
σ(S ′(Y ), Y ′ ⊗ S)-continuous, the above series agrees, term by term, with

T̃ f :=
∞∑
j=0

Tj(ϕj ∗ f),

and hence the same assertions hold for T̃ f .

Proof. That Tf = k ∗ f for f ∈ X ⊗ S is clear from F[χj ∗ Tj(ϕj ∗ f)] =

χ̂j(k̂χ̂j)(ϕ̂j f̂) = ϕ̂j(k̂f̂) = F[ϕj ∗ (k ∗ f)].
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For p = ∞ and under the σ(L∞(X), L1(X ′))-to-σ(S ′(Y ), Y ′ ⊗ S)-continuity
assumption, we have χj ∗Tj(ϕj ∗f) = Tj((χj ∗ϕj)∗f) = Tj(ϕj ∗f) by Lemma 3.6.
When p < ∞, this is clear from Remark 3.7. Thus it remains to establish the
assertions for Tf .

Convergence in Bs,p
q (Y ), q <∞. We have

ϕi ∗
N∑

j=M

χj ∗ Tj(ϕj ∗ f) =
N∑

j=M

(ϕi ∗ χj) ∗ Tj(ϕj ∗ f),

and ϕi ∗ χj = 0 for |i− j| > 1. Thus, denoting by TNMf the truncated series of
Tf above, we have∥∥ϕi ∗ TNMf∥∥p ≤ i+2∧N∑

j=i−2∨M

‖ϕi ∗ χj‖1 ‖Tj(ϕj ∗ f)‖p ≤ Cκ

i+2∧N∑
j=i−2∨M

‖ϕj ∗ f‖p ,

and then, for q <∞,

∞∑
i=0

2isq
∥∥ϕi ∗ TNMf∥∥qp ≤ Cκq

N∑
j=M

2jsq ‖ϕj ∗ f‖qp → 0 as M,N →∞.

Thus TN0 f is a Cauchy sequence in Bs,p
q (Y ). Once we know that the formal series

has a meaning, we can set in the above equations M = 0, N =∞, and we deduce
that ‖Tf‖s,p;q ≤ Cκ ‖f‖s,p;q.

Convergence in S ′(Y ). For ψ ∈ S we have

∞∑
j=0

|〈χj ∗ Tj(ϕj ∗ f), ψ〉|Y

=
∞∑
j=0

|〈Tj(ϕj ∗ f), χj ∗ ψ〉|Y ≤
∞∑
j=0

‖Tj(ϕj ∗ f)‖p ‖χj ∗ ψ‖p′

≤
∞∑
j=0

κ2js ‖ϕj ∗ f‖p 2−js ‖χj ∗ ψ‖p′ ≤ Cκ ‖f‖s,p;q ‖ψ‖−s,p′;q′ ,

which is finite, since ψ ∈ S ⊂ B−s,p
′

q′ , and this gives the convergence. Then we
can evaluate ϕi ∗ Tf just as above, and we get that Tf ∈ Bs,p

q (Y ), with a norm
estimate of the same form as before. �

Remark 3.9. Amann [1] uses [somewhat implicitly, with an intermediate
notion of sequence-spaces denoted Bs

q(L
p(X))] the series Tf , whereas Girardi

and Weis [35] use T̃ f . The operators of the latter authors are always even
σ(Lp(X), Lp

′
(X ′))-to-σ(Lp(Y ), Lp

′
(Y ′))-continuous, so that the definitions agree.

The convergence of the series Tf in S ′(Y ) was shown in [35] under this stronger
continuity assumption.
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Proposition 3.10. Under (all) the assumptions of Prop. 3.8, the operator
T also has the following properties:

Translation-invariance: ϕ∗Tf = T (ϕ∗f) and (Tf)(·−h) = T (f(·−h))
for all ϕ ∈ S, h ∈ Rn, and

Compact-to-weak continuity: If p = ∞, whenever supp f̂m, supp f̂ ⊂
K, a compact set, and fm → f in σ(L∞(X), L1(X ′)), then Tfm → Tf
in σ(S ′(Y ), Y ′ ⊗ S).

Moreover, the T in Prop. 3.8 is the only operator in L(Bs,p
q (X), Bs,p

q (Y )) which
satisfies T |X⊗S = k∗ the above properties.

Proof. Translation-invariance follows from the corresponding properties of
the operators Tj (Lemma 3.6 and Remark 3.7), and of χj∗ and ϕj∗, from the
S ′(Y )-convergence of the series defining Tf , and from the continuity of f 7→ ϕ∗f
and f 7→ f(· − h) on S ′(Y ).

For fm and f as in the continuity assertion, we have
∑M

i=0 ϕi ≡ 1 on K for
some large enough M . It is then clear from the definition of the Besov norm that
the norms ‖f‖p and ‖f‖s,p;q are equivalent for all f ∈ S ′(X) with supp f̂ ⊂ K.

In particular, fm, f ∈ Bs,∞
q (X), so that Tfm, T f make sense. Moreover,

Tfm =
M∑
j=0

χj ∗ Tj(ϕj ∗ fm)→
M∑
j=0

χj ∗ Tj(ϕj ∗ f) = Tf,

where the convergence is in σ(S ′(Y ), Y ′ ⊗ S). Indeed, ϕj ∗ fm → ϕj ∗ f in
σ(L∞(X), L1(X ′)) when fm → f in this topology, and Tj is σ(L∞(X), L1(X))-
to-σ(S ′(Y ), Y ⊗ S)-continuous by assumption.

Uniqueness of T . To establish the last assertion, let T ∈ L(Bs,p
q (X), Bs,p

q (Y ))
now be any operator which extends k∗ and satisfies the translation-invariance
and compact-to-weak continuity assertions of Prop. 3.10. For any f ∈ Bs,p

q (X),
we have ϕj ∗ Tf = T (ϕj ∗ f), where ϕj ∗ f ∈ Lp(X). By density, we can find a
sequence gm ∈ X⊗S s.t. gm → ϕj∗f in Lp(X) if p <∞ and in σ(L∞(X), L1(X ′))
if p =∞. Then also χj ∗gm → χj ∗(ϕj ∗f) = ϕj ∗f in the same topology, and it is
clear that the Fourier transforms of χj ∗gm and of ϕj ∗f are supported on a fixed
compact set K. Thus, when p =∞, the compact-to-weak continuity guarantees
that

T (ϕj ∗ f) = σ(S ′(Y ), Y ′ ⊗ S)- lim
m→∞

T (χj ∗ gm) = lim
m→∞

k ∗ (χj ∗ gm).

When p <∞, we have χj ∗gm → ϕj ∗f in Lp(X), and then also in Bs,p
q (X), due to

the support condition on the Fourier transforms. Since T ∈ L(Bs,p
q (X), Bs,p

q (Y )),
this guarantees that ϕj ∗Tf = T (ϕj ∗ f) = limT (χj ∗ gm) = lim k ∗ (χj ∗ gm), the
limit now taken in the norm-topology of Bs,p

q (X).
Thus, in either case, ϕj ∗ Tf = T (ϕj ∗ f) is uniquely determined by k. Since

Tf = S ′(Y )-
∑∞

j=0 ϕj ∗ Tf , the same is true of Tf . �
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Prop. 3.10 at hand, the following definition seems justified:

Definition 3.11. Let k ∈ S(L(X, Y )). We say that k is a convolutor from
Bs,p
q (X) to Bs,p

q (Y ) if there exists a T ∈ L(Bs,p
q (X), Bs,p

q (Y )) with the following
properties:

• Tf = k ∗ f for all f ∈ X ⊗ S, and
• T is translation-invariant and compact-to-weak continuous in the sense

of Prop. 3.10.

T is called the operator associated with k.

Remark 3.12. It follows from Prop. 3.10 that the operator associated with
k is unique (which would not be the case without imposing the second condition
in Def. 3.11; see Sect. 7). For p =∞ or q =∞, this would not be the case if we
only required T ∈ L(Bs,p

q (X), Bs,p
q (Y )) s.t. T |X⊗S = k∗.

Our definition of a convolutor could be contrasted with that of a Fourier
multiplier from Bs,p

q (X) to Bs,p
q (Y ) used in [35]. The uniqueness question of the

associated operator is there settled by requiring that T be σ(Bs,p
q (X), B−s,p

′

q′ (X ′))-

to-σ(Bs,p
q (Y ), B−s,p

′

q′ (Y ′)) continuous. This is a stronger requirement than that in
Def. 3.11. Indeed, the translation-invariance of such an operator can be derived
by continuity from the fact that it holds for the restriction of T to X⊗S, a dense

subspace of Bs,p
q (X) w.r.t. the topology σ(Bs,p

q (X), B−s,p
′

q′ (X ′)). The compact-to-

weak continuity of T also follows; in fact, if fm → f in σ(L∞(X), L1(X ′)) and

supp f̂m, f ⊂ K, then, since fm =
∑M

i=0 ϕi ∗ fm for some fixed finite M , it follows

easily that also fm → f in σ(Bs,∞
q (X), B−s,1q′ (X ′)) (see [35] for the definition of

the duality pairing in this context), and then Tfm → Tf in σ(Bs,∞
q (Y ), B−s,1q′ (Y ′))

and hence in σ(S ′(Y ), Y ′ ⊗ S). In particular, if m is a Fourier multiplier from
Bs,p
q (X) to Bs,p

q (Y ) in the sense of the definition in [35], then m̌ is a convolutor
in the sense of Def. 3.11, and the associated operators agree.

Because of the intimate connection of convolution operators on Bs,p
q (X) and

those on Lp(X), which was already demonstrated in Prop. 3.4 and will be de-
scribed in even more detail below, we also give a parallel definition on Lp(X):

Definition 3.13. Let k ∈ S(L(X, Y )). We say that k is a convolutor from
Lp(X) to Lp(Y ) if there exists a T ∈ L(Lp(X), Lp(Y )) with the following prop-
erties:

• Tf = k ∗ f for all f ∈ X ⊗ S, and
• if p =∞, T is σ(L∞(X), L1(X ′))-to-σ(S ′(Y ), Y ′ ⊗ S)-continuous.

Again, T is called the operator associated with k.

Remark 3.14. Again, the operator T associated with k is unique. This follows
from the density of X ⊗ S in the norm-topology of Lp(X) when p < ∞ and in
the σ(L∞(X), L1(X ′))-topology when p =∞. Lemma 3.6 and Remark 3.7 show
that T is translation-invariant. The compact-to-weak continuity required in the
Besov space setting holds now rather trivially.
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The following theorem completes the general description of convolutors from
Bs,p
q (X) to Bs,p

q (Y ).

Theorem 3.15. Let k ∈ S ′(L(X, Y )). Then k is a convolutor from Bs,p
q (X)

to Bs,p
q (Y ) if and only if

• χi ∗ k is a convolutor from Lp(X) to Lp(Y ) for all i ∈ N, and
• supi∈N ‖Ti‖p→p <∞, where Ti is the operator associated with χi ∗ k.

When this is the case, we have

Tf =
∞∑
i=0

Ti(ϕi ∗ f)

for all f ∈ Bs,p
q (X), with convergence in Bs,p

q (X) if q <∞ and always in S ′(Y ).

Proof. The implication “⇐” is the content of Prop.’s 3.8 and 3.10. Let us
establish “⇒”.

Suppose k is a convolutor, and let T ∈ L(Bs,p
q (X), Bs,p

q (Y )) be the associated
operator. Define Tjf := T (χj ∗ f) for f ∈ Lp(X) (then χj ∗ f ∈ Bs,p

q (X), so this
makes sense). Now we need to observe certain properties of the operators Tj:

• For f ∈ X⊗S, also χj ∗f ∈ X⊗S, and Tjf = T (χj ∗f) = k ∗ (χj ∗f) =
(χj ∗ k) ∗ f ; thus Tj|X⊗S = (χj ∗ k)∗.
• Denoting κ := ‖T‖L(Bs,pq (X),Bs,pq (Y )), we have the norm estimate

‖Tjf‖p ≤ 4 · 2−j
2∑

i=−2

2j+i ‖ϕj+i ∗ T (χj ∗ f)‖p

≤ 4 · 2−j
∥∥∥(2is ‖ϕi ∗ T (χj ∗ f)‖p

)∞
i=0

∥∥∥
`q

= 4 · 2−j ‖T (χj ∗ f)‖s,p;q
≤ 4 · 2−jκ ‖χj ∗ f‖s,p;q ≤ C(s, q)2−jκ2j ‖f‖p ;

hence supj∈N ‖Tj‖p→p ≤ C(s, q)κ <∞.

• Suppose p = ∞, and fm → f in σ(L∞(X), L1(X ′)). Then χj ∗ fm →
χj ∗ f in the same topology, and obviously the supports of the Fourier
transforms of these functions are contained in a fixed compact set K.
Thus T (χj ∗ fm) → T (χj ∗ f) in σ(S ′(Y ), Y ′ ⊗ S), i.e., Tjfm → Tjf in
the same topology.

Thus every χj ∗k is a convolutor from Lp(X) to Lp(Y ), and the Tj’s defined above
are the associated operators.

If we now define T̃ f :=
∑∞

j=0 Tj(ϕj ∗ f) for all f ∈ Bs,p
q (X), then Prop.’s 3.8

and 3.10 show that T̃ is the operator associated with k, and by uniqueness we
have T̃ f = Tf . �
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4. Auxiliary results for Lp-convolutors

The previous section culminated in Theorem 3.15, which completely reduced
the problem of boundedness of convolution operators on Bs,p

q (X) to a related
problem in Lp(X). It is worth observing that this related problem is not the
question of boundedness of general convolution operators on Lp(X); rather, it
deals with the convolution kernels k ∗χj having a very special structure: they are
C∞ and moreover have Fourier transforms supported on dyadic annuli. Neverthe-
less, it is convenient first to collect some general criteria for the Lp-boundedness
of convolution operators with an operator-valued kernel. These results are mostly
taken from [38] (where also more general versions are contained), and hence some
of the proofs are omitted. A proof of the following proposition, which is somewhat
different from the original one of Girardi and Weis, is nevertheless given.

Proposition 4.1 ([38]). Suppose

(4.2)

∫
Rn

|k(t)x|Y dt ≤ κ1 |x|X ,
∫
Rn

|k(t)′y′|X′ dt ≤ κ∞ |y′|Y ′ .

Then k∗, initially defined on simple functions, extends to a bounded mapping

from Lp(X) to Lp(Y ) for all p ∈ [1,∞[, of norm at most κ
1/p
1 κ

1/p′
∞ .

Proof. It is immediate that the action of k∗ on f =
∑N

j=1 xkχEk given by

k ∗ f(t) =

∫
Rn

k(t− s)f(s) ds =
N∑
j=1

∫
Ej

k(t− s)xk ds

gives a well-defined operator mapping simple X-valued functions into stongly
measurable Y -valued functions. Moreover, we have the estimates

‖k ∗ f‖L1 ≤
∫

ds

∫
|k(t− s)f(s)|Y dt ≤

∫
κ1 |f(s)|Y ds = κ1 ‖f‖L1

and∣∣∣∣〈y′,∫ k(t− s)f(s) ds

〉∣∣∣∣ ≤ ∫ |k(t− s)′y′|X′ ds ‖f‖L∞ ≤ κ∞ |y′|Y ′ ‖f‖L∞ ;

hence ‖k ∗ f‖L∞ ≤ κ∞ ‖f‖L∞ .
Of course, the L1-estimate is already the assertion for p = 1 by the density

of simple functions, and the general assertion looks very much like something we
should be able obtain by the convexity theorem from the two extremes. However,
in the upper extreme we only have an estimate for simple functions, which are
not dense in L∞ and so do not give us an extension of k∗ to the whole space.
However, we can make a Marcinkiewicz-type argument as follows:

Consider a, b ∈ ]0, 1[ with a+ b = 1, whose values will be chosen later on. For
a simple function f and a measurable set E, obviously fχE is also simple. Then,
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for λ > 0, let fλ := fχ{|f(·)|X≤bλκ
−1
∞ } and fλ := f − fλ, so that fλ and fλ are

simple functions. Now

‖k ∗ f‖pp =

∫ ∞
0

pλp−1 |{|k ∗ f(·)|Y > λ}| dλ

≤
∫ ∞

0

pλp−1 |{|k ∗ fλ(·)|Y > aλ}| dλ+

∫ ∞
0

pλp−1
∣∣{∣∣k ∗ fλ(·)∣∣

Y
> bλ

∣∣} dλ

Since
∥∥k ∗ fλ∥∥

L∞
≤ κ∞

∥∥fλ∥∥
L∞
≤ bλ by the choice of fλ, the last term vanishes.

The first term on the right is bounded by∫ ∞
0

pλp−1 κ1

aλ
‖fλ‖L1 dλ =

pκ1

a

∫ ∞
0

dλλp−2

∫
{|f(·)|X>bλκ

−1
∞ }
|f(x)|X dx

=
pκ1

a

∫
Rn

dx |f(x)|X
∫ κ∞|f(x)|X/b

0

λp−2 dλ =
pκ1

a

∫
Rn

|f(x)|X
|f(x)|p−1

X κp−1
∞

(p− 1)bp−1

=
pκ1κ

p−1
∞

(p− 1)abp−1
‖f‖pp =

pp+1

(p− 1)p
κ1κ

p−1
∞ ‖f‖pp ,

where the last equality follows from the choice a = 1/p, b = 1/p′.
Thus, taking pth roots, we have shown that

‖k ∗ f‖p ≤ p′p1/pκ
1/p
1 κ1/p′

∞ ‖f‖p
for all p ∈ ]1,∞[ and all simple functions f . By density we conclude that k∗
extends to a bounded operator on all Lp with p in this range, of norm at most

p′p1/pκ
1/p
1 κ

1/p′
∞ . This is like the assertion, but the bound for the norm is worse than

we claimed. However, now that we have the operator k∗ defined and bounded on
the whole space Lq, where we fix (momentarily) some q ∈ ]1,∞[, we can apply
the convexity theorem between Lq and L1. This gives, for p ∈ ]1, q[, a new bound
for the operator norm of k∗ on Lp, namely

‖k∗‖L(Lp) ≤ ‖k∗‖
1/p−1/q
1−1/q

L(L1) ‖k∗‖
1−1/p
1−1/q

L(Lq) ≤
(

(q′)q
′
q1/(q−1)

)1/p′

κ
1/p
1 κ1/p′

∞ .

We then consider p fixed, and let q → ∞. Then q′ → 1, and so (q′)q
′ → 1;

moreover, log(q1/(q−1)) = log(q)/(q − 1) → 0, so that q1/(q−1) → 1, and we have

shown that ‖k∗‖L(Lp) ≤ κ
1/p
1 κ

1/p′
∞ , as we claimed. �

Let us make a few remarks concerning the necessity of the assumptions above.
For a general k ∈ S ′(L(X, Y )) with k(·)x ∈ L1,loc(Y ) for all x ∈ X, it is easy to see
that the first condition in (4.2) is also necessary for k∗ to give a bounded operator

from L1(X) to L1(Y ). Indeed, fix a non-negative ψ ∈ S with ψ̂(0) =
∫
ψ = 1,

and denote ψε := ε−nψ(ε−1·). Then ‖ψε‖1 = ‖ψ‖1 = 1 for all ε > 0, and hence
‖k ∗ ψε(·)x‖1 ≤ κ |x|X where κ := ‖k∗‖1→1.
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It is known that k ∗ ψε → k as ε → 0 in the sense of distributions, thus in
particular 〈k ∗ ψε(·)x,Φ〉 → 〈k(·)x,Φ〉 for all x ∈ X and Φ ∈ Y ′ ⊗ S. By the
norm estimate above, we conclude that

sup
‖Φ‖∞≤1

|〈k(·)x,Φ〉| ≤ κ |x|X ,

and this gives the estimate ‖k(·)x‖1 ≤ κ |x|X for the L1-norm of the locally
integrable function k(·)x.

Note that we cannot make such a conclusion unless we presuppose the local
integrability of k(·)x. In fact, even in the scalar-valued context we know that k∗
will be bounded on L1 iff k = µ is a finite Borel measure. In the vector-valued
situation the previous considerations show that, if k∗ is bounded from L1(X) to
L1(Y ) with norm κ as above, then Φ ∈ Y ′⊗S 7→ 〈k(·)x,Φ〉 extends to a bounded
functional on C0(Y ′) (since Y ′⊗S is dense in this space), of norm at most κ |x|X ,
i.e., k(·)x ∈ C0(Y ′)′. For Y = C, we get the “only if” part of the classical result
by the duality (C0)′ = M1, where M1 is the space of finite Borel measures on Rn.

In order to ensure the existence of an extension from L∞(X) to L∞(Y ), further
assumptions are required. For this, we introduce the following notion:

Definition 4.3. We say that an operator-valued function k(·) : Rn → L(X,Y )
is uniformly strongly integrable, for short k ∈ L1

u(L(X, Y )), if it is strongly
integrable and the following property holds: For all measurable sets Em, E ⊂ Rn,

sup
|x|X≤1

∫
Em

|k(t)x|Y dt −→
m→∞

0 whenever Em ↓ E, |E| = 0.

Remark 4.4. It is easy to see that the condition of uniform strong integrabil-
ity of k can be separated (equivalently) into the following two parts concerning
sets of finite and infinite measure:

sup
|x|X≤1

∫
Em

|k(t)x|Y dt −→
m→∞

0 whenever Em ↓ E and |Em| → 0

and

(4.5) sup
|x|X≤1

∫
|t|>r
|k(t)x|Y dt −→

r→∞
0.

It is clear that norm integrability k ∈ L1(L(X, Y )) implies uniform strong
integrability k ∈ L1

u(L(X,Y )); the point of introducing this notion is exactly to
avoid the rather strong notion of norm integrability.

Now we state the result:

Proposition 4.6 ([38]). Assume the second condition in (4.2), and define
the integrals (which exist for all variables as below)

(4.7) 〈Kf(t), y′〉 :=

∫
Rn

〈y′, k(t− s)f(s)〉 ds
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for all t ∈ Rn and all f ∈ L∞(X). Then Kf(t) ∈ Y ′′ and in fact ‖Kf(t)‖Y ′′ ≤
κ∞ ‖f‖∞.

If moreover k(·)′ ∈ L1
u(L(Y ′, X ′)), then Kf(t) ∈ Y for all t ∈ Rn and t 7→

Kf(t) is strongly measurable; thus, by the norm estimate, Kf ∈ L∞(Y ) and
‖Kf‖∞ ≤ κ∞ ‖f‖∞. Moreover,

K̃g(t) :=

∫
k(s− t)′g(s) ds,

initially defined on Y ′⊗ [L1 ∩L∞], extends to a bounded operator K̃ from L1(Y ′)
to L1(X ′)), and K̃ = K ′|L1(Y ′), where K ′ is the adjoint of K.

Remark 4.8. It is clear that Kf = k ∗ f for f ∈ X ⊗ [L1 ∩ L∞].
It is also shown in [38] that the assertion of Prop. 4.6 remains valid even

without k(·)′ ∈ L1
u(L(Y ′, X ′)) provided that the Banach space Y does not contain

c0.

Corollary 4.9. Suppose k satisfies (4.2), and k(·)′ ∈ L1
u(L(Y ′, X ′)). Then

k is a convolutor from Lp(X) to Lp(Y ) for all p ∈ [1,∞], and the associated

operator Kp ∈ L(Lp(X), Lp(Y )) has norm at most κ
1/p
1 κ

1/p′
∞ .

Conversely, suppose k ∈ S ′(L(X, Y )) coincides with a strongly locally inte-
grable function, and that k(·)′ is also strongly locally integrable. If k is a convolu-
tor from L1(X) to L1(Y ) [resp. from L∞(X) to L∞(Y )], then it satisfies the first
[resp. second ] condition in (4.2).

Proof. Concerning the first assertion, everything else is contained in Prop.’s
4.1 and 4.6, except for the σ(L∞(X), L1(X ′))-to-σ(S ′(Y ), Y ′ ⊗ S)-continuity of
K = K∞. However, even more follows easily from Prop. 4.6: Suppose fm → f in
σ(L∞(X), L1(X ′)), and let g ∈ L1(Y ′). Then

〈g,Kfm〉 = 〈K ′g, fm〉 → 〈K ′g, f〉 = 〈g,Kf〉 ,

where the convergence follows from the assumption and the fact that K ′g = K̃g ∈
L1(X ′) by Prop. 4.6. Thus K∞ is even σ(L∞(X), L1(X ′))-to-σ(L∞(Y ), L1(Y ′))
continuous.

The necessary conditions. Suppose now that ‖k∗‖1→1 = κ1 < ∞. We fix a

non-negative ψ ∈ S with ψ̂(0) =
∫
ψ = 1, and denote ψε := ε−nψ(ε−1·). Then

‖ψε‖1 = ‖ψ‖1 = 1 for all ε > 0, and hence ‖k ∗ ψε(·)x‖1 ≤ κ1 |x|X .
It is known that k ∗ ψε → k as ε → 0 in the sense of distributions, thus in

particular 〈k ∗ ψε(·)x,Φ〉 → 〈k(·)x,Φ〉 for all x ∈ X and Φ ∈ Y ′ ⊗ S. By the
norm estimate above, we conclude that

sup
Φ∈Y ′⊗S, ‖Φ‖∞≤1

|〈k(·)x,Φ〉| ≤ κ1 |x|X ,

and this gives the estimate ‖k(·)x‖1 ≤ κ |x|X for the L1-norm of the locally
integrable function k(·)x.
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Finally, if ‖k ∗ f‖∞ ≤ κ∞ ‖f‖∞ for all f ∈ X ⊗ S, then

‖k(·)′y′‖L1(X′) = ‖k(t− ·)′y′‖L1(X′) = sup
f∈X⊗D,‖f‖∞≤1

|〈k(t− ·)′y′, f〉|

= sup
f

∣∣∣∣〈y′,∫ k(t− s)f(s) ds

〉∣∣∣∣ = sup
f
|〈y′, (k ∗ f)(t)〉|

≤ sup
f
‖k ∗ f‖∞ |y

′|Y ≤ κ∞ |y′|Y .

Now all the assertions have been verified. �

The following result is now an immediate consequence of the previous ones.
Recall that the ϕj denote the resolution of unity in the frequency domain which
was used in the definition of the Besov spaces.

Theorem 4.10. Let k ∈ S ′(L(X, Y )), and suppose that we have the estimates

(4.11) ‖ϕj ∗ k(·)x‖1 ≤ κ |x|X , ‖ϕj ∗ k(·)′y′‖1 ≤ κ |y′|Y ′ ,
and moreover that ϕj ∗ k(·)′ is uniformly strongly integrable. Then k is a convo-
lutor from Bs,p

q (X) to Bs,p
q (Y ) for all s ∈ R, p, q ∈ [1,∞].

Conversely, the estimates (4.11) are also necessary.

Proof. Cor. 4.9 shows that every ϕj∗k (and then every χj∗k =
∑i

i=−1 ϕj+i∗
k) is a convolutor from Lp(X) to Lp(Y ), and the associated operators are uni-
formly bounded. Then Theorem 3.15 shows that k is a convolutor from Bs,p

q (X)
to Bs,p

q (Y ). The converse statement is obtained from the converse assertions of
these same results. �

Remark 4.12. The uniform strong integrability can be dropped if Y does not
contain c0, or else if only the exponents p <∞ are considered.

5. A Hörmander-type condition for singular integrals

We are now approaching our main goal of giving sufficient criteria for Bs,p
q -

convolutors in terms of conditions with the flavour of L. Hörmander’s classical
theorem. In particular, we want to express our conditions more explicitly in
terms of the kernel k itself, rather than using the auxiliary kernels ϕj ∗k or χj ∗k
appearing in Theorems 3.15 and 4.10.

In the context of the reflexive Lp spaces of scalar-valued functions, it is well-
known (cf. e.g. [34]) that a sufficient condition for the boundedness of k∗, where
k ∈ S ′ coincides with a locally integrable function outside the origin, is obtained
by requiring k̂ ∈ L∞ and, in addition, the Hörmander condition (see Def. 5.1
below). As we will see, in the context of the Besov spaces, it is necessary to
strengthen these assumptions by imposing a stronger integrability condition in a
neighbourhood of the infinity. This arises from the inhomogeneity of the Besov
spaces, more precisely, the requirement that we should have k ∗ ϕ0 ∈ L1, where
ϕ̂0(0) =

∫
ϕ0 6= 0.
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We first formulate several conditions that will play a rôle in our Hörmander-
type convolution theorem.

Definition 5.1. Let k ∈ L1,loc
str (Rn \ {0};L(X, Y )) ∩ S ′(L(X, Y )). We define

the following conditions, which k may or may not satisfy:

Hörmander’s condition: This holds if, for some b > 1, κ <∞,∫
|t|>b|s|

|(k(t− s)− k(t))x|Y dt ≤ κ |x|X , for all x ∈ X, s ∈ Rn \ {0},

and we write for short (following Hörmander’s original notation [43])
k ∈ K1(X, Y ) in this case.

Principal value condition: We say that k satisfies the strong (resp. weak
resp. weak∗) principal value condition, and write k ∈ PV (X, Y ) (resp.
k ∈ w-PV (X, Y ) resp. k ∈ w∗-PV (X,Y )) provided∫

r<|t|<2r

|k(t)x|Y dt ≤ κ |x|X for all r > 0,∣∣∣∣∫
r<|t|<R

k(t)x dt

∣∣∣∣
Y

≤ κ |x|X for all R > r > 0,

and moreover the limit

(5.2) lim
r↓0

∫
r<|t|<1

k(t)x dt

exists in the norm (resp. weak resp. weak∗) topology of Y for every
x ∈ X. (It is assumed that Y is a dual space when dealing with the
condition w∗-PV (X, Y ).)

Strong integrability at infinity: By this we mean that∫
|t|>r
|k(t)x|Y dt ≤ κ |x|X

for some r ∈ ]0,∞[.
Strong vanishing at infinity: This is said to hold provided the condi-

tion of strong integrability holds for r > r0, and moreover the smallest
allowable κ tends to zero as r → ∞. In other words, this is the second
half of uniform strong integrability, i.e. (4.5).

Remark 5.3. If k satisfies the strong (resp. weak resp. weak∗) principal value
condition, then the limit

lim
ε↓0

∫
|t|>ε

k(t)xφ(t) dt = lim
ε↓0

∫
ε<|t|≤1

k(t)x(φ(t)− φ(0)) dt

+ lim
ε↓0

∫
ε<|t|≤1

k(t)x dt φ(0) +

∫
|t|>1

k(t)xφ(t) dt

exists in the norm (resp. weak resp. weak∗) topology of Y for every x ∈ X and
φ ∈ S. (This explains the name.) The above mentioned limit defines the action
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of the tempered distribution p.v.-k, or just k, on the Schwartz function φ, and
we also have the estimate

|〈k, φ〉x|Y ≤ 2κ(‖∇φ‖∞ + |φ(0)|+ ‖|s|φ(s)‖∞) |x|X .
All this follows from the assumed principal value condition by a direct adaptation
of the scalar-valued calculations in [34], pp. 193–4.

Remark 5.4. If the limit (5.2) exists in σ(Y, Y ′), then the limit

lim
r↓0

∫
r<|t|<1

k(t)′y′ dt

exists in σ(X ′, X) for every y′ ∈ Y ′. In this way, the weak∗ principal value
condition arises naturally in connection with the adjoint kernel k(·)′.

Of course, whenever the sets are well-defined, PV (X, Y ) ⊂ w-PV (X, Y ) ⊂
w∗-PV (X, Y ).

Assuming conditions like those in the previous definition, we now wish to
derive good estimates for the dyadic pieces ϕi ∗ k. This is naturally divided
into two cases: the inhomogeneous term i = 0, and the homogeneous terms
i = 1, 2, . . . For i > 0, we can exploit the fact that ϕi then has a vanishing
integral. But we need a uniform estimate for all such i, since otherwise the
conditions of Theorem 4.10 will not be fulfilled.

In the following, we examine k ∗ φ, where k satisfies some of the conditions
above, and φ ∈ S is assumed to have a vanishing integral, so that it serves as a
prototype of the functions ϕi, i > 0.

Lemma 5.5. Suppose that k ∈ K1(X, Y ) (with constant κ) and either satisfies

any one of the principal value conditions (const. κ), or k̂ ∈ L∞(L(X, Y )) with

‖k̂‖∞ ≤ κ. Let φ ∈ S with
∫
φ = 0. Then ‖k ∗ φ(·)x‖1 ≤ C(φ)κ |x|X for all

x ∈ X.
If, moreover, k vanishes strongly at ∞, then k ∗ φ is uniformly strongly inte-

grable.

Proof. Assuming one of the principal-value conditions, from Rem. 5.3 we
have the estimate

|k ∗ φ(t)x|Y = |〈k(·)x, φ(t− ·)〉|Y
≤ 2κ(‖∇φ(t− ·)‖∞ + |φ(t)|+ ‖|t− ·|φ(t− ·)‖∞

+ |t| ‖φ(t− ·)‖∞) |x|X ≤ C(φ)κ(1 + |t|) |x|X .
On the other hand, the Fourier condition gives

|(k ∗ φ)(t)x|Y =
∣∣∣F−1[k̂(·)x φ̂](t)

∣∣∣
Y
≤
∥∥∥k̂(·)x φ̂

∥∥∥
1
≤ κ |x|X ‖φ̂‖1.

Thus in either case we can say that |k ∗ φ(t)x|Y ≤ κC(φ)(1 + |t|) |x|X . From
this it is already clear that k ∗φ satisfies the first half of the condition of uniform
strong integrability, cf. Remark 4.4.



132 Singular integrals on Besov spaces

Estimation of the L1-norm. We invoke the Decomposition Lemma 4.10 of
Chapter 2: For φ ∈ S with

∫
φ = 0, there exists a decomposition φ =

∑∞
m=0 ψm

s.t. suppψm ⊂ B̄(0, 2m) =: B̄m,
∫
ψm = 0, and finally for any fixed α, β ∈ Nn

and M > 0, the sequence of Schwartz norms ‖ψm‖α,β is O(2−mM). The same is

true for ‖ψ̂m‖α,β as well as for ‖ψm‖p, ‖ψ̂m‖p for all p ∈ [1,∞].

Outside bB̄m, we estimate k ∗ ψm by the Hörmander condition:∫
bB̄cm

|k ∗ ψm(t)x|Y dt =

∫
bB̄cm

∣∣∣∣∫
B̄m

(k(t− s)x− k(t)x)ψm(s) ds

∣∣∣∣
Y

dt

≤
∫
B̄m

ds |ψm(s)|
∫
|t|>b|s|

|(k(t− s)− k(t))x|Y dt ≤ ‖ψm‖1 κ |x|X .

Inside bB̄m we invoke the estimate |ψm ∗ k(t)x|Y ≤ κC(ψm)(1 + |t|), which gives∫
bB̄m

|ψm ∗ k(t)x|Y dt ≤ κC(ψm)cnb
n+12m(n+1),

after integrating 1 + |t| in polar coordinates and recalling that B̄m has radius 2m.
The two estimates combine to give ‖ψm ∗ k(·)x‖1 ≤ κCn,b(ψm)2m(n+1) |x|X .

Recalling the estimates in which the size of ψm entered in the constant Cn,b(ψm),
as well as the properties of the sequence (ψm)∞m=0 from the decomposition lemma,
it follows that Cn,b(ψm) is O(2−mM) for any preassigned M > 0 as m → ∞. It
suffices to take M > n + 1 to conclude that

∑∞
m=0 ‖ψm ∗ k(·)x‖1 converges, and

thus we obtain φ ∗ k(·)x ∈ L1(Y ) with a norm estimate of the desired form.
Uniform integrability at ∞. Concerning the strong uniform integrability of

k ∗ φ, only the estimate at infinity (cf. Remark 4.4) remains to be established.
We estimate∫

|t|>r

∞∑
m=0

|k ∗ ψm(t)x|Y dt

≤
∑

m:2m+1≤r

∫
|t|>r
|k ∗ ψm(t)x|Y dt+

∑
m:2m+1>r

‖k ∗ ψm(·)x‖1 ,

In the sum with large m’s, ‖k ∗ ψm(·)x‖1 is O(2−mM) uniformly in |x|X ≤ 1, and
this shows that the entire sum is O(r−M), M > 0.

The sum with small m’s will be dealt with as follows, in analogy with the
estimate of the L1 norm above:∫

|t|>r
|k ∗ ψm(t)x|Y dt ≤

∫
B̄m

ds |ψm(s)|
∫
|t|>r/2

|k(t)x|Y dt.

The t-integral, which is independent of m, has the desired property by the as-
sumption of k vanishing uniformly at the infinity, and we can sum over m, since
the ‖ψm‖1 is O(2−mM). This completes the proof. �
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The previous Lemma 5.5 is essentially all we need to handle the homogeneous
terms k ∗ϕi with i > 0. However, it clearly fails to apply directly to the inhomo-
geneity k ∗ ϕ0, since

∫
ϕ0 = ϕ̂0(0) = 1 6= 0. The following result shows that, in

order to get a similar estimate for this term, it is necessary and sufficient to add
the condition of strong integrability at ∞.

Lemma 5.6. The following conditions are equivalent for any k ∈ S ′(L(X, Y )):

• ‖k ∗ ϕ(·)x‖1 ≤ C |x|X for some ϕ ∈ S with
∫
ϕ 6= 0.

• In a neighbourhood of the origin, k̂ coincides with some f̂ s.t. ‖f(·)x‖1 ≤
C̃ |x|X .

If k(·) ∈ K1(X,Y ), and moreover k satisfies one of the principal-value con-

ditions or k̂ ∈ L∞(L(X, Y )), then these are further equivalent to either of the
following:

• ‖k ∗ ϕ(·)x‖1 ≤ C(ϕ) |x|X for all ϕ ∈ S.
• k is strongly integrable at infinity.

Proof. Let us first establish the equivalence of the two properties valid for
general k. Let ϕ be as in the first condition. Since ϕ̂(0) =

∫
ϕ 6= 0 and ϕ̂ is

continuous, there are ε, r > 0 such that |ϕ̂(ξ)| > ε for |ξ| < 2r. Let η ∈ D have

support in B̄(0, 2r) and equal to unity in B̄(0, r). Then ψ̂ := η · ϕ̂−1 ∈ D, and
ψ ∈ S ⊂ L1. Then, since k ∗ ϕ(·)x ∈ L1(Y ), we also have (k ∗ ϕ)(·)x ∗ ψ ∈
L1(Y ) and ‖k ∗ ϕ ∗ ψ(·)x‖1 ≤ ‖ψ‖1 ‖k ∗ ϕ(·)x‖1 ≤ C ‖ψ‖1 |x|X . But the Fourier

transform of k ∗ ϕ ∗ ψ is k̂ϕ̂ψ̂, and in B̄(0, r), this agrees with k̂.

Conversely, if k̂ = f̂ in B̄(0, r) [in the sense that
〈
k̂ − f̂ , ψ

〉
= 0 for ψ ∈ S

supported in B̄(0, r)], where ‖f(·)x‖1 ≤ C |x|X , let ϕ̂ ∈ D be 1 at the origin

and supported in B̄(0, r). Then k̂ϕ̂ = f̂ ϕ̂, i.e., k ∗ ϕ = f ∗ ϕ, so ‖k ∗ ϕ(·)x‖1 ≤
‖ϕ‖1 ‖f(·)x‖1 ≤ C ‖ϕ‖1 |x|X , and

∫
ϕ = ϕ̂(0) = 1 6= 0.

To show that, with the additional conditions on k, the estimate

‖k ∗ ϕ0(·)x‖1 ≤ C0 |x|X

for some ϕ0 ∈ S with non-vanishing integral implies the same property for k ∗ ϕ
and any ϕ ∈ S, it suffices to observe that any ϕ ∈ S is [uniquely] decomposed
as ϕ = λϕ0 + ψ, where λ ∈ C and

∫
ψ = 0. Then ‖k ∗ λϕ0(·)x‖1 ≤ C |λ| |x|X

by assumption, and the fact that ‖k ∗ ψ(·)x‖1 ≤ C(ψ) |x|X , whenever k has the
properties assumed and ψ ∈ S a vanishing integral, was shown in Lemma 5.5.

Next, let us assume ‖k ∗ ϕ(·)x‖1 ≤ C(ϕ) |x|X for all ϕ ∈ S and show that
k is strongly integrable in a neighbourhood of the infinity. To this end, fix a
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non-negative ϕ ∈ D, supported in B̄ := B̄(0, r) and with
∫
ϕ = 1. We then have

C(ϕ) |x|X ≥ ‖k ∗ ϕ(·)x‖1 ≥
∫

(bB̄)c
|k ∗ ϕ(t)x|Y dt

=

∫
(bB̄)c

∣∣∣∣∫
B̄

k(t− s)ϕ(s)x ds

∣∣∣∣
Y

dt,

where bB̄ := B̄(0, br). On the other hand, we have∫
(bB̄)c

∫
B̄

|(k(t− s)− k(t))ϕ(s)x|Y ds dt

≤
∫
B̄

ds

∫
|t|>b|s|

|(k(t− s)− k(t))ϕ(s)x|Y dt ≤ κ

∫
B̄

|ϕ(s)| ds |x|X = κ |x|X ,

by Hörmander’s condition. Estimating by the triangle inequality, we then obtain∫
(2B̄)c

|k(t)x|Y dt =

∫
(2B̄)c

∣∣∣∣∫
B̄

k(t)ϕ(s) ds

∣∣∣∣
Y

dt ≤ (C(ϕ) + κ) |x|X

but this means exactly the integrability of k in a neighbourhood of the infinity.
Finally, we show that the estimate

∫
(b−1)B̄c

|k(t)x|Y dt ≤ κ |x|X implies the

inequality ‖k ∗ ϕ(·)x‖1 ≤ C |x|X for all ϕ ∈ D, supported in B̄ := B̄(0, r). Indeed,
we have∫

bB̄

|k ∗ ϕ(t)x|Y dt ≤
∫
bB̄

κC(φ)(1 + |t|) |x|X dt = C(φ, bB̄) |x|X ,

where the estimate was shown in the first part of the proof of Lemma 5.5. More-
over,∫

(bB̄)c

∣∣∣∣∫
B̄

k(t− s)ϕ(s)x ds

∣∣∣∣
Y

dt ≤
∫
B̄

ds

∫
(bB̄)c
|k(t− s)ϕ(s)x|Y dt

≤
∫
B̄

|ϕ(s)| ds

∫
(b−1)B̄c

|k(t)x|Y dt ≤ ‖ϕ‖1 κ |x|X .

This completes the proof. �

Theorem 5.7. Let k ∈ S ′(L(X;Y )) satisfy the following conditions:

• k(·) ∈ K1(X, Y ) and k(·)′ ∈ K1(Y ′, X ′),

• k̂ ∈ L∞(L(X,Y )), or both k(·) and k(·)′ satisfy a principal value condi-
tion,
• k(·) and k(·)′ are strongly integrable at infinity.

Then k∗ is a convolutor from Bs,p
q (X) to Bs,p

q (Y ) for all s ∈ R, p ∈ [1,∞[ and
q ∈ [1,∞].

The assertion remains true for p =∞ under either of the following additional
assumptions:

• k(·)′ vanishes strongly at infinity, or
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• Y does not contain c0.

Proof. The plan is to verify the conditions in Theorem 4.10 for the ϕi ∗ k,
i = 0, 1, 2, . . ..

Case i > 0. First of all, we observe that if k satisfies Hörmander’s conditions
resp. the principal value condition resp. ‖k̂‖∞ ≤ κ, then then the same holds
for 2−ink(2−i·) with the same constant κ. Moreover, k ∗ ϕi = k ∗ 2inφ(2i·) =
2in(2−ink(2−i·) ∗ φ)(2i·), and then by the dilation-invariance of the L1-norm, we
have

‖k ∗ ϕi(·)x‖1 =
∥∥2−ink(2−i·) ∗ φ(·)x

∥∥
1
≤ κC(φ) |x|X

by the assumptions, Lemma 5.5 and the above-mentioned invariance of the con-
ditions on k under dilation. Now this estimate is uniform in i = 1, 2, . . . The
same argument with k(·)′y′ in place of k(·)x clearly yields ‖k(·)′ ∗ ϕi(·)y′‖1 ≤
κC(φ) |x|X .

Under the assumption that k(·)′ vanishes strongly at ∞, Lemma 5.5 shows
that ϕi ∗ k(·)′ is uniformly strongly integrable.

Case i = 0. According to Lemma 5.6, we have ‖ϕ0 ∗ k(·)x‖1 ≤ C(ϕ0) |x|X
and ‖ϕ0 ∗ k(·)′y′‖1 ≤ C(ϕ0) |y′|Y ′ .

As for the uniform strong integrability of ϕ0 ∗ k(·) (under the additional as-
sumption of strong vanishing of k(·) at∞), we write ϕ0 = ϕ+ψ, where ϕ ∈ D is
supported in B̄(0, ε) and

∫
ψ = 0. Then ψ ∗ k(·)′ ∈ L1

u(L(Y ′, X ′)) by Lemma 5.5,
and moreover∫

|t|>r
|ϕ ∗ k′(t)y′|X′ dt ≤

∫
|t|>r

dt

∫
|s|≤ε
|ϕ(s)k(t− s)′y′|X′ ds

≤ ‖ϕ‖1

∫
|t|>r−ε

|k(t)′y′|X′ dt.

Thus also ϕ ∗ k(·)′ satisfies the second half of the uniform strong integrability,
and the first half (cf. Rem. 4.4) is proved just like in the first part of the proof of
Lemma 5.5. (This part of the proof did not require the vanishing integral of the
test function, as is easily seen.)

Now all the conditions required for Theorem 4.10 (and Remark 4.12) have
been verified. �

6. Application to evolutionary integral equations

We will here apply our results to kernels arising from solution formulae for
certain evolutionary integral equations considered in [69]. It is there shown (see
§ 7.4 of [69]) that a related maximal regularity problem leads one to investigate
the boundedness on Bs,p

q ([0, t0];X) of the operator f 7→ u given by

(6.1) u(t) = f(t) +

∫ t

0

Ṡ0(t− τ)f(τ) dτ,



136 Singular integrals on Besov spaces

where the resolvent or solution operator S0 ∈ C1(]0,∞[;L(X)) is strongly con-
tinuous at the origin and satisfies the estimates

(6.2) ‖S0(t)‖L(X) +
∥∥∥tṠ0(t)

∥∥∥
L(X)
≤ κ, 0 < t < t0

and

(6.3)
∥∥∥Ṡ0(t)− Ṡ0(t− s)

∥∥∥
L(X)
≤ κ

s

t(t− s)

(
1 + log

t

s

)
, 0 < s < t < t0.

It is clear from (6.1) that the values of u(t) for t ∈ [0, t0] remain unchanged if we
truncate the kernel at t0, so that we are lead to consider the convolution operator
with the kernel k(t) := Ṡ0(t)χ]0,t0[(t). Let us check the conditions of Theorem 5.7
for this kernel.

Hörmander’s condition. For a kernel supported on the positive half-line, it is
easily seen that it suffices to consider the case s > 0. If 2s ≥ t0 + s, the condition
is trivial; if t0 ≤ 2s < t0 + s, i.e., t0/2 ≤ s < t0, then∫

t>2s

‖k(t)− k(t− s)‖L(X) dt =

∫ t0+s

2s

∥∥∥Ṡ0(t− s)
∥∥∥
L(X)

dt

≤ κ

∫ t0+s

2s

dt

t− s
= κ log

t0
s
≤ κ log 2.

Finally, let 0 < 2s < t0. For 2s < t < t0, (6.3) gives

‖k(t)− k(t− s)‖L(X) ≤ 2κst−2(1 + log(t/s)),

and for t0 ≤ t < t0 + s we have

‖k(t)− k(t− s)‖L(X) =
∥∥∥Ṡ0(t− s)

∥∥∥
L(X)
≤ κ(t− s)−1

by (6.2). Hence∫
t>2s

‖k(t)− k(t− s)‖L(X) dt ≤ 2κ

∫ t0

2s

s

t2
(1 + log(t/s)) dt+

∫ t0+s

t0

κ

t− s
dt

≤ 2κ

∫ ∞
2

1

u2
(1 + log u) du+ κ log

t0
t0 − s

≤ (1 + 2 log 2)κ,

since t0/(t0 − s) < 2. The norm version of the condition established implies in
particular the corresponding strong estimates as well as their dual versions.

Principal value condition. Using the assumption (6.2) only, we have∫ 2r

r

‖k(t)‖L(X) dt ≤
∫ 2r

r

κ

t
dt = κ log 2,∥∥∥∥∫ R

r

k(t) dt

∥∥∥∥
L(X)

=

∥∥∥∥∫ R∧t0

r

Ṡ0(t) dt

∥∥∥∥
L(X)

= ‖S(R ∧ t0)− S(r)‖L(X) ≤ 2κ.
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These norm estimates imply the first two conditions in the definition of the prin-
cipal value conditions. Finally, from the strong continuity we have∫ 1

ε

k(t)x dt =

∫ 1∧t0

ε

Ṡ0(t)x dt = S0(1 ∧ t0)x− S0(ε)x −→
ε↓0

S0(1 ∧ t0)x− S0(0)x,

which shows that k ∈ PV (X). Then in particular k ∈ w-PV (X), and thus
k(·)′ ∈ w∗-PV (X ′) (cf. Rem. 5.4).

Conditions at infinity. These are trivially satisfied, since k vanishes outside a
compact set.

Conclusion. Having verified all the conditions of Theorem 5.7, we conclude
that the solution map f 7→ u defined in (6.1) is indeed bounded on Bs,p

q ([0, t0];X).
This we knew, of course, from [69] already; but the ease with which the conditions
of our Theorem 5.7 were verified for this operator illustrates the applicability of
this general theorem in concrete situations.

7. Counterexamples to uniqueness of extensions

We present some counterexamples to demonstrate the non-uniqueness of the
extended operators studied in Sect. 3 unless we impose some additional conditions
as we did there. All the examples are based on Banach limits.

The first one concerns operators on L∞(Rn); this is not only instructive as an
example of the non-uniqeness phenomenon in a very concrete space, but it will
also be exploited in constructing the counterexamples in the Besov space setting.

Example 7.1 (Non-trivial extensions of zero to L(L∞)). It suffices to estab-
lish the examples for the scalar case, since operators between L∞(X) and L∞(Y )
are then obtained by mapping f ∈ L∞(X) 7→ y ⊗ L(〈x′, f(·)〉) ∈ L∞(Y ), where
x′ ∈ X ′, y ∈ Y and L ∈ L(L∞).

The purpose is to show that there exist non-trivial operators L ∈ L(L∞) which
annihilate S. We even want to show that there are both translation-invariant and
translation-variant operators of this kind.
Construction. Consider for every f ∈ L∞ the sequence

(fj)
∞
j=0 :=

(
1

σnRn
j

∫
B(0,Rj)

f(t) dt

)∞
j=0

∈ `∞,

whereRj →∞ and σn is the volume of the unit ball of Rn. Let λ(f) := Λ((fj)
∞
j=0),

where Λ is a Banach limit. For the present purposes, it suffices to take for Λ any
Hahn–Banach extension to `∞ of the linear functional Λ̃ : c ⊂ `∞ → K, (aj)

∞
j=0 7→

limj→∞ aj, where c is the closed subspace of `∞ of all convergent sequences. Then
|λ(f)| ≤ supj |fj| ≤ ‖f‖∞. Clearly λ(f) = 0 for f ∈ S, or in fact for f ∈ Lp∩L∞
for any p <∞ and also for f ∈ C0. On the other hand, if f ≡ c is a constant, or
more generally has the limit c at the infinity, then λ(f) = c.
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Evaluation of λ(ψ ∗ f). Observe first that

(7.2)

∣∣∣∣∫
B(0,R)

f(t) dt−
∫
B(s,R)

f(t) dt

∣∣∣∣ ≤ |B(0, R)∆B(s, R)| ‖f‖∞ ,

where ∆ denotes the symmetric difference of two sets. Its measure can be esti-
mated by observing that B(0, R)∪B(s, R) ⊂ B(s/2, R+ |s| /2) and, if |s| /2 < R,
B(0, R) ∩ B(s, R) ⊃ B(s/2, R − |s| /2). These show that |B(0, R)∆B(s, R)| ≤
σn((R+ |s| /2)n− (R−|s| /2)n) ≤ σnn(R+ |s| /2)n−1 |s| ≤ σnn2n−1Rn−1 |s|. Thus
the difference of the two integrals in (7.2) is at most σnn2n−1 ‖f‖∞ |s|Rn−1 for
R > |s| /2. Clearly it is always at most 2σnR

n ‖f‖∞.
We are now ready to see how the functional λ behaves w.r.t. convolutions

with ψ ∈ S. Let us denote a :=
∫
ψ. Then

(7.3)
1

σnRn

(∫
B(0,R)

a f(t) dt−
∫
B(0,R)

f ∗ ψ(t) dt

)
=

1

σnRn

∫
B(0,R)

∫
Rn

(f(t)− f(t− s))ψ(s) ds dt

=

∫
Rn

ψ(s)
1

σnRn

(∫
B(0,R)

−
∫
B(−s,R)

)
f(t) dt ds.

Using the estimates for the t-integral obtained above, we find that the absolute
value of the whole quantity above is estimated from above by∫

|s|<2R

|ψ(s)| · |s| ds
c ‖f‖∞
R

+

∫
|s|≥2R

|ψ(s)| ds · 2 ‖f‖∞ −→R→∞ 0.

Thus λ(a f − f ∗ ψ) = 0, which means that λ(f ∗ ψ) = aλ(f) = (
∫
ψ)λ(f) for

ψ ∈ S.
The proof that λ(f(· − h)) = λ(f) for h ∈ Rn is similar and essentially

contained above.
The operators. It remains to pick some g ∈ L∞ and set Lf := λ(f)g. Let us
see what properties the operator L has, depending on the choice of g. We have
L(f(· − h)) = λ(f(· − h))g = λ(f)g, whereas (Lf)(· − h) = λ(f)g(· − h). Since
there exist L∞-functions which are not annihilated by λ (e.g., the constants), we
see that L is translation-invariant if and only if g is a constant.

Concerning convolutions, we have L(ψ∗f) = λ(ψ∗f)g = λ(f)(
∫
ψ)g, whereas

ψ ∗ Lf = λ(f)(ψ ∗ g). Again, if g ≡ c is a constant, it is easy to see that
ψ ∗ g ≡ (

∫
ψ)c ≡ (

∫
ψ)g, and so L is translation-invariant. Conversely, if L is

translation-invariant and hence the previous equality holds, we have in particular
ψ ∗ g = g, i.e. ψ̂ĝ = ĝ whenever ψ̂(0) =

∫
ψ = 1. This being the only restriction

on the ψ̂ ∈ S, we see that ĝ cannot have support except possibly at the origin,
and so ĝ =

∑
cαD

αδ0 (a finite sum). Then g is a polynomial, and the requirement
that g ∈ L∞ forces it to be a constant. Thus L is also translation-invariant if and
only if the g is chosen to be a constant.
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Summarizing, we have seen that, if only norm-continuity conditions are re-
quired, the zero operator on S (which is manifestly translation-invariant) pos-
sesses various non-trivial extensions, both translation-variant and translation-
invariant, to L(L∞).

Example 7.4 (Non-trivial extensions of zero to L(Bs,∞
q )). This is essentially

contained in Example 7.1 already, but let us see how to obtain the example in
the Besov space setting.

We first observe that, for every s and q, the constant function 1 is in Bs,∞
q

and ‖1‖s,∞;q = 1. Indeed, 1 ∗ ϕj =
∫
ϕj(s) ds = ϕ̂j(0) = δ0,j, and thus ‖1‖s,∞;q =∥∥(2jsδ0,j)

∞
j=0

∥∥
`q

= 1.

Now let λ ∈ (L∞)′ be the functional from Example 7.1, g ∈ Bs,∞
q some fixed

element, and define, for f ∈ Bs,∞
q , the operator Lf := λ(f ∗ ϕ0)g. Clearly this

is linear and continuous. If f ∈ S, then also f ∗ ϕ0 ∈ S, and λ(f ∗ ϕ0) = 0.
However, for a constant function f ≡ c ∈ Bs,∞

q , we have c ∗ ϕ0 ≡ cϕ̂0(0) = c;
thus λ(c ∗ ϕ0) = λ(c) = c and Lc = c g. Now the rest of the example works
exactly as in Example 7.1; in particular, we obtain both translation-variant and
translation-invariant non-trivial extensions of zero, depending on the choice of g.

Example 7.5 (Non-trivial extensions of zero to Bs,p
∞ ). The example is based

on the same ideas as the previous ones. Note that Bs,p
∞ is the space of all f ∈ S ′

such that (2js ‖ϕj ∗ f‖p)
∞
j=0 ∈ `∞. Let (gj)

∞
j=0 ∈ `∞(Lp

′
) be a sequence to be fixed

later, and consider the linear functional λ(f) := Λ((2js 〈gj, ϕj ∗ f〉)∞j=0), where Λ
is a Banach limit just like in Example 7.1.

Observe that

2js |〈gj, ϕj ∗ f〉| ≤ 2js ‖gj‖p′ ‖ϕj ∗ f‖p ≤ C 2js ‖ϕj ∗ f‖p ≤ C ‖f‖s,p;∞ ,

which shows that λ ∈ (Bs,p
∞ )′. Moreover, if 2js ‖ϕj ∗ f‖p → 0 as j → ∞, then

λ(f) = 0, and this is the case for f ∈ S and in fact for f ∈ Bs,p
q for any q < ∞

by the definition of the norm.
Let us then see that, in general, λ(f0) 6= 0 for some f0 ∈ Bs,p

∞ . For any given
f0 ∈ Bs,p

∞ , we can clearly fix the gj ∈ Lp
′

(which embeds in (Lp)′ as a norming
subspace) in such a way that ‖gj‖p′ = 1 and 〈gj, ϕj ∗ f0〉 = ‖ϕj ∗ f0‖p.

Now consider f0 := S ′-
∑∞

j=0 2−js+jn(1/p−1)ϕj. Then

2isϕi ∗ f0 = 2in(1/p−1)

1∑
j=−1

2−js+jn(1/p−1)ϕi ∗ ϕi+j.

But ϕi ∗ ϕj+i = 2in(φ0 ∗ φj)(2i·) for i ≥ 1, where φj := 2(j−1)nϕ1(2j−1·), and
the function in parentheses is non-vanishing as is seen by inspection of the
Fourier transforms. Then, from the elemtary dilation property ‖2ing(2i·)‖p =

2in(1−1/p) ‖g‖p of the Lp-norm, we conclude that that 2is ‖ϕi ∗ f0‖p is a non-zero
constant c for all i ≥ 1. This shows first of all that f0 ∈ Bs,p

∞ , and moreover that
λ(f0) = c 6= 0.
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As in Example 7.1, we then define Lf := λ(f)g, g ∈ Bs,p
∞ , and observe that

L|S = 0, whereas the entire operator L on Bs,p
∞ is translation-variant and fails to

commute with convolutions.
Note that this time the present construction does not give non-trivial transla-

tion-invariant extensions, since we cannot take g to be a non-zero constant func-
tion, as it must be an element of Bs,p

∞ . Of course, it cannot give such exten-
sions, since it was shown in Prop. 3.10 that the translation-invariant extension
T ∈ L(Bs,p

q ) of the convolution operator k∗ (acting on S) is unique when p <∞,
even if q =∞.

8. Appendix: Comparison of multipliers on Besov and Bôchner
spaces

As has been explained in Chapter 0, Bourgain [10] and Burkholder [13]
demonstrated that the Mihlin-style condition

(8.1) m ∈ C1(R \ {0}), m(ξ), ξm′(ξ) bounded

is sufficient for m to be a Fourier multiplier on Lp(R;X), p ∈ ]1,∞[, if and only
if X is a UMD-space; on the other hand, Amann [1] and Weis [85] showed that
the somewhat stronger condition

(8.2) m ∈ C2(R), m(ξ), (1 + |ξ|)m′(ξ), (1 + |ξ|)2m′′(ξ) bounded

is sufficient for m to be a Fourier multiplier on Bs,p
q (R;X), s ∈ R, p, q ∈ [1,∞],

for any Banach space X whatsoever.
In light of these results only, one might be tempted to ask whether the UMD-

condition is only required to deal with the possible discontinuity of the multiplier
at the origin, and the lack of estimates for the second derivative, and whether
we could still have a theory of sufficiently smooth Mihlin-type multipliers on
more general Banach spaces. Moreover, one could also ask whether the weaker
assumption (8.1) implies any boundedness on the Besov scale.

A simple answer to both questions is provided in the following propositions by
investigating the Hilbert transform, whose multiplier m(ξ) = −i sgn(ξ) satisfies
the condition (8.1) but not (8.2).

Proposition 8.3. Let X be a Banach space, and suppose that every m ∈
C∞(R), for which

(1 + |ξ|)kDkm(ξ) is bounded for every k ∈ N,
is a Fourier multiplier on Lp(R;X) for some p ∈ ]1,∞[. Then X is a UMD
space.

This rather simple result is probably folklore; its novelty is doubtful, but no
explicit reference is in my knowledge.

Proof. Fix a function m ∈ C∞(R) such that m(ξ) = sgn(ξ) for |ξ| ≥ 1.

If f̂ ∈ S(R;X) has a compact support contained in ]−∞,−1[ ∪ ]1,∞[, then
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m(ξ)f̂(ξ) = sgn(ξ)f̂(ξ). Let us denote the set of all such f by D̂1(R;X). Thus,

by assumption, ‖Hf‖p ≤ ‖f‖p for all f ∈ D̂1(R;X), where C is independent of
f .

Let then f ∈ S(R;X) be any Schwartz function whose Fourier transform is
compactly supported away from the origin; the set of such f ’s is denoted by
D̂0(R;X). Then F[f(ε−1·)] = εf̂(ε·), and we see that f(ε−1·) ∈ D̂1(R;X) for a
sufficiently small ε > 0. Thus ‖H[f(ε−1·)]‖p ≤ C ‖f(ε−1·)‖p. But using the fact

that the Hilbert transform commutes with dilations and ‖f(ε−1·)‖p = ε1/p ‖f‖p,
we can cancel the dependence on ε from both sides, to the result ‖Hf‖p ≤ ‖f‖p
which is now proved for all f ∈ D̂0(R;X). This is a dense subset of Lp(R;X), and
so we have proved the boundedness of the Hilbert transform on Lp(R;X)—this
is equivalent to X being UMD. �

Proposition 8.4. Let X be a Banach space. The Hilbert transform is bounded
on Bs,p

q (R;X) if and only if X is a UMD-space and p ∈ ]1,∞[.

Proof. We use Theorem 3.15, which gives both necessary and sufficient con-
dition for k ∈ S ′(R) to be a convolutor (i.e., to induce a bounded convolution
operator) on Bs,p

q (R;X).
Denoting by k = p.v.-1/πx the underlying distribution of the Hilbert trans-

form, note that the functions k ∗ χi form a bounded set in L1(R) for i = 1, 2, . . .,
since the χi ∈ H1(R) are dilates of each other (hence have the same norm) and
the Hilbert transform is bounded from H1(R) to L1(R). Thus whether or not H
is bounded on Bs,p

q (R;X) depends on the boundedness of (k ∗ χ0)∗ on Lp(R;X).
If X is UMD and p ∈ ]1,∞[, then χ0∗ is bounded on Lp(R;X) as a convolution

with an integrable function, and k∗ = H is bounded by the characterization of
UMD-spaces.

Conversely, suppose that (k ∗ χ0)∗ is bounded on Lp(R;X). If f ∈ S(R;X)
has its Fourier transform supported in the neighbourhood of the origin where
χ̂0 = 1, then (k ∗ χ0) ∗ f = k ∗ f = Hf , and so ‖Hf‖p ≤ C ‖f‖p for all such f
by assumption. By the same dilation argument that was used in the proof of the
previous proposition, this already implies ‖Hf‖p ≤ C ‖f‖p for all f ∈ S(R;X)

with compactly supported Fourier transform. This is impossible for p ∈ {1,∞}
even in the scalar case (and hence for any Banach space, since the scalar field is
contained as an isometric subspace); moreover, for p ∈ ]1,∞[, we are lead to the
UMD condition on X. �

From these two results we find that the sufficiency of the multiplier condi-
tion (8.1) forces equally strong requirements on the Banach space X, no matter
whether we consider multipliers on the Besov or on the Bôchner scale. The nice
property of the Besov spaces is the fact that we can obtain bounded multiplier
transformations by slightly strengthening the assumptions to (8.2). On the Bôch-
ner spaces, however, the passing from (8.1) to (8.2) does not give any pay-off in
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the requirements on the space X, since the fact that the Lp norms essentially
commute with dilations shows that the boundedness of the Hilbert transform
can be deduced even from the formally weaker multiplier theorem with assump-
tions (8.2). The Besov spaces, on the other hand, are inhomogeneous with respect
to dilations.



CHAPTER 4

Sharp Fourier-embeddings and Mihlin-type multiplier
theorems

The theorems on singular convolution operators from the previ-
ous chapters are combined with new Fourier embedding results
to prove strong multiplier theorems on all the function spaces
considered so far. The results improve on known theorems even
in the scalar case.

The results of this paper have been submitted in the form of
the article [46].

1. Introduction

Recall the two sets of conditions:

(1.1) |x||α|1 |Dαm(x)| ≤ κ for all α ∈ Nn with |α|∞ ≤ 1, and all x ∈ Rn\{0}

due to S. G. Mihlin [62, 63] in 1956, and

r|α|1
(

1

rn

∫
r<|x|<2r

|Dαm(x)|2 dx

)1/2

≤ κ

for all α ∈ Nn with |α|1 ≤ ` := bn/2c+ 1, r > 0,

(1.2)

due to L. Hörmander [43] in 1960—both sufficient for m to be a Fourier mul-
tiplier on Lp(Rn) for p ∈ ]1,∞[.

In Hörmander’s assumptions, the uniformity in x in Mihlin’s condition is
relaxed to L2-averages on annuli; moreover, the set of multi-indices α for which
the estimate is required has slightly changed. Although Hörmander’s result
improves on that of Mihlin in certain respects, it is readily observed that it does
not contain the original result itself. In fact, as soon as n ≥ 2, Hörmander

does require, among others, an estimate for the derivative ∂2m/∂x2
1, whereas in

Mihlin’s conditions one always needs to differentiate at most once w.r.t. any
single coordinate, even though the total order of differentiation w.r.t. all the
coordinates does get higher, in general, in his assumptions.

If we ignore the difference between uniform and quadratic estimates in the
two conditions, and moreover consider n ≥ 3, we find that Mihlin’s theorem
outperforms if we want to minimize the order of required derivative conditions
in the ∞-norm, whereas Hörmander does better if measured in the 1-norm.

143
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For us, this simple remark is the key observation and the main inspiration of the
present chapter.

Our aim is to find strong estimates for multipliers by taking as the starting
point the Mihlin-type approach of minimizing the required smoothness (mea-
sured with a continuous parameter) in each coordinate direction. Such a heavily
coordinate-dependent procedure might well seem objectionable. For if R is a
rotation of the space, it is well-known that m is a Fourier multiplier on Lp(Rn)
if and only if m(R ·) is, and the operator norms agree—a fact which would sug-
gest making the conditions of a multiplier theorem rotation-invariant. (This is
the case with Hörmander’s condition (1.2).) However, the justification of our
approach lies perhaps in strength rather than in elegance. In fact, our attempt
to minimize the smoothness in the ∞-norm turns out to yield a solution which
simultaneously minimizes it in the 1-norm.

Let us give some examples of the results we are able to prove:

Theorem 1.3. Let X and Y be Banach spaces with Fourier-type t ∈ ]1, 2],
and m be an L(X, Y )-valued function on Rn.

(1) If the estimates

r|α|1
(

1

rn

∫
I(r)

‖Dαm(ξ)‖tL(X,Y ) dξ

)1/t

≤ κ

hold for all r ∈ [1,∞[, with I(r) := {r < |ξ| < 2r} for r > 1 and I(1) :=
{|ξ| ≤ 1}, and for all α ∈ Nn satisfying |α|∞ ≤ 1 and |α|1 ≤ bn/tc + 1,
then m is a Fourier-multiplier from the Besov space Bs,p

q (Rn;X) (for
definition, see the beginning of Sect. 5) to Bs,p

q (Rn;Y ) for all s ∈ R and
p, q ∈ [1,∞].

(2) If the estimate in part (1) holds for the same α’s, and for all r ∈ ]0,∞[,
with I(r) := {r < |ξ| < 2r}, and moreover m is a Fourier-multiplier from
Lp̃(Rn;X) to Lp̃(Rn;Y ) for some p̃ ∈ ]1,∞[, then m is also a Fourier-
multiplier from Lp(Rn;X) to Lp(Rn;Y ) for all p ∈ ]1,∞[ and from the
atomic Hardy space H1(Rn;X) to H1(Rn;Y ).

(3) If X and Y are UMD-spaces, and the operator collection{
|ξ||α|1 Dαm(ξ) : ξ ∈ Rn \ {0}

}
is R-bounded for all α ∈ Nn such that |α|∞ ≤ 1 and |α|1 ≤ bn/tc+1, then
m is a Fourier-multiplier from Lp(Rn;X) to Lp(Rn;Y ) for all p ∈ ]1,∞[
and from H1(Rn;X) to H1(Rn;Y ).

Recall that a Banach space X has Fourier-type t ≥ 1 if the Hausdorff–

Young inequality ‖f̂‖t′ ≤ C ‖f‖t holds for X-valued functions f (with a finite
C independent of f). All Banach spaces have Fourier-type 1 (which is hence called
the trivial Fourier-type) and all Hilbert spaces (and only Hilbert spaces [55]) have
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Fourier-type 2. X is said to have a non-trivial Fourier-type if it has some Fourier-
type t > 1. Although the above theorem assumes a non-trivial Fourier-type for
both X and Y , we also give versions in the text where this is not required.

For the notion of R-boundedness, see Sect. 2 of Ch. 1 and Sect. 3 of Ch. 2.

Notes on proof. The proofs of the various statements will be given in dif-
ferent parts of the text. Part (1) is a weaker version of Cor. 5.8, with operator-
norm estimates in place of strong ones. The Lp assertion of part (2) is contained
in Theorem 7.2 and the H1 assertion in Theorem 9.4. [The above mentioned
results in the body of the chapter are actually formulated in a slightly different
style from Theorem 1.3 above, but the equivalence is explained in Sect. 4.] The
Lp assertion of part (3) is Cor. 8.16, and the H1 assertion follows from this Lp

assertion, combined with part (2), since the assumption in part (3) is stronger
than that in part (2). �

Specializing to the particular case of scalar-valued functions (a Hilbert space
would work equally well), we have

Theorem 1.4. Let m be a function on Rn satisfying

r|α|1
(

1

rn

∫
r<|ξ|<2r

|Dαm(ξ)|2 dξ

)1/2

≤ κ

for all r ∈ ]0,∞[ and all α ∈ Nn satisfying |α|∞ ≤ 1 and |α|1 ≤ bn/2c+ 1. Then
m is a Fourier-multiplier on Lp(Rn) for all p ∈ ]1,∞[ and on H1(Rn).

Notes on proof. The Lp assertion is Cor. 7.4, whereas the H1 assertion is
contained in Cor. 9.6. Another proof is presented in Chapter 5; a reader who is
interested in this particular theorem rather than the most general form of our
multiplier results is advised to turn to this simplified treatment. �

The main benefit of our approach shows up clearly in Theorem 1.4: The as-
sumptions of this theorem consist of the intersection of the assumptions of Hör-

mander and those of Mihlin, yet they are sufficient to get the same conclusion.
Exactly the same effect is present in the Banach space version of the multiplier
theorem, i.e., Theorem 1.3. Part (1) improves a recent result of M. Girardi and
L. Weis [35] (Cor. 4.13) where the same estimate as above is required for all
|α|1 ≤ bn/tc+ 1. Similarly, part (3) simultaneously improves results of Girardi

and Weis [36] (Cor. 4.4) and of Ž. Štrkalj and Weis [80] (Theorem 4.4); in
fact, its assumptions contain the intersection of the assumptions of the above
mentioned authors. While these results are valid for operator-valued multipliers
acting on vector-valued functions, it seems that the sufficiency in Theorem 1.4 of
assuming only the intersection of the assumptions of Hörmander and Mihlin

is new even in this scalar-valued setting.
It should be emphasized that the theorems formulated above are not the most

general results we are going to prove but rather corollaries giving sufficient “clas-
sical style” conditions for verifying the assumptions of the general theorems. In
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particular, the form of the assumptions, where the set of the required derivatives
is controlled by both∞-norm and 1-norm estimates, only occurs in this classical-
style version. In the general form of our results, where the required smoothness is
measured with a generalized smoothness parameter, the conditions are expressed
entirely in consistence with the ∞-norm paradigm. Once the required technical-
ities are grasped, the power of this approach will reveal itself.

To understand this, let us sketch the idea behind our notion of smoothness:
The conditions for derivatives will be replaced by estimates for certain differences
δαh (built so as to approximate hαDα; defined in Sect. 2). We impose smoothness
conditions on the “dyadic pieces”mµ (defined in Sect. 4) of the multiplier m by
requiring that ‖δαhmµ‖t, for all α ∈ Nn with |α|∞ ≤ d, should behave like hαγ (for
some γ ∈ ]0, 1]) when h gets small. Our smoothness index is then Γ := γ · d. As
it turns out (in Sect. 4), this kind of smoothness conditions always hold provided
we have Hörmander-type smoothness (as in (1.2)) with ` = nΓ, but the converse
is false with a substantial difference.

Now the power of our approach lies in the fact that the infimum, say Γ̃, of the
admissible smoothness index Γ in our conditions will be exactly Γ̃ = ˜̀/n, when
˜̀ is the critical index for Hörmander-type theorems (i.e. ˜̀ = n/2 in the scalar-

valued setting, and more generally ˜̀= n/t, where t is the Fourier-type; hence, in
fact, Γ̃ = 1/t). Thus the smoothness required by Hörmander-type results already
implies our required smoothness conditions, and so our results always improve on
versions of Hörmander’s theorem; that they improve Mihlin’s result is rather
clear, since the assumptions are of the same type but weaker.

Besides using the ∞-norm to measure smoothness, there is another philo-
sophical aspect which we wish to point out, and which could be described by the
equality

a Fourier multiplier theorem

= a theorem for convolution operators + a Fourier embedding theorem.
(1.5)

This is a well-known “recipe”, having its roots in the equivalence of the two

descriptions T̂ f = mf̂ and Tf = k ∗ f (where m = k̂, the Fourier transform
in the sense of distributions), dating back to Hörmander [43] and followed by
many authors after him. Yet the general vector-valued setting with which we deal
here gives new reasons for stressing the relation (1.5), and in particular the fact
that the two “terms” on the right-hand side represent essentially distinct tasks,
as will be elaborated below.

This decoupling is clear in this chapter, where we only deal with the latter of
the two terms. As concerns the theorems for convolution operators, we apply the
results from the previous Chapters 1–3. The main new results of this chapter are
really those concerning the Fourier embeddings, although the multiplier theorems
(which are actually obtained from (1.5) by a simple addition) are those which are
more likely to be of interest in applications and which are labelled “Theorems”
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in the text. Classical Fourier embeddings are of little use to us here, since the
function spaces they deal with tend to be rotation-invariant, and it is exactly
giving away this invariance that constitutes one of the main ingredients of our
approach.

The coherence with which our approach will apply to the different function
spaces is also largely due to the exploitation of the decoupling of the two right-
hand terms in (1.5): the differences between the various spaces, as well as between
the scalar-valued and vector-valued situations, mostly show up in the theorems for
convolution operators which we only cite here. On the other hand, the Fourier
embeddings are only aware of the range space of the functions in terms of its
Fourier-type. Taking this into account is usually only an additional statement in
the assumptions of a theorem, and thus very easily dealt with.

The chapter is organised as follows. Sect. 2 explains notation and contains
some preliminary considerations that pave the way for our main Fourier embed-
ding results, which are stated and proved in Sect. 3. In Sect. 4 we describe those
features of our approach to the multiplier theorems that are common to all the
function spaces we will consider. The results obtained so far are first applied
to a concrete situation in Sect. 5 where we consider the multipliers on Besov
spaces. A comparison of our results with recent related work of M. Girardi and
L. Weis [35] is contained in Sect. 6. We then turn to consider the Lebesgue–
Bôchner spaces: in Sect. 7 we give sufficient conditions to have the boundedness
of a multiplier operator on all Lp, p ∈ ]1,∞[, provided the boundedness on one
Lp̃ is known a priori. Sect. 8 then takes up the task of proving the boundedness
without such a priori knowledge. (In this case, the underlying Banach spaces are
required to have the UMD property, and the assumptions on the multiplier m
involve the notion of R-boundedness.) Finally, we consider multipliers on Hardy
spaces in Sect. 9.

Some of the more technical proofs are postponed to two Appendices (Sec-
tions 10 and 11).

Remark 1.6. Although our approach yields a simultaneous improvement of
the multiplier theorems of Mihlin and Hörmander, it should be noted that
these results have been generalized in various other directions also, many of which
are not covered by our results. One of the earliest such generalization is due to

P. I. Lizorkin who was able to relax Mihlin’s assumption |x||α|1 |Dαm(x)| ≤ κ
to |xαDαm(x)| ≤ κ (for the same multi-indices α). See Triebel’s book [82],
Sect. 2.2.4, for several remarks and references to this kind of developments.

Concerning the vector-valued situation, F. Zimmermann [89] observed that
whereas the UMD-condition of the Banach space X is sufficient to extend Mih-

lin’s theorem to scalar-valued multipliers on Lp(Rn;X), Lizorkin’s theorem
requires additional geometric structure, i.e., it does not hold for all UMD-spaces.
An operator-valued version of Lizorkin’s theorem is proved by Štrkalj and
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Weis [80]. However, the Lizorkin-type generalizations of Mihlin’s theorem fall
outside the scope of our treatment.

2. Preliminaries

First a word about notation. Some of the computations we encounter seem
to be most conveniently handled by adopting a slighly non-standard notation.
Thus the product symbol should be understood in the most formal sense, i.e., if
I := {i1, . . . , ik}, then “

∏
i∈I Ei” means: write the expressions Ei1 through Eik in

a sequence, and only then interpret the result. In particular, we will often use
short-hand notations like(∏

i∈I

∫ bi

ai

dxi

)
F (x) :=

∫ bi1

ai1

dxi1 · · ·
∫ bik

aik

dxikF (x).

where I = {i1, . . . , ik} ⊂ {1, . . . , n} and x = (x1, . . . , xn). Thus no integrals
should be evaluated until all the “products” have been formally expanded. The
expression above is not meant to be equal to

(∏
i∈I(bi − ai)

)
F (x), which the

conventional use of the product symbol would suggest.
For 0 6= α ∈ {0, 1}n, we denote by Nα the set of |α|-tuples of natural numbers

(N := {0, 1, 2, . . .}), but with the components labelled by those indices i for which
αi = 1, rather than the first |α| positive integers as usual. E.g., if n = 3 and
α = (0, 1, 1), then Nα consists of all pairs ν = (ν2, ν3), where ν2, ν3 ∈ N.

For convenience, and since confusion seems unlikely, |·| denotes various differ-
ent norms which should be clear from the context: thus |α| := |α|1 when α ∈ Nn
serves as a multi-index, |x| := |x|2 when x ∈ Rn serves as a point in the domain
of definition of the functions to be considered, |f(x)| := |f(x)|X when f is a
function with values in the Banach space X, and moreover |E| is the Lebesgue
measure of a measurable subset E ⊂ Rn. Note in particular that although we use
two different norms, |α|1 and |α|∞ for multi-indices, the short-hand |α| always
refers to the former.

The symbols b`c, bb`cc and d`e denote the greatest integer at most `, the
greatest integer strictly less than `, and the smallest integer at least `, respectively.

All our Banach spaces have scalar field C. All function spaces have domain Rn,
and so there is no need to indicate this explicitly in the notation. On the other
hand, the range spaces will vary, and so we write Bs,p

q (X), Lp(X) and Hp(X)
for the Besov, Lebesgue–Bôchner and Hardy spaces, respectively, of X-valued
functions. If the range space is completely irrelevant for a particular statement,
we might drop it from the notation. ‖f‖p denotes the p-integral norm of f ,
whatever the range space. S is the Schwartz space of smooth, rapidly decreasing,
scalar-valued functions, and S ′(X) := L(S, X) is the space of X-valued tempered
distributions on Rn. The same notational conventions apply to it as to the above
mentioned function spaces.
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All derivatives are taken in the sense of distributions unless otherwise men-
tioned.

We will need the following translation and difference operators which are well-
defined on arbitrary functions (or even distributions) on Rn. The first two notions
are fairly common (up to irrelevant sign conventions), whereas the third will be
extremely useful in deriving the kind of Mihlin-type theorems we have in mind.

τhf(x) := f(x−h), ∆hf := f − τhf, δαh :=
n∏
i=1

∆αi
hiei

=
∑
θ≤α

(
α

θ

)
(−1)|θ|τθh

Here and in the sequel the notation is as follows: ei is the ith standard unit-vector
of Rn. By θ ≤ α we mean that θi ≤ αi for all i. The product of θ ∈ Nn and
h ∈ Rn is the point y ∈ Rn with yi := θihi. ∆αi

hiei
is simply an αi-fold application

of the operator ∆hiei , with ∆0
hiei

equal to the identity, as usual.
Several authors have proved results where the derivatives in Hörmander’s

theorem are replaced by differences. However, in the need of difference-based
substitutes of higher than the first order derivatives, the guiding principle seems
to have been to consider differences like ∆N

h f , instead of our δαhf . But such
an approach is almost destined to lead to Hörmander rather than Mihlin-type
results, since

∆h ≈ h · ∇, ∆N
h ≈ (h · ∇)N =

∑
|α|=N

N !

α!
hαDα,

and so the use of ∆N
h implicitly contains reference to all derivatives of a given

order |α| = |α|1 = N , at least if one allows the h vary arbitrarily. In particular,
as soon as one takes h1 6= 0, say, one is immediately forced to have the derivative
DN

1 , so there is no way to get the mixed derivatives without also taking the pure
ones. On the other hand, the difference operators δαh are built to approximate
each partial derivative Dα individually. This last claim is given more quantitative
content in the following.

Lemma 2.1. Let f ∈ S ′, h ∈ Rn, α ∈ Nn, and f,Dαf ∈ L1
loc. Then

δαhf(x) =

(
n∏
i=1

αi∏
j=1

∫ 1

0

dti,j

)
hαDαf(x−

n∑
i=1

αi∑
j=1

ti,jhiei) for a.e. x.

Proof. If f is a smooth enough function, this follows (for all x) from a
repeated application of the fundamental theorem of calculus. The general case is
handled by pairing the distribution δαhf with an arbitrary test function ψ ∈ D(Rn)
to the result: (For short, we denote the multiple integral in the statement of the
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lemma simply by
∫

dt, and the multiple summation simply by Σth.)

〈δαhf, ψ〉 =
〈
f, δα−hψ

〉
=

〈
f,

∫
dt(−h)αDαψ(·+ Σth)

〉
=

∫
dt(−h)α 〈f,Dαψ(·+ Σth)〉 =

∫
dt hα 〈Dαf, ψ(·+ Σth)〉

The only non-trivial step above is bringing the distribution f inside the inte-
gral; that this is legitimate is verified by showing that the Riemann sums of
the integral converge in the topology of S. We can now substitute in place
of ψ a sequence of functions ψn which converge to the Dirac mass at a point
x. Then 〈δαhf, ψn〉 → δαhf(x) at every Lebesgue point of δαhf , and for every
such x we have 〈Dαf, ψn(x+ Σth)〉 → Dαf(x − Σth) whenever x − Σth is a
Lebesgue point of Dαf . Thus, for a fixed h, the integrand converges pointwise
for a.e. t = (ti,j)

i=1,...,n
j=1,...,αi

, and the assertion follows from Lebesgue’s convergence
theorem. �

Corollary 2.2. For f as in Lemma 2.1 we have ‖δαhf‖q ≤ |hα| ‖Dαf‖q for

all q ∈ [1,∞], and when q =∞, more precisely

|δαhf(x)| ≤ |hα| ess sup{|Dαf(y)| : |xi − yi| ≤ αi |hi|} for a.e. x ∈ Rn.
Next we are going to see how the norms of the differences δαhf can be used to

control the size of the Fourier transform f̂ .

3. Basic embeddings

In this section we prove our basic Fourier embedding results. Although they
do not apply to all situations we encounter, and we will need to derive several
modifications for different purposes in the subsequent sections, the essence of the
matter is contained here. In a sense, although there are other results which we
will call “Theorems”, Proposition 3.2 below is the most important result of this
whole chapter. It is the basis on which our multiplier theorems will be built.

For the proof, we need to introduce a decomposition of the domain Rn. For
α ∈ {0, 1}n, ρ ∈ ]0,∞[n and j ∈ Nα, we define the sets

E(α, ρ) := {x : |xi| ≤ ρi if αi = 0, |xi| > ρi if αi = 1},
E(α, ρ, j) := {x : |xi| ≤ ρi if αi = 0, 2jiρi < |xi| ≤ 2ji+1ρi if αi = 1}.

Then obviously

R
n =

⋃
α∈{0,1}n

E(α, ρ), E(α, ρ) =
⋃
j∈Nα

E(α, ρ, j).

The main point of introducing the sets E(α, ρ, j) is the following observa-
tion which we exploit below (the idea comes from Strömberg and Torchin-

sky [81]): For 0 < a ≤ |v| ≤ b < 1, we have
∣∣1− ei2πv

∣∣ ≥ c = c(a, b) > 0, and
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thus for 2jiρi < |xi| ≤ 2ji+1ρi, it holds
∣∣∣1− ei2πxi/b2

jiρi

∣∣∣ ≥ c(b) > 0 whenever

b > 2. Hence, we have an estimate of the form

(3.1) c ≤

∣∣∣∣∣ ∏
i:αi=1

(1− ei2πei·x/b2jiρi)

∣∣∣∣∣ ≤ C for x ∈ E(α, ρ, j),

where c > 0 is some constant depending only on b > 2 and the dimension n of Rn,
and clearly we can take C = 2n. It is the first inequality in the above estimate
that is used below, but the second inequality shows that we do not lose anything
but an immaterial constant in making such an estimate.

Proposition 3.2. Let X have Fourier type t, let q ∈ [1, t′] with q <∞, and
d ∈ Z+. Then we have, for all r ∈ ]0,∞[ and all f ∈ Lt(X), the estimate

(3.3)
∥∥∥f̂∥∥∥q

q
≤ Cr(1−q/t′)n ‖f‖qt

+ C
∑

0 6=α∈{0,1}n
r(1−q/t′)(n−|α|)

( ∏
i:αi=1

∫ 1/r

0

dhi
hi
h
q/t′−1
i

)∥∥δdαh f∥∥qt ,
where C is finite and independent of f and r.

Remark 3.4. It will be seen in the proof that the first term on the RHS
of (3.3) actually controls the size of f̂ in an approximate r-neighbourhood of the

origin, whereas the second term gives a bound for f̂ outside this region.
The parameter r is introduced so as to obtain a more flexible assertion; when

applying the result to different functions, the sharpest bounds of ‖f̂‖qq will be
obtained by different choices of r. Namely, when we have the strict inequality
q < t′, which is the case in all our applications, the factor r(1−q′/t)(n−|α|) increases

as a function of r, whereas the integrals involving
∫ 1/r

0
obviously decrease. There

will be a delicate balance determining the optimal value of r for a particular
function.

Requiring the RHS of (3.3) to be finite is a smoothness condition on f . In
fact, it is clear that the h-integrals without the factor ‖δαhf‖

q
t in the integrand

would be divergent at the origin. To make these integrals converge, it is required
that ‖δαhf‖t gets small as h → 0, i.e., that the differences of f at near-by points
should not differ appreciably in the Lt-norm.

The parameter d could be taken to be 1 for most of our purposes; however,
the flexibility offered by this extra degree of freedom in the statement of the
proposition will be essential in certain applications below.

Proof. Consider ρ ∈ ]0,∞[n and 0 6= α ∈ {0, 1}n. Applying the esti-
mate (3.1), Hölder’s inequality, and the Hausdorff–Young inequality, in
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this order, we obtain∫
E(α,ρ)

∣∣∣f̂(x)
∣∣∣q dx =

∑
j∈Nα

∫
E(α,ρ,j)

∣∣∣f̂(x)
∣∣∣q dx

≤ C
∑
j∈Nα

∫
E(α,ρ,j)

∣∣∣∣∣ ∏
i:αi=1

(1− ei2πei·x/b2jiρi)df̂(x)

∣∣∣∣∣
q

dx

≤ C
∑
j∈Nα

∥∥∥∥∥x 7→ ∏
i:αi=1

(1− ei2πei·x/b2jiρi)df̂(x)

∥∥∥∥∥
q

t′

|E(α, ρ, j)|1−q/t
′

≤ C
∑
j∈Nα

∥∥∥∥∥ ∏
i:αi=1

∆d
ei/b2jiρi

f

∥∥∥∥∥
q

t

·
∏
i:αi=0

(2ρi)
1−q/t′ ·

∏
i:αi=1

(2 · 2jiρi)1−q/t′ .

We take a logarithmic average over ρi ∈ [r, 2r] and then make a change-of-
variable hi = 1/b2jiρi, followed by some rearrangement:(

n∏
i=1

∫ 2r

r

dρi
ρi

)∫
E(α,ρ)

∣∣∣f̂(x)
∣∣∣q dx

≤ C
∑
j∈Nα

r(1−q/t′)(n−|α|)

( ∏
i:αi=1

∫ 2r

r

dρi
ρi

(2jiρi)
1−q/t′

)∥∥∥∥∥ ∏
i:αi=1

∆d
ei/b2jiρi

f

∥∥∥∥∥
q

t

= Cr(1−q/t′)(n−|α|)
∑
j∈Nα

( ∏
i:αi=1

∫ (b·2jir)−1

(2b·2jir)−1

dhi1
hi1

h
−1+q/t′

i

)∥∥∥∥∥ ∏
i:αi=1

∆d
hiei
f

∥∥∥∥∥
q

t

= Cr(1−q/t′)(n−|α|)

( ∏
i:αi=1

∫ 1/br

0

dhi
hi
h
q/t′−1
i

)∥∥δdαh f∥∥qt .
Concerning α = 0, we have∫

E(0,ρ)

∣∣∣f̂(x)
∣∣∣q dx ≤

∥∥∥f̂∥∥∥q
t′
|E(0, ρ)|1−q/t

′
≤ C ‖f‖qt ·

n∏
i=1

ρ
1−q/t′
i ,

and again we take the logarithmic average as above.
Note that we have∫

Rn

∣∣∣f̂(x)
∣∣∣q dx =

∑
α∈{0,1}n

∫
E(α,ρ)

∣∣∣f̂(x)
∣∣∣q dx

for any ρ ∈ ]0,∞[n. Taking the logarithmic average only multiplies the LHS by
a constant, so we get the conclusion. �

Remark 3.5. Suppose we had only proved Prop. 3.2 with r = 1. Let us
see what happens when we substitute f(·/r) in place of f . Then ‖f̂‖qq be-

comes rn(q−1)‖f̂‖qq. Using δdαh [f(·/r)] = [δαh/rf ](·/r), we find that ‖δαhf‖
t
q becomes
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‖δαh/rf‖tqrnq/t. It remains to make the change-of-variable y := h/r, and we find
that the general form of Prop. 3.2 derives from this simple scaling argument.

The following variant of Prop. 3.2, which gives more precise information on
the size of f̂ outside a bounded region, will also be significant to us:

Proposition 3.6. Under the assumptions of Prop. 3.2, we also have for all
R > 0 and all r ∈ ]0, R]

(3.7)

∫
|x|>R

|f̂(x)|q dx ≤ C
∑

0 6=α∈{0,1}n
r(1−q/t′)(n−|α|)

×
∑
j:αj 6=0

∫ 1/R

0

dhj
hj

h
q/t′−1
j

( ∏
i6=j:αi 6=0

∫ 1/r

0

dhi
hi
h
q/t′−1
i

)∥∥δdαh f∥∥qt ,
with C indepent of f , r and R.

Proof. When |ρ|∞ ≤ R/
√
n, we have E(0, ρ)c ⊃ {x : |x|∞ > R/

√
n} ⊃

{x : |x| > R}. Thus, in the proof of Prop. 3.2, we only need to replace the

average
∏n

i=1

∫ 2r

r
dρi/ρi by the expression

∑
j:αj 6=0

∫ R/√n
R/2
√
n

dρj/ρj
∏

i6=j
∫ 2r

r
dρi/ρi

when α 6= 0, and we do not need to consider E(0, ρ) at all. Recall (from the
discussion preceding the statement of Prop. 3.2) that the auxiliary parameter b
that was used in the proof of Prop. 3.2 was quite arbitrary, subject only to the
condition b > 2. Thus we can take b ≥ 2

√
n so that 2

√
n/bR ≤ 1/R. �

4. Approach to multiplier theorems

The embedding results of the previous section will be applied to the dyadic
parts of the multiplier m, in the way to be explained now.

Let ϕ̂0 ∈ D have range [0, 1], be supported in B̄(0, 1) and equal to unity in

B̄(0, 2−1). Let φ̂0 := ϕ̂0 − ϕ̂0(2·) and φ̂µ := φ̂0(2−µ·) for µ ∈ Z. Finally, let

ϕ̂µ := φ̂µ for µ = 1, 2, . . .
The two families (ϕµ)∞µ=0 and (φµ)∞−∞ (defined above in terms of their Fourier

transforms) provide resolutions of unity, which are basic to our study. Given a

multiplier m, we consider its dyadic parts mµ := ϕ̂µm or mµ := φ̂µm. (Of course,
we will need to specify in concrete situations which decomposition we use, but for
the moment we can proceed on a general level, assuming that m is decomposed,
as above, into the pieces mµ where either µ ∈ N or µ ∈ Z.) Note that many
authors denote our ϕ̂µ by ϕµ, which might be a little confusing. In our notation,

one should keep in mind that the quantities ϕ̂µ, φ̂µ with the hat are the ones
living in the frequency space.

We refer to (ϕµ)∞µ=0 as the inhomogeneous and to (φµ)∞−∞ as the homogeneous
resolution of unity, and to the decompositions of m induced by these resolutions
as the inhomogeneous and homogeneous decompositions, respectively. We also
apply the words homogeneous and inhomogeneous to some related quantities; the
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former always means that the vicinity of the origin is decomposed to ever finer
pieces, similar in all length scales, while the latter refers to the fact that a certain
neighbourhood of the origin is treated as one block, and only the rest of the space
is dyadically decomposed.

We denote k := m̌ (inverse Fourier transform in the sense of distributions)
and kµ := m̌µ, which equals φµ ∗ k or ϕµ ∗ k, depending on the decomposition we
use. In either case, kµ is the convolution of a Schwartz function with a tempered
distribution, thus an infinitely differentiable funtion with at most polynomial
growth.

Strong multiplier theorems can be obtained, as we will see, by simply requiring
that every mµ in place of f makes the RHS of (3.3) finite (plus appropriate
uniformity in µ). However, it is also useful to be able to check this condition in
terms of estimates of more classical appearence. Our basic condition for doing
this will be

(4.1) ‖δαhmµ‖q ≤ κ2µ(n/q−|α|γ)hαγ for all |α|∞ ≤ d and h ∈ Rn+,

where d ∈ Z+, γ ∈ ]0, 1]. It should be emphasized that the relevant smoothness
parameter in this condition is Γ := d · γ, rather than either of d or γ alone. This
is not so clear a priori, but will be clarified when using the conditions below. For
many but not all of our results, it would suffice to consider d = 1, but keeping
the d in the expressions allows us to state more general assertions, rather than
reformulating everything for the situations where d = 1 does not work.

Let us connect the condition (4.1) to the kinds of expressions we encountered
in connection with the Fourier embeddings. For the present, we only give the
following simple result, and other variants will appear when they are needed in
the sequel. Even this lemma already gives a reason for the usefulness of the
conditions we introduced in (4.1): they can be used to have control on the right-
hand sides of the inequalities in Prop. 3.2 and Prop. 3.6, which in turn give, by
the very statements of these results, estimates on the kernels kµ = m̌µ.

Lemma 4.2. Suppose
∥∥δdαh f∥∥t ≤ 2µ(n/t−Γ|α|)hαΓ for all |α|∞ ≤ 1, where d ∈

Z+, t ∈ [1, 2] is a Fourier-type for the underlying space X, q ∈ [1, t′] with q <∞,
and Γ > 1/t− 1/q′. Then the right-hand side of (3.3), with r = 2−µ, is at most
C2µn/q

′
, and the RHS of (3.7), with r = 2−µ ≤ R, at most

C2µq((n−1)/q′+1/t−Γ)Rq(1/t−1/q′−Γ).

Consequently,

(4.3)
∥∥∥f̂∥∥∥

q
≤ C2µn/q

′
,

∫
|x|>R

∣∣∣f̂(x)
∣∣∣q dx ≤ C2µq((n−1)/q′+1/t−Γ)Rq(1/t−1/q′−Γ).

Note in particular that with q = 1 (hence q′ = ∞), we obtain a bound for∥∥∥f̂∥∥∥
1

independent of µ.
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Proof. The assertions concerning the RHS’s of (3.3) and (3.7) follow by a

direct computation. Then the estimate for ‖f̂‖qq follows from Prop. 3.2 and the
estimate for the integral over |x| > R from Prop. 3.6 when R ≥ 2−µ. For R < 2−µ,
the second claim in (4.3) follows from the first, since then (2µR)1/t−1/q′−Γ ≥ 1. �

In the rest of this section, we relate our condition (4.1) (which involves the
somewhat unconventional difference operators δαh ) to more familiar conditions
found in the literature. As an intermediate notion between (4.1) and the assump-
tions of Hörmander or Mihlin, there are conditions due to D. S. Kurtz and
R. L. Wheeden [54], which have been generalized (to allow for a continuous
smoothness parameter) by J.-O. Strömberg and A. Torchinsky [81]. One
assumes Hörmander-type bounds(∫

I(r)

|Dαm(ξ)|q dξ

)1/q

≤ κrn/q−|α|,(∫
I(r)

|Dαm(ξ)−Dαm(ξ − ζ)|q dξ

)1/q

≤ κrn/q−|α|
(
|ζ|
r

)ε
for |ζ| ≤ r/2,

(4.4)

where ε ∈ [0, 1[ and

• in the homogeneous version, the estimates (4.4) are assumed for all r ∈
]0,∞[ and I(r) := {ξ : r < |ξ| < 2r}; and
• in the inhomogeneous version, we only consider r ∈ [1,∞[ and I(r) is

the same as above for r > 1 but I(1) := {ξ : |ξ| ≤ 1}.
Strömberg and Torchinsky considered, in the homogeneous situation,

conditions which they called M(q, `), defined by the requirement that (4.4) hold
with ε = `− b`c for all α ∈ Nn satisfying |α| ≤ b`c. If ` = b`c is an integer, then
ε = 0, and the second condition in (4.4) is implied by the first one, with cκ in
place of κ, and c numerical. Note that Hörmander’s original condition (1.2) is
m ∈M(2, `) with ` = bn/2c+ 1.

In order to see the relation of these conditions to ours, it is useful to consider,
a little more generally, the condition (4.4) for all α ∈ I, where I ⊂ Nn has the
property that θ ∈ I whenever θ ≤ α ∈ I. We say that such an I is stable.
Note that both the Hörmander-type set {α : |α|1 ≤ `} and the Mihlin-type set
{α : |α|∞ ≤ 1} are stable, so that the notion of stability unifies the treatment of
the two sets of conditions.

Whenever I ⊂ N
n is stable, it is easy to see that (4.4) for all α ∈ I is

equivalent to

(4.5) ‖Dαmµ‖q ≤ κ2µ(n/q−|α|), ‖Dα(mµ − τhmµ)‖q ≤ κ2µ(n/q−|α|−ε) |h|ε .

for the same α’s. (The constants κ are multiplied by numerical factors when
passing from the conditions (4.4) to (4.5) or back, but this is irrelevant.) Observe
that, directly from (4.4), we only get (4.5) for |h| ≤ c2µ, but for |h| > c2µ we
get the second estimate in (4.5) from the first one with an application of the
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triangle inequality. Also note that (4.5) includes both the homogeneous and the
inhomogeneous version, with the appropriate meaning of mµ in either case.

In the following lemma, we see how pure difference estimates like in (4.1)
can be checked in terms of the more classical conditions considered above, not
only for differences of the same order as the assumed derivatives, but in fact for
differences of any order. Of course there is a price to be paid, which is the change
in the parameter γ. Recall that the relevant parameter in (4.1) is the product
Γ := d · γ.

The proof of the following lemma, being somewhat lengthy and technical, is
postponed to the appendix (Sect. 10).

Lemma 4.6. Let I ⊂ Nn be stable. Then the estimates (4.5) for α ∈ I with
|α| ≤ b`c, and with ε = `− b`c, imply for h ∈ Rn+

(4.7) ‖δαhmµ‖q ≤ cκ2µ(n/q−|α|γ̃)hαγ̃, for α ∈ I with |α| ≤ d`e, where γ̃ :=
`

d`e
,

and, more generally, for any L ∈ N with L ≥ d`e (and h ∈ Rn+)

(4.8) ‖δαhmµ‖q ≤ cκ2µ(n/q−|α|γ)hαγ, for α ∈ I with |α| ≤ L, where γ :=
`

L
.

Remark 4.9. If we measure smoothness “in the 1-norm”, i.e., in terms of
(the 1-norm of) the highest power of h in the conclusion of Lemma 4.6, we note
that this is Lγ = `, i.e., the same as the smoothness parameter of the conditions
M(q, `) (or its inhomogeneous version) with which we started.

From Lemma 4.6 and the preceding considerations we obtain:

Corollary 4.10. Suppose m satifies (4.4) [or, what is equivalent, (4.5)] with
ε = `− b`c, for all α ∈ Nn s.t. |α|1 ≤ b`c and |α|∞ ≤ d, where nd ≥ d`e.

Then (4.1) (with mµ refering to the homogeneous or inhomogeneous version
in consistence with the condition assumed for m) holds with γ = `/nd.

Proof. It suffices to observe that I := {α ∈ Nn : |α|∞ ≤ d} is a stable
collection, and moreover that α ∈ I implies |α|1 ≤ nd. Then apply Lemma 4.6
with L = nd. �

Remark 4.11. It is important to observe, as soon as n ≥ 2, that the set
of conditions (4.1), for some d and γ, is substantially weaker than the same set
of conditions holding for all |α|1 ≤ nd. (We do require it for one α, namely
α = (d, d, . . . , d), for which |α|1 = nd, though.) In fact, consider functions of
the form m(x) =

∏n
i=1 mi(xi), where each mi is compactly supported outside the

origin. Then the condition for |α|1 ≤ nd resp. |α|∞ ≤ d is essentially equivalent
to

n∏
i=1

h−γαii

∥∥∆αi
hi
mi

∥∥
q
≤ κ
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for all |α|1 ≤ nd resp. all |α|∞ ≤ d. For the latter condition, it suffices that
h−γk

∥∥∆k
hmi

∥∥
q
≤ C for k = 0, . . . , d, whereas the first condition would require

this for k = 0, . . . , nd.

With Cor. 4.10 and the above, we have obtained rather quantitative content
for the idea that Hörmander-type estimates with 1-norm smoothness index `
imply our Mihlin-type conditions with ∞-norm smoothness index Γ = `/n, but
the converse is false. Thus, roughly speaking, any result we prove with a Mihlin-
type smoothness index Γ = `/n is an improvement of a Hörmander-type theorem
with required smoothness index `.

We can now leave the general framework of the theory, and turn to apply
the results obtained so far to the derivation of strong multiplier theorems in the
setting of Besov spaces of vector-valued functions.

5. Multipliers on Besov spaces

We give our first multiplier theorems on the Besov spaces since, even though
these are less natural and more difficult to define than most of the more classi-
cal function spaces, the technicality in the definitions actually gives substantial
simplicity in the actual multiplier theory. Nevertheless, this simplified situation
can serve as a toy model for the more relevant, and more difficult, case of the
Lebesgue–Bôchner spaces which are treated after the Besov case.

The definition of the Besov spaces which we use reads as follows: a distribution
f ∈ S ′(X) is a member of Bs,p

q (X) (where s ∈ R, p, q ∈ [1,∞]) if and only if

‖f‖s,p;q :=

∥∥∥∥(2µs ‖ϕµ ∗ f‖p
)∞
µ=0

∥∥∥∥
`q

is finite, and ‖·‖s,p;q is the norm of the space Bs,p
q (X).

Thus the Besov spaces are defined in terms of the inhomogeneous dyadic
decomposition. In consistence with this, the inhomogeneous decomposition is
the only one we use when working with these spaces, and so mµ and kµ always
refer to ϕ̂µm and ϕµ ∗ k, respectively, in this section and the next one.

Before going to the new results, let us briefly sketch a historical perspective.
A systematic treatment of the classical Besov space and related multiplier theory
(where the word “classical” refers, above all, to scalar-valuedness) can be found in
Triebel’s book [83]. The study of operator-valued multipliers on Besov spaces
of vector-valued distributions was initiated by H. Amann [1] and L. Weis [85].
In the latter work, which was recently expanded by M. Girardi and Weis [35],
rather general sufficient conditions were given, in which the Fourier-type of the
underlying Banach spaces is taken into account to decrease the required smooth-
ness with increasing Fourier-type, and the smoothness conditions are expressed in
terms of the Besov space norms of the (inhomogeneous) dyadic pieces mµ, µ ∈ N,
of the multiplier.
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As shown by Girardi and Weis in [35], their general theorem is strong
enough to contain a Besov space version of Hörmander’s multiplier theorem
and some variants as special cases; however, it fails to imply Mihlin-type results
in the sense in which we have used this word.

In this section, we are going to prove a multiplier theorem which contains both
Hörmander and Mihlin-type theorems; and it also contains the above mentioned
theorem of Girardi and Weis. The theorem is hence a rather strong one; in
fact, Girardi and Weis [35] point out that their result is sharp in a certain
sense, yet we are able to improve that. We will return to comment on this matter
below.

Let us now define, for f ∈ Lt(X), the following quantities (which should be
compared with the right-hand sides of the inequalities established in Prop.’s 3.2
and 3.6):

‖f‖Mt := ‖f‖t +
∑

0 6=α∈{0,1}n

( ∏
i:αi=1

∫ 1

0

dhi
hi
h
−1/t
i

)∥∥δdαh f∥∥t ,
‖f‖Ṁt := inf

r∈]0,∞[
‖f(·/r)‖Mt ,

‖f‖RMt :=
∑

0 6=α∈{0,1}n

∑
j:αj=1

∫ 1/R

0

dhj
hj

h
−1/t
j

( ∏
i6=j,αi=1

∫ 1

0

dhi
hi
h
−1/t
i

)∥∥δdαh f∥∥t ,
where d := 1 if t > 1 and d := 2 if t = 1.

Remark 5.1. According to Rem. 3.5, ‖f(·/r)‖Mt is equal to the right-hand

side of the inequality in Prop. 3.2 when q = 1. Thus ‖f̂‖1 ≤ C ‖f‖Ṁt , as soon as
X has Fourier-type t.

It follows easily that ‖f(·/r)‖Mt is finite either for all r ∈ ]0,∞[ or for none.
To see this using the expression in Prop. 3.2, just note that one can always

estimate
∥∥δdαh f∥∥t ≤ 2d(|α|−|θ|)

∥∥δdθh f∥∥t and
∫∞
ε

dhi h
−1−1/t
i < ∞, from which it

follows readily that the behaviour of
∥∥δdαh f∥∥t is relevant only for small h, provided

that ‖f‖t is finite. Hence ‖f‖Mt < ∞ iff ‖f‖Ṁt < ∞, but of course the actual
values can be quite different.

We denote byMt(X) the collection of those f ∈ Lt(X) for which ‖f‖Mt <∞.
It is not difficult to see that Mt(X) is a Banach space when equipped with this
norm.

By Prop. 3.6, we have ∫
|x|>R

∣∣∣f̂(x)
∣∣∣ dx ≤ C ‖f‖RMt

for all R > 1. Below, in the case where the Besov index p in Bs,p
q is infinite, we

are concerned with the behaviour of ‖f‖RMt as R→∞.
We will use the more complete notation ‖f‖Mt(X) for ‖f‖Mt when the under-

lying space needs to be specified.
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Theorem 5.2. Suppose that

‖mµ(·)x‖Ṁt(Y ) ≤ κ |x|X and ‖mµ(·)′y′‖Ṁu(X′) ≤ κ |y′|Y ′ ,
where X has Fourier-type u, and Y has Fourier-type t. Then m is a Fourier-
multiplier from Bs,p

q (X) to Bs,p
q (Y ) for all s ∈ R, p ∈ [1,∞[ and q ∈ [1,∞]. The

assertion remains true for p =∞, if we also assume

(5.3) sup
|x|X≤1

‖mµ(·)x‖Lt(Y ) <∞, and sup
|x|X≤1

‖mµ(·)x‖RMt(Y ) −→R→∞ 0.

(The last two conditions are not required to be uniform in µ.)

Recall that Y ′ has Fourier-type t if and only if Y has.

Proof. From the Remark 5.1 it follows that

‖kµ(·)x‖L1(Y ) ≤ Cκ |x|X , ‖kµ(·)′y′‖L1(X′) ≤ Cκ |y′|Y ′ .
According to Theorem 4.10 of Chapter 3, this suffices for p <∞.

For the general case, again according to Theorem 4.10 of Chapter 3, we should
verify that, for all µ, the convergence∫

Em

|kµ(s)x|Y ds −→
m→∞

0

takes place uniformly in |x|X ≤ 1, when either Em is a decreasing sequence with
|Em| → 0, or else Em = {x : |x| > m}.

To see that this is the case for the multipliers of Theorem 5.2, observe that∫
E

|kµ(s)x|Y ds ≤ ‖kµ(·)x‖t′ |E|
1/t ≤ C ‖mµ(·)x‖t |E|

1/t ,

and this tends to 0 uniformly in |x|X ≤ 1 as |E| → 0 by the assumption.
As for the estimate for large sets going to infinity, we have from Rem. 5.1, for

R > 1,

(5.4) sup
|x|X≤1

∫
|s|>R

|kµ(s)x|Y ds ≤ C sup
|x|X≤1

‖mµ(·)x‖RMt −→
R→∞

0

by assumption. �

Remark 5.5. When ‖mµ(·)x‖Mt <∞, it is clear that we have ‖mµ(·)x‖t <∞
and ‖mµ(·)x‖RMt → 0 as R→∞ for each x ∈ X individually; hence what is new
in the additional assumption (5.3) is the uniformity in |x|X ≤ 1. This condition
is trivially fulfilled if we replace the strong estimate ‖mµ(·)x‖Ṁt(Y ) ≤ κ |x|X and

its dual in the assumption of Theorem 5.2 by the single operator-norm condition
‖mµ(·)‖Ṁt(L(X,Y )) ≤ κ. (Now both X and Y are required to have Fourier-type t.)

Remark 5.6. We can also stay with strong conditions if we slightly strengthen
the smoothness requirement ‖mµ(·)x‖Ṁt(Y ) ≤ κ |x|X to

(5.7)∥∥δdαh mµ(·)x
∥∥
Lt(Y )

≤ κ2µ(n/t−Γ|α|)hαΓ |x|X , Γ > 1/t, for all |α|∞ ≤ 1.



160 Fourier-embeddings and multiplier theorems

That (5.7) implies Ṁt(mµ(·)x) ≤ cκ |x|X and the convergence statement in (5.3)
is contained in Lemma 4.2.

The first estimate in (5.3) holds if we require that

‖mµ(·/r)x‖Mt(Y ) ≤ κ |x|X
for some fixed r = r(µ), possibly depending on µ but not on x ∈ X, instead of
allowing for r = r(µ, x) as in the requirement ‖mµ(·)x‖Ṁt(Y ) ≤ κ |x|X . (This

follows from the fact that ‖f‖t ≤ r−n/t ‖f(·/r)‖Mt .) Under the assumption (5.7),
we can take r(µ) = 2−µ (cf. Lemma 4.2).

Using Cor. 4.10 and the above remarks, it is straightforward to derive from
Theorem 5.2 corollaries of more classical appearance, but stronger than the usual
forms of such results. We consider separately the cases of non-trivial (t > 1) and
trivial (t = 1) Fourier-type, since writing down the classical-style condition for
the latter requires slightly different treatment, although both cases are contained
in a uniform manner in the general conditions of Theorem 5.2.

We first consider non-trivial Fourier-type:

Corollary 5.8. Let X and Y have Fourier-type t ∈ ]1, 2], and suppose that

(5.9) ‖Dαmµ(·)x‖t ≤ 2µ(n/t−|α|) |x|X , ‖Dαmµ(·)′y′‖t ≤ 2µ(n/t−|α|) |y′|Y ′
for all α ∈ Nn satisfying |α|∞ ≤ 1 and |α|1 ≤ bn/tc + 1. Then m is a Fourier
multiplier from Bs,p

q (X) to Bs,p
q (Y ) for all s ∈ R, p, q ∈ [1,∞].

Proof. By Cor. 4.10, the assumptions imply ‖δαhmµ(·)x‖t ≤ cκ2µ(n/t−|α|γ)hαγ

(and the dual condition) for |α|∞ ≤ 1, where γ = (bn/tc+ 1)/n > (n/t)/n = 1/t.
Then Rem. 5.6 completes the argument. (Now d = 1.) �

With operator-norm estimates in place of strong ones, and these estimates
required for all |α|1 ≤ bn/tc+ 1 (instead of just those with also satisfy |α|∞ ≤ 1),
this result is shown in Girardi and Weis [35] (Cor. 4.13) as a corollary of their
general multiplier theorem.

Now we consider the situation with no Fourier-type (nor any other geometric
assumption) imposed on the Banach spaces X and Y . In this case, we must
modify the assumptions of Cor. 5.8 a little, since the bound |α|∞ ≤ 1 would
imply that |α|1 ≤ n, and so there would be no α for which the upper limit in the
condition |α|1 ≤ bn/tc+ 1 = n+ 1 (when t = 1) is achieved. We need to include
some α’s for which this bound is reached, but in order to keep the number of
such multi-indices at a minimum, we introduce the following set:

In := {α ∈ {0, 1, 2}n : αi = 2 for at most one i = 1, . . . , n}.
Now the condition in terms of derivative estimates reads as follows:

Corollary 5.10. Let X and Y be any Banach spaces, and suppose that (5.9)
holds with t = 1 for all α ∈ In. Then m is a Fourier multiplier from Bs,p

q (X) to
Bs,p
q (Y ) for all s ∈ R, p, q ∈ [1,∞].
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Proof. The aim is to check the condition (5.7) with d = 2. Cor. 4.10 is not
directly applicable, but it is easy to modify the same ideas to get the desired
result:

Given α ∈ {0, 1}n \ {0}, consider the |α|1 multi-indices θj := α + ej, where
αj = 1. It is evident that

∑
θj = (|α|+ 1)α, θj ≤ 2α and θj ∈ In.

Now we have∥∥δ2α
h mµ(·)x

∥∥
1
≤ 2|α|−1

∥∥∥δθjh mµ(·)x
∥∥∥

1
≤ c

∥∥∥Dθjmµ(·)x
∥∥∥

1
hθ

j ≤ cκ2µ(n−|θj|)hθj |x|X .

Multiplying the |α| estimates for all the different θj’s, we further obtain∥∥δ2α
h mµ(·)x

∥∥|α|
1
≤
(
cκ2µ(n−(|α|+1))

)|α|
h
∑
θj |x||α|X ,∥∥δ2α

h mµ(·)x
∥∥

1
≤ cκ2µ(n−|α|(|α|+1)/|α|)hα(|α|+1)/|α| |x|X .

Since (|α|+1)/ |α| ≥ (n+1)/n(=: Γ) > 1, we obtain the estimate (5.7) as desired
(for it is clear that the verification of the dual condition using the dual assumption
is exactly the same). �

Other classical-looking variants (e.g., with derivative and difference condi-
tions combined, as in the Strömberg–Torchinsky conditions (4.4)) may be
obtained in a similar and rather obvious fashion from the general result, Theo-
rem 5.2. But the examples given above already show that our approach can be
used to reprove, and in fact, improve, the corollaries derived by Girardi and
Weis [35] from their general multiplier theorem. However, the relation between
the two general theorems is not yet clarified, and this is the problem we now take
up.

6. Relation to Girardi–Weis conditions

The purpose of this section is to compare the conditions of our Theorem 5.2
with those of Girardi and Weis ([35], Theorem 4.8). Their sufficient condition
for m to be a Fourier multiplier from Bs,p

q (X) to Bs,p
q (Y ) for all s ∈ R, p, q ∈

[1,∞], is

inf
r∈]0,∞[

‖mµ(·/r)‖
B
n/t,t
1 (L(X,Y ))

≤ κ

for all µ ∈ N, where t is a Fourier-type for both X and Y . Comparing this
with Rem. 5.5, in order to show that Theorem 5.2 implies the Girardi–Weis

theorem, we should show that B
n/t,t
1 (L(X,Y )) ↪→Mt(L(X,Y )).

In order to prove this fact, we exploit a characterization of the Besov spaces
in terms of maximal functions. We first need the following auxiliary operators:

Definition 6.1. We define the maximal functions

ϕ∗µf(x) := sup
y∈Rn

|ϕµ ∗ f(y)|
1 + (2µ |y − x|)a

,

where a > 0 is fixed and “sufficiently large”.
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Of course, the definition depends on the choice of a > 0. However, the exact
value is immaterial, as long as the value is large enough. Namely, we then have
the estimate (see [83], Eq. (2.3.6/22))

(6.2) ‖ϕµ ∗ f‖p ≤
∥∥ϕ∗µf∥∥p ≤ c ‖ϕµ ∗ f‖p .

(The first inequality above is obvious since ϕ∗µf dominates ϕµ∗f even pointwise.)
This leads to the following characterization of the Besov spaces: For all s ∈ R,
p, q ∈ [1,∞], we have f ∈ Bs,p

q (X) if and only if∥∥∥∥(2µs
∥∥ϕ∗µf∥∥p)∞µ=0

∥∥∥∥
`q

is finite, and this quantity is equivalent to the norm ‖f‖Bs,pq . (Although [83]

treats spaces of scalar-valued functions, it is not difficult to see that the proofs
of the results quoted above do not depend on this in any way, and so the results
immediately generalize to the vector-valued situation.)

Now let us see how the differences of ϕµ ∗f can be controlled in terms of ϕ∗µf :

Lemma 6.3. The following inequality holds:

‖δαh (ϕµ ∗ f)‖p ≤ Cα
∏

i:|hi|≤2−µ

(2µ |hi|)αi
∥∥ϕ∗µf∥∥p

Proof. We apply Cor. 2.2 to ϕµ ∗ f . To estimate the maximum, let ψ̂0 ∈ D

be 1 on the support of ϕ̂0, and ψ̂µ := ψ̂0(2−µ·). Then ϕµ ∗ f = ψµ ∗ (ϕµ ∗ f) and

max
|xi−yi|≤αi|hi|

|Dα(ϕµ ∗ f)(y)|

≤ max
y

∫
|Dαψµ(v)(ϕµ ∗ f)(y − v)| dv

= max
y

∫
2µ(|α|+n) |Dαψ0(2µv)(ϕµ ∗ f)(y − v)| dv

= 2µ|α| max
|ui|≤αi2µ|hi|

∫ ∣∣Dαψ0(v)(ϕµ ∗ f)(x+ 2−µu− 2−µv)
∣∣ dv

≤ 2µ|α|(ϕ∗µf)(x) max
u

∫
|Dαψ0(v)| (1 + |u− v|)a) dv

≤ 2µ|α|(ϕ∗µf)(x)Cα provided |hi| ≤ 2−µ when αi 6= 0.

We get ‖δαh (ϕµ ∗ f)‖p ≤ Cα |(2µh)α|
∥∥ϕ∗µf∥∥p. The proof is completed by ob-

serving that

‖δαh (ϕµ ∗ f)‖p =
∥∥∥δα−βh δβh(ϕµ ∗ f)

∥∥∥
p
≤ 2|α|−|β|

∥∥∥δβh(ϕµ ∗ f)
∥∥∥
p

for 0 ≤ β ≤ α, which permits us to reduce the considerations to those components
of h which are smaller than 2−µ. �

Proposition 6.4. B
n/p,p
1 ↪→Mp.
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Proof. Since ‖f‖p ≤ ‖f‖n/p,p;1, it suffices to estimate the integrals in the

definition of ‖f‖Mp . We derive an estimate for each of the terms ϕµ ∗ f , µ ∈ N,
whose sum is f . Lemma 6.3 is used in the first step:( ∏

i:αi=1

∫ 1

0

dhi
hi
h
−1/p
i

)∥∥δdαh (ϕµ ∗ f)
∥∥
p

≤ C

( ∏
i:αi=1

∫ 1

0

dhi
hi
h
−1/p
i

) ∏
i:hi≤2−µ,αi=1

(2µhi)
d
∥∥ϕ∗µf∥∥p

≤

(∫ 2−µ

0

h−1−1/p+d2µd dh+

∫ ∞
2−µ

h−1−1/p dh

)|α| ∥∥ϕ∗µf∥∥p
=
(
(d− 1/p)−12µ/p + p2µ/p

)|α| ∥∥ϕ∗µf∥∥p = C2µ|α|/p
∥∥ϕ∗µf∥∥p .

Now the sum of the pieces is estimated by( ∏
i:αi=1

∫ 1

0

dhi
hi
h
−1/p
i

)∥∥δdαh f∥∥p ≤ C
∞∑
µ=0

2µ|α|/p
∥∥ϕ∗µf∥∥p ≤ C

∞∑
µ=0

2µn/p
∥∥ϕ∗µf∥∥p ,

and this is equivalent to ‖f‖n/p,p;1. �

Remark 6.5. There is no converse to this result, i.e., B
n/p,p
1 is a strict sub-

space ofMp. In fact, this is easily verified by considering functions of the product
form m(x) =

∏n
i=1 mi(xi); the smoothness requirement imposed on each mi by

the condition m ∈ Bn/p,p
1 is much heavier than that following from m ∈Mp. (Cf.

Rem. 4.11.)

As was explained above, it follows from Prop. 6.4 that Theorem 5.2 implies
the multiplier theorem of Girardi and Weis [35] (excluding some weak-to-
weak-type continuity properties considered by these authors, which we have not
treated). Rem. 6.5 shows that the converse is not true, and Corollaries 5.8

and 5.10 actually show that the difference is substantial: Namely, we haveB
n/t,t
1 ↪→

W k,t for k < n/t, where W k,t is the Sobolev space of order k of Lt-type. Thus
the Girardi–Weis conditions require that the multiplier m should have its dis-
tributional derivatives up to the order k := bbn/tcc locally in Lt; in particular,
this should be the case for ∂km/∂xk1. On the other hand, Cor. 5.8 contains no
reference to derivatives ∂νm/∂xν1 for ν > 1, all higher order derivatives being
mixed ones. It is impossible to derive such Mihlin-type results from the rotation-
invariant approach in [35].

To conclude, a word of explanation is in order, since it was pointed out in [35]
that the Girardi–Weis theorem is sharp. But the sharpness is understood in

the following sense: one cannot replace the Besov space B
n/t,t
1 by a larger space

B
n/v,v
1 for v > t, i.e., v larger than any Fourier-type t for X and Y . This means,
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roughly speaking, that their Hörmander-type, rotation-invariant assumptions are
optimal, whereas our improvement relies on giving away the rotation-invariance
of the conditions.

7. Multipliers on Lebesgue–Bôchner spaces with a priori estimates

We now move from the Besov spaces to the Lp scale, and we first consider
the problem of concluding the boundedness of a multiplier operator on the whole
scale of spaces Lp(X), p ∈ ]1,∞[, provided we know the boundedness for some p̃
in this range. Recall that when X and Y are Hilbert spaces (thus, in particular,
in the classical setting of scalar valued functions), m gives a bounded Fourier
multiplier from L2(X) to L2(Y ) if and only if m ∈ L∞(L(X, Y )), so that this
is a relevant problem in many cases. In a more general Banach space setting,
the hard task is determining the boundedness even for the single p̃; this will be
considered in the following section.

In connection with the Lp spaces (as well as with the Hardy spaces later on),
we always use the homogeneous dyadic decomposition; i.e., mµ and kµ now refer

to φ̂µm and φµ ∗ k, respectively.
We first give a lemma which allows one to check the classical Hörmander

condition in terms of our multiplier conditions.

Lemma 7.1. Suppose ‖δαhmµ‖t ≤ κ2µ(n/t−γ|α|)hαγ for all |α|∞ ≤ d and µ ∈ Z,
where γ ∈ ]0, 1], Γ := d · γ > 1/t and the underlying space has Fourier-type t.
Then

∞∑
µ=−∞

∫
|x|>2|s|

|kµ(x− s)− kµ(x)| dx ≤ Cκ,

Proof. This is a very particular case of Lemma 11.5, proved in the appendix.
It is actually possible to give a slightly shorter proof for this particular case, but
this is left to the interested reader. �

From the work of Hörmander [43] we know that the condition∫
|x|>2|s|

|k(x− s)− k(x)| dx ≤ C

is sufficient to guarantee that k∗ is bounded on all Lp with p ∈ ]1,∞[, provided it
is bounded on one such space Lp̃. Vector-valued generalizations of this result are
also well-known (first proved by A. Benedek, A. P. Calderón and R. Pan-

zone [5]), and thus Lemma 7.1 combined with standard arguments gives the
following:

Theorem 7.2. Let m be a Fourier multiplier from Lp̃(X) to Lp̃(Y ), where
p̃ ∈ ]1,∞[. Suppose

‖δαhmµ(·)x‖t ≤ κ2µ(n/t−γ|α|)hαγ |x|X , ‖δαhmµ(·)′y′‖t ≤ κ2µ(n/t−γ|α|)hαγ |y′|Y ′
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for all |α|∞ ≤ d and µ ∈ Z, where γ ∈ ]0, 1], Γ := d · γ > 1/t and t is a
Fourier-type for X and Y .

Then m is a multiplier from Lp(X) to Lp(Y ) for all p ∈ ]1,∞[. More precisely,
the conditions on mµ(·)x suffice for the conclusion for p ∈ ]1, p̃], and those on
mµ(·)y′ for p ∈ [p̃,∞[.

One can easily derive corollaries of Theorem 7.2, where the difference esti-
mates are checked in terms of conditions for derivatives, in much the same way
as we did in connection with the Besov spaces. The considerations are, however,
so similar, that this really wouldn’t add any novelty here. Instead, we specialize
to the scalar-valued, or more generally, a Hilbert space setting, where we can
remove the a priori boundedness assumption.

Corollary 7.3. Let H1 and H2 be Hilbert spaces and m be an L(H1,H2)-
valued function for which m(·) and m(·)′ are strongly locally integrable and satisfy

‖δαhmµ(·)x‖2 ≤ κ2µ(n/2−γ|α|)hαγ |x|H1
, ‖δαhmµ(·)∗y‖2 ≤ κ2µ(n/2−γ|α|)hαγ |y|H2

for all α ∈ {0, 1}n and µ ∈ Z, where γ > 1/2. Then m is a Fourier multiplier
from Lp(H1) to Lp(H2) for all p ∈ ]1,∞[.

Proof. In view of the facts that Hilbert spaces have Fourier type 2 and
can be identified with their duals by Riesz’ representation theorem, all we need
to show in order to get the conclusion by Theorem 7.2 is the boundedness of
the multiplier operator induced by m from L2(H1) to L2(H2). This, in turn,
amounts to showing that m is essentially bounded. But according to Lemma 4.2
(with t = 2, d = 1, f(·) = mµ(·)x), we have ‖m̌µ(·)x‖1 ≤ Cκ |x|H1

, and hence
‖mµ‖∞ = sup|x|H1

≤1 ‖mµ(·)x‖∞ ≤ Cκ. Since m(ξ) is, at every ξ ∈ Rn \ {0}, a

sum of at most two non-zero terms mµ(ξ) and mµ−1(ξ), we also get the essential
boundedness of m. �

As a very special case, we obtain the following “intersection result”, already
mentioned in the Introduction:

Corollary 7.4 (“Mihlin ∩ Hörmander”). Let m be a locally integrable func-
tion on Rn satisfying

r|α|
(

1

rn

∫
r<|x|<2r

|Dαm(x)|2 dx

)1/2

≤ κ

for all α ∈ {0, 1}n s.t. |α| ≤ ` := bn/2c + 1, and all r ∈ ]0,∞[. Then m is a
Fourier multiplier on Lp for all p ∈ ]1,∞[.

Proof. The condition implies that ‖Dαmµ‖2 ≤ cκ2µ(n/2−|α|), and then

‖δαhmµ‖2 ≤ cκ2µ(n/2−|α|)hα for α s.t. |α|∞ ≤ 1 and |α|1 ≤ `.

Then Cor. 4.10 shows that we have ‖δαhmµ‖2 ≤ cκ2µ(n/2−|α|γ)hαγ, where γ =
`/n = (bn/2c+ 1)/n > 1/2. Then Cor. 7.3 completes the argument. �
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Example 7.5. When n = 3, we have ` = 2. Thus Cor. 7.4 requires estimates
for the derivatives

∂/∂x, ∂/∂y, ∂/∂z, ∂2/∂x∂y, ∂2/∂y∂z, ∂2/∂z∂x.

In addition to these, Mihlin requires ∂3/∂x∂y∂z, whereas Hörmander needs
to add ∂2/∂x2, ∂2/∂y2 and ∂2/∂z2.

Now we go on to the situation without a priori boundedness of the multiplier
(nor the Hilbert space structure with Plancherel’s theorem to give a trivial
device to show it).

8. Multipliers on Bôchner spaces without a priori estimates

This is the problem which forms the heart of matter, i.e., giving reasonable
sufficient conditions for Fourier multipliers between Lp spaces of vector-valued
functions, without having the known boundedness on one Lp̃ to begin with. Its
solution has taken much hard effort and created lots of beautiful mathematics
in the past decades. The class of Banach spaces X for which Mihlin’s theorem
is valid on Lp(R1;X) for scalar-valued multipliers m was identified, by D. L.

Burkholder and J. Bourgain, with the class of those X with the UMD
property (unconditionality of martingale differences) in the 80’s. (See [15] for an
exposition of these matters and extensive references to the related work, including
earlier history.) F. Zimmermann [89] extended these results to Lp(Rn;X).

However, even after these deep results, the case of operator-valued m required
another fundamental idea which turned out to be the notion of R-boundedness,
systematically studied by Ph. Clément, B. de Pagter, F. A. Sukochev

and H. Witvliet [21] and by Weis [87] but implicit already in the work of
Bourgain [12]. An operator-valued multiplier theorem on Lp(X), with X UMD,
was first obtained by Weis [87]. By now, several results in this direction are
known, the sharpest ones so far proved by Girardi and Weis [36], and in
Chapter 2.

Chapter 2 has its main emphasis on singular convolution operators, and the
multiplier theorems are obtained as an application, in the spirit of (1.5). Taking
the same ideas as the starting point, we now aim at stronger versions of these
multiplier theorems, Theorems 8.7 and 8.13. (See also Cor. 8.16 for a more
“classical style” statement.) This is achieved by combining the convolution results
from Chapter 2 with a sharper embedding lemma, which we next prove. It is a
variant of Prop. 3.2 with a logarithmic weight; observe that w(x) := log(2 + |x|)
satisfies the assumptions of the lemma.

In analogy with the treatment of the Besov spaces, let us define

‖f‖Mt
w

:= ‖f‖t +
∑

0 6=α∈{0,1}n

∑
k:αk=1

( ∏
i:αi=1

∫ 1

0

dhi
hi
h
−1/t
i

)
w(h−1

k )
∥∥δdαh f∥∥t ,

where d := 1 if t > 1 and d := 2 if t = 1, as before.
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Lemma 8.1. Let the underlying space have Fourier-type t, and let w(x) ≡
w(|x|) be radial, increasing, and such that w(2x) ≤ cw(x). Then∫

Rn

∣∣∣f̂(x)
∣∣∣w(x) dx ≤ C ‖f‖Mt

w
.

Proof. Adapting the proof of Prop. 3.2 to the present situation, we now get∫
E(α,ρ)

∣∣∣f̂(x)
∣∣∣w(x) dx

≤ C
∑
j∈Nα

∥∥∥∥∥x 7→ ∏
i:αi=1

(1− ei2πei·x/b2jiρi)df̂(x)

∥∥∥∥∥
t′

(∫
E(α,ρ,j)

wt(x) dx

)1/t

≤ C
∑
j∈Nα

∥∥∥∥∥ ∏
i:αi=1

∆d
ei/b2jiρi

f

∥∥∥∥∥
t

∏
i:αi=0

ρ
1/t
i ·

∏
i:αi=1

(2jiρi)
1/t ·

∑
k:αk=1

w(2jkρk).

Logarithmic averaging gives( ∏
i:αi=1

∫ 2r

r

dρi
ρi

)∫
E(α,ρ)

∣∣∣f̂(x)
∣∣∣w(x) dx

≤ Cr(n−|α|)/t

( ∏
i:αi=1

∫ 1/r

0

dhi
hi
h
−1/t
i

) ∑
k:αk=1

w(h−1
k ) ‖δαhf‖t .

For α = 0 we have∫
E(0,ρ)

∣∣∣f̂(x)
∣∣∣w(x) dx ≤

∥∥∥f̂∥∥∥
t′

(∫
E(0,ρ)

wt(x) dx

)1/t

≤ C ‖f‖tw(|ρ|) |ρ|n/t ,

and the proof is completed by taking the logarithmic average again, and fixing
r := 1, say. �

Corollary 8.2. Let
∥∥δdαh f∥∥t ≤ hαΓ, where Γ > 1/t, and w(x) = log(2+ |x|).

Then we have
∥∥∥f̂w∥∥∥

1
≤ C.

Proof. We combine the elementary estimate( ∏
i:αi=1

∫ 1

0

dhi
hi
h
−1/t
i

)
log(2 + h−1

k )
∥∥δdαh f∥∥t

≤
(∫ 1

0

dh

h
h−1/t+Γ

)|α|−1 ∫ 1

0

dhk
hk

h
−1/t+Γ
k log(2 + h−1

k ) ≤ C.

with Lemma 8.1. �

The point of considering the logarithmically weighted conditions is the fol-
lowing result from Chapter 2. The assumptions in the following involve several
concepts which we define only after the statement of the result.
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Proposition 8.3 (Prop. 4.6 of Chapter 2). Given an L(X,Y )-valued function
m, denote by

(8.4) M(·) := (mµ(2µ·))∞µ=−∞ = φ̂0(·)(m(2µ·))∞µ=−∞

the sequence of the dyadic pieces of m, dilated so that they are all supported on
the support of φ̂0. Its inverse Fourier transform is

K(·) := M̌(·) = (2−nµkµ(2−µ·))∞µ=−∞ = (φ0 ∗ 2−nµk(2−µ·))∞µ=−∞.

Let X and Y be UMD-spaces and p ∈ ]1,∞[, w(x) := log(2 + |x|), and the
estimate

(8.5) ‖K(·)′g w(·)‖L1(Rad(Lp′ (X′))) ≤ C ‖g‖Rad(Lp′ (Y ′)) ,

hold for all g ∈ (εµ)∞µ=−∞ ⊗ Lp
′
(Y ′).

Then m is a Fourier multiplier from Lp(X) to Lp(Y ).

Let us explain the notation adopted in Prop. 8.3. First, (εµ)∞µ=−∞ is the Rade-
macher system of independent random variables (on some probability space Ω)
with P(εµ = 1) = P(εµ = −1) = 1/2. Then g ∈ (εµ)∞−∞ ⊗ Lp

′
(Y ′) (where ⊗

designates the algebraic tensor product) can be identified with a finitely non-zero
sequence (gµ)∞−∞, with gµ ∈ Lp

′
(Y ′). By K(·)′g (where ′ denotes the Banach

adjoint) we mean the sequence

K(ξ)′g =
(
2−nµkµ(2−µξ)′gµ

)∞
µ=−∞ ;

the operator 2−nµkµ(2−µξ)′, which belongs to L(Y ′, X ′), is understood to be
canonically extended to L(Lp

′
(Y ′), Lp

′
(X ′)). Thus, for every ξ, K(ξ)′g is a finitely

non-zero sequence with entries in Lp
′
(X ′).

For a Banach space Z, the space Rad(Z) (which appears in Prop. 8.3 with
Z = Lp

′
(X ′) and Lp

′
(Y ′)) is the completion of the set of finitely non-zero Z-

sequences in the norm

(8.6)
∥∥(gµ)∞µ=−∞

∥∥
Rad(Z)

:= E

∣∣∣∣∣
∞∑

µ=−∞

εµgµ

∣∣∣∣∣
Z

≈

E ∣∣∣∣∣
∞∑

µ=−∞

εµgµ

∣∣∣∣∣
v

Z

1/v

,

where E is the expectation related to the random variables εµ. The ≈ sign
indicates the boundedness of the ratio of the last two quantities by absolute
constants, for any v ∈ ]0,∞[. (This is Kahane’s inequality.)

We recall from Chapter 2 the following useful properties of Rad(Z) in this
connection:

• Lv(Rad(Z)) ≈ Rad(Lv(Z)) (isomorphism of spaces) for any v ∈ ]0,∞[,
• Rad(Z) has Fourier-type t if and only if Z has,
• Rad(Z)′ ≈ Rad(Z ′) when Z is UMD (weaker assumptions would suffice).

Now it should be clear what is meant by ‖M(·)′g w(·)‖L1(Rad(Lp
′ (Y ′))) and by

‖g‖Rad(Lp
′ (Y ′)) in the assumption (8.5).
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Prop. 8.3 will now be combined with the preceding Fourier embedding results,
so as to check the condition (8.5) more directly in terms of the smoothness of the
multiplier m. We are going to derive two types of theorems: one with smooth-
ness expressed in terms of the norm of Mt

w(L(Rad(X),Rad(Y ))) (this version
is Theorem 8.7); and the other with somewhat stronger smoothness conditions
of the form (4.1), but relaxing the uniform operator topology to strong topology
estimates (this is Theorem 8.13). It seems to us that the latter version is the
more useful of the two, since the conditions (4.1) are so much simpler than the
Mt

w condition (8.8); however, with the first version we are able to recover and
improve the multiplier theorem in [36].

The proof of this result is almost a repetition of that of Cor. 3.11 in [36]; we
simply apply our new Fourier embeddings instead of the ones used in [36].

Theorem 8.7. Let X and Y be UMD-spaces and w(·) := log(2 + |·|). Let M
as in (8.4) satisfy

(8.8) ‖M(·)‖Mt
w(L(Rad(X),Rad(Y ))) =: κ <∞,

where t ∈ ]1, 2] is a Fourier-type for both X and Y .
Then m is a Fourier-multiplier from Lp(X) to Lp(Y ) for all p ∈ ]1,∞[.

Proof. Since ‖T‖L(U,V ) = ‖T ′‖L(V ′,U ′) = ‖T̃‖L(Lp(U),Lp(V )), where T̃ is the
canonical extension of T to the indicated space, it follows that

‖M(·)‖Mt
w(L(Rad(X),Rad(Y ))) = ‖M(·)‖Mt

w(L(Lt(Rad(X)),Lt(Rad(Y ))))

= ‖M(·)′‖Mt
w(L(Rad(Y ′),Rad(X′))) = ‖M(·)′‖Mt

w(L(Lt(Rad(Y ′)),Lt(Rad(X′)))) .

For g ∈ Rad(Lt(Y ′)) ≈ Lt(Rad(Y ′)), we can apply Lemma 8.1 to the function
M(·)′g ∈ Lt(Rad(Lt(Y ′))), to the result

(8.9) ‖K(·)′g w(·)‖L1(Lt(Rad(X′))) ≤ C ‖M(·)′g‖Mt
w(Lt(Rad(X′)))

≤ Cκ ‖g‖Lt(Rad(Y ′)) ,

where we used the fact that Y having Fourier-type t implies the same property
for Y ′, Rad(Y ′), and finally for Lt(Rad(Y ′)).

Similarly, for every v ∈ Rad(Y ′), we have

‖K(·)′v w(·)‖L1(Rad(Y ′)) ≤ C ‖M(·)′v‖Mt
w(Rad(Y ′)) ≤ Cκ ‖v‖Rad(Y ′) .

If g ∈ L1(Rad(Y ′)) and we apply the previous estimate to every point evaluation
g(s) ∈ Rad(Y ′) in place of v, integrate over s ∈ Rn and apply Fubini’s theorem,
we obtain

(8.10) ‖K(·)′g w(·)‖L1(L1(Rad(X′))) ≤ Cκ ‖g‖L1(Rad(Y ′)) .

Now we can apply an interpolation theorem ([6], Theorem 5.1.2) to conclude
from (8.9) and (8.10) that

‖K(·)′g w(·)‖L1(Lp′ (Rad(X′))) ≤ Cκ ‖g‖Lp′ (Rad(Y ′)) for p′ ∈ ]1, t]
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and then Prop. 8.3 shows that m is a multiplier from Lp(X) to Lp(Y ) for p ∈
[t′,∞[.

Considerations which are directly analogous to the ones above, with M(·) in
place of M(·)′, can be used to show the dual estimates

‖K(·)f w(·)‖L1(Lp(Rad(Y ))) ≤ Cκ ‖f‖Lp(Rad(X)) for p ∈ ]1, t]

and to conclude that m(·)′ is a multiplier from Lp
′
(Y ′) to Lp

′
(X ′) for p′ ∈ [t′,∞[.

(Observe that X and Y are reflexive when they are UMD, so that the situation
is completely symmetric to the previous one.)

A well-known duality argument now shows that m is a multiplier from Lp(X)
to Lp(Y ) for p ∈ ]1, t], and interpolation can be used to cover the remaining
values of the index p. �

Remark 8.11. Theorem 8.7 covers the Lp-multiplier theorem (Theorem 4.1
in [36]) of Girardi and Weis, where the assuption (8.8) is replaced by the con-
dition M ∈ BA

t (L(X, Y )). Here BA
t is a modified Besov space, where membership

is determined by the finiteness of the norm

‖f‖BAt :=
∞∑
µ=0

(µ+ 1)2µn/t ‖ϕµ ∗ f‖t ;

thus BA
t is slightly smaller than B

n/t,t
1 , but Bs,t

1 ↪→ BA
t whenever s > n/t.

In order to show that Theorem 8.7 implies the multiplier theorem of Girardi

and Weis, we should prove that Mt
w(L(X, Y )) ↪→ BA

t (L(X, Y )) for w(·) :=
log(2 + |·|), as earlier. But an easy modification of the proof of Prop. 6.4 shows
that

‖f‖Mt
w
≤ C

∞∑
µ=0

(µ+ 1)2µn/t
∥∥ϕ∗µf∥∥t ,

and Eq. (6.2) then completes the argument.

We then come to the second version of our Lp multiplier theorem. In addition
to the differences in comparison to Theorem 8.7 which were already mentioned,
we also wish to express the assumptions without reference to the Rademacher
classes Rad(X) etc. but rather in terms of expressions similar to the notion of R-
boundedness in the first papers [21, 87] systematically dealing with this matter.

We first give a lemma explaining the relation between the various forms of
the conditions.

Lemma 8.12. Suppose that

E

∥∥∥∥∥
∞∑

µ=−∞

εµδ
α
h [mµ(2µ·)]xµ

∥∥∥∥∥
Lt(Y )

≤ κE

∣∣∣∣∣
∞∑

µ=−∞

εµxµ

∣∣∣∣∣
X

hαγ

for all finitely non-zero sequences (xµ)∞−∞ ⊂ X.
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Then, for M as in (8.4), we have

‖δαhM(·)f‖Lt(Rad(Lt(Y ))) ≤ Cκ ‖f‖Rad(Lt(X)) h
αγ

for all f ∈ (εµ)∞−∞ ⊗ Lt(X), and also

‖δαhmµ(·)x‖Lt(Y ) ≤ κ |x|X 2µ(n/t−|α|γ)hαγ

for all µ ∈ Z.

Proof. If x := (xµ)∞−∞, our assumption can be written ‖δαhM(·)x‖Rad(Lt(Y )) ≤
κ ‖x‖Rad(X) h

αγ. For f as in the statement of the lemma, we can apply the previous

inequality to each f(s), s ∈ Rn. Then the first claim follows by taking the power
of t, integrating over s ∈ Rn and using Fubini’s theorem. (Note that we can take
the (equivalent) t-norm in Rad(Z).)

To see the second assertion, simply choose all but one of the xµ’s vanish in
the assumption. This gives ‖δαh [mµ(2µ·)]x‖Lt(Y ) ≤ κ |x|X hαγ. Then note that

‖δαh [mµ(2µ·)]x‖Lt(Y ) = ‖(δα2µhmµ)(2µ·)x‖Lt(Y ) = 2−µn/t ‖δα2µhmµ(·)x‖Lt(Y ) .

The assertion follows by taking a new variable y := 2µh. �

Now we come to the theorem. The point of the two alternative conditions is
that we require a randomized condition for either the multiplier or its pointwise
adjoint, but once this is satisfied, a simple non-randomized bound suffices for the
other.

Theorem 8.13. Let X and Y be UMD-spaces and m be an L(X, Y )-valued
function. Suppose, for every α ∈ {0, 1}n and h ∈ Rn+, either

E

∥∥∥∥∥
∞∑

µ=−∞

εµδ
α
h [mµ(2µ·)]xµ

∥∥∥∥∥
Lt(Y )

≤ κE

∣∣∣∣∣
∞∑

µ=−∞

εµxµ

∣∣∣∣∣
X

hαγ,

‖δαhmν(·)′y′‖Lt(X′) ≤ κ2ν(n/t−|α|γ) |y′|Y ′ h
αγ

(8.14)

for all finitely non-zero (xµ) ⊂ X, y′ ∈ Y ′ and ν ∈ N, or

‖δαhmν(·)x‖Lt(Y ) ≤ κ2ν(n/t−|α|γ) |x|X h
αγ,

E

∥∥∥∥∥
∞∑

µ=−∞

εµδ
α
h [mµ(2µ·)′]y′µ

∥∥∥∥∥
Lt(X′)

≤ κE

∣∣∣∣∣
∞∑

µ=−∞

εµy
′
µ

∣∣∣∣∣
Y ′

hαγ
(8.15)

for all x ∈ X, ν ∈ N, and all finitely non-zero (y′µ) ⊂ Y ′. In both cases, we
assume that t ∈ ]1, 2] is a Fourier-type for both X and Y , and γ > 1/t.

Then m is a Fourier multiplier from Lp(X) to Lp(Y ) for all p ∈ ]1,∞[.

Proof. Assume first the set of conditions (8.14). Then by Cor. 8.2 (with
M(·)f in place of f(·)) and Lemma 8.12 we have

‖K(·)f w‖L1(Rad(Lt(Y ))) ≤ Cκ ‖f‖Rad(Lt(X))
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for f ∈ (εµ)∞−∞⊗Lt(X), and Prop. 8.3 shows that the adjoint m(·)′ is a multiplier

from Lt
′
(Y ′) to Lt

′
(X ′). Now we can use Theorem 7.2 to conclude that m(·)′ is

actually a multiplier from Lp(Y ′) to Lp(X ′) for all p ∈ ]1,∞[, and the same result
for m itself follows by duality.

The case of the other set of conditions (8.15) is similar; now we obtain directly
the boundedness from Lt

′
(X) to Lt

′
(Y ), and then with Theorem 7.2 from Lp(X)

to Lp(Y ) for all p ∈ ]1,∞[. �

Using the results in Sect. 4, one finds that Theorem 8.13 implies and improves
Theorem 4.21 of Chapter 2. Since the way of deriving such corollaries is very much
similar to the corresponding task in the earlier sections, we only give a simple
example to illustrate how to work with the randomized estimates that constitute
the main new ingredient in this section.

Corollary 8.16. Let X and Y be UMD-spaces with Fourier-type t ∈ ]1, 2],
let m be an L(X,Y )-valued function, and suppose that the collection{
|ξ||α|Dαm(ξ) : α ∈ Nn with |α|∞ ≤ 1 and |α|1 ≤ bn/tc+ 1, ξ ∈ Rn \ {0}

}
is R-bounded. Then m is a Fourier multiplier from Lp(X) to Lp(Y ) for all p ∈
]1,∞[.

Proof. The assumption means, by the definition of R-boundedness, that

E

∣∣∣∣∣∑
µ

εµ |ξµ||α|Dαm(ξµ)xµ

∣∣∣∣∣
Y

≤ κE

∣∣∣∣∣∑
µ

εµxµ

∣∣∣∣∣
X

,

for every choice of the ξµ ∈ Rn \ {0}, and so in particular

E

∣∣∣∣∣
∞∑

µ=−∞

εµ |ξ||α|Dα[φ̂0(·)m(2µ·)](ξ)xµ

∣∣∣∣∣
Y

≤
∑
θ≤α

E

∣∣∣∣∣∑
µ

εµ2µ|θ| |ξ||θ|Dθm(2µξ) · |ξ||α|−|θ|Dα−θφ̂0(ξ)xµ

∣∣∣∣∣
Y

≤ κCE

∣∣∣∣∣∑
µ

εµxµ

∣∣∣∣∣
X

for all finitely non-zero sequences (xµ)∞−∞ ⊂ X. The last estimate used the
assumed R-boundedness (with ξµ = 2µξ), and the uniform boundedness of the

quantities |ξ||α|−|θ| φ̂0(ξ), for θ ≤ α ∈ {0, 1}n.
The estimate is written more compactly as ‖DαM(ξ)x‖Rad(Y ) ≤ Cκ ‖x‖Rad(X),

with M(·) defined in (8.4). It follows, since M(·) is compactly supported, that
‖DαM(·)x‖Lt(Rad(Y )) ≤ Cκ ‖x‖Rad(X). This estimate holding for all |α|∞ ≤ 1,
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|α|1 ≤ bn/tc+ 1, implies, by Cor. 4.10, that we have

‖δαhM(·)x‖Lt(Rad(Y )) ≤ Cκ ‖x‖Rad(X) h
αγ

for all |α|∞ ≤ 1, with γ = (bn/tc + 1)/n > 1/t, which is the first condition
in (8.14).

The second, non-randomized, estimate in (8.14) follows easily by similar
reasoning. In fact, even the second estimate in (8.15) is true, since the R-
boundedness of a set T ⊂ L(X, Y ) also implies the R-boundedness of the col-
lection T′ := {T ′ : T ∈ T} of its adjoint operators whenever X is a B-convex
space, in particular, when X is UMD (see Lemma 3.4 of Chapter 2; but since the
non-randomized estimate suffices for the adjoint operators, we need not resort to
this). �

9. Multipliers on Hardy spaces

The Hardy spaces Hp, p ∈ ]0, 1], provide a natural continuation of the scale
of the Lp spaces, p ∈ ]1,∞[. In the scalar-valued situation there exist various
equivalent characterizations of these spaces; not all of the equivalences remain
valid in the vector-valued situation, and we use here the definition in terms of
the atomic decomposition, see Chapter 1.

Multipliers on Hp (of scalar-valued functions) have been treated by various
authors, but we only mention the rather general theory (also covering weighted
spaces, which we do not consider) developed by J.-O. Strömberg and A. Tor-

chinsky [81], since their approach generalizes easily to the vector-valued context.
These authors formulated a scale of Hörmander-type conditions, already stated
in (4.4), such that one obtains boundedness on any desired Hp by choosing the
smoothness index in these conditions large enough.

The multiplier problem on the real-variable Hardy spaces of vector-valued
functions was considered in Chapter 1, where it was observed that the scalar-
valued results from [81] essentially go through in the vector-valued setting as such,
only assuming the appropriate Fourier-type of the underlying space. This success
is largely due to the generality of the conditions considered by Strömberg and
Torchinsky, allowing for different values of the exponent q in (4.4) and making
use of the Hausdorff–Young inequality, instead of restricting to q = 2 and the
use of Plancherel’s theorem. This latter approach, followed by many authors,
has the unfortunate restriction of generalizing only to the class of Banach spaces
of Fourier-type 2, which is, as shown by S. Kwapień [55], exactly the class of
Hilbert spaces.

Strömberg and Torchinsky considered the following condition which a
convolution kernel k may or may not satisfy:
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Definition 9.1. Define the set of conditions(∫
r<|x|<2r

|Dαk(x)|q dx

)1/q

≤ κr−n/q
′−|α|,(∫

r<|x|<2r

∣∣Dβk(x)−Dβk(x− z)
∣∣ dx

)1/q

≤ κr−n/q
′−bb`cc%(

|z|
r

; `− bb`cc),

which should hold for all |α| ≤ bb`cc and |β| = bb`cc, for all r ∈ ]0,∞[ and all
z ∈ Rn with |z| ≤ r/2, all derivatives being classical and continuous. We denote
by bb`cc the greatest integer which is strictly less than `. Moreover, %(x; ε) := xε

if ε ∈ ]0, 1[ and %(x; 1) := x log(x−1).
When k satisfies these conditions, we denote this by k ∈ K(q, `). (The no-

tation in [81] is k ∈ M̃(q, `).) We also say that k ∈ K(q, `) if k =
∑∞
−∞ kµ is

the dyadic decomposition of k in the Fourier side, and
∑ν
−ν kµ satisfy K(q, `)

uniformly (i.e., with the same κ) in ν ∈ N.

The significance of these conditions lies in the following result which, in the
scalar case, is implicitly contained in [81] (where only multiplier theorems are
formulated, although convolution theorems are proved on the way, in accordance
with (1.5)). The vector-valued version is Theorem 5.6 of Chapter 1.

Proposition 9.2 ([81], Ch. XI). Suppose that k is an L(X, Y )-valued kernel
with k(·)x ∈ K(q, `) uniformly in |x|X ≤ 1, where q ∈ ]1,∞[ and ` > 0; and
moreover that f 7→ k ∗ f is bounded from Lq(X) to Lq(Y ).

Then f 7→ k ∗ f is bounded from Hp(X) to Hp(Y ) for all p ∈ ](1 + `/n)−1, 1],
i.e., for all p ∈ ]0, 1] s.t. ` > n(p−1 − 1).

The approach of Strömberg and Torchinsky to the Hp-multiplier the-
orems in [81] was essentially to check the condition k ∈ K(q, `) in terms of a

multiplier condition m ∈ M(q̃, ˜̀) (which is of Hörmander or 1-norm type). This
approach was also followed in Chapter 1. The purpose of the present section is
to check the condition k ∈ K(q, `) through the use of our Mihlin or∞-norm type
conditions of the form (4.1). This is done in the following lemma, whose proof is
given in the Appendix.

Lemma 9.3. Let m be an L(X, Y )-valued function, suppose

‖δαhmµ(·)x‖t ≤ κ2µ(n/t−|α|γ)hαγ |x|X
for all |α|∞ ≤ d and some γ ∈ ]0, 1], where Γ := d · γ = `+ (n− 1)/q′ + 1/t, for
certain ` > 0 and q ∈ ]1,∞[, and Y has Fourier-type t.

Then k(·)x ∈ K(q, `) uniformly in |x|X ≤ 1, where k = m̌.

Proof. This is contained in Lemmata 11.4 and 11.5. �

Now we are ready for the theorem:
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Theorem 9.4. Let m be a Fourier multiplier from Lp̃(X) to Lp̃(Y ) for some
p̃ ∈ ]1,∞[. Let Y have Fourier-type t ∈ [1, 2], and suppose that

‖δαhmµ(·)x‖t ≤ κ2µ(n/t−|α|γ)hαγ |x|X
for all µ ∈ Z, all |α|∞ ≤ d and some γ ∈ ]0, 1], where Γ := d · γ > 1/t.

Then m is a Fourier multiplier from Hp(X) to Hp(Y ) for all

p ∈
]

n

n+ Γ− 1/t
, 1

]
,

i.e., for all p ∈ ]0, 1] such that Γ > t−1 + n(p−1 − 1).

Proof. Fix some p ∈ ]0, 1] s.t. Γ > t−1 + n(p−1− 1). Then choose q ∈ ]1,∞[
small enough, i.e., q′ ∈ ]1,∞[ large enough, so that q < p̃ and

Γ > t−1 + n(p−1 − 1) + (n− 1)/q′.

Denote by ` > n(p−1 − 1) the number for which the equality

Γ = t−1 + `+ (n− 1)/q′

holds. According to Lemma 9.3, we then have k ∈ K(q, `).
On the other hand, the assumptions in combination with Theorem 7.2 imply

that m is a Fourier multiplier from Lq̃(X) to Lq̃(Y ) for all q̃ ∈ ]1, p̃], in particular,
from Lq(X) to Lq(Y ). Thus f 7→ k ∗ f is bounded from Lq(X) to Lq(Y ), and
k ∈ K(q, `), so Prop. 9.2 shows that f 7→ k ∗ f is also bounded from Hp(X) to
Hp(Y ), since ` > n(p−1− 1). Since p was arbitrary in the range we asserted, this
completes the proof. �

Remark 9.5. The minimal conditions in Theorem 9.4 which guarantee the
boundedness from H1(X) to H1(Y ) (i.e., Γ > t−1) are just the same as those in
Theorem 7.2 which guarantee the boundedness from Lp(X) to Lp(Y ) for p ∈ ]1, p̃].

As before, one can check the assumptions of Theorem 9.4 in terms of various
more or less classical conditions. The procedure should be familiar by now, and we
content ourselves by giving a corollary in the scalar-valued case, for comparison
with the multiplier theory of Strömberg and Torchinsky [81]. (We should
note that these authors consider the multiplier problem on rather general weighted
Hardy spaces, which we have not treated, and we only make a comparison in the
intersection covered by their approach as well as ours, i.e., the unweighted Hp

spaces of scalar-valued functions.)

Corollary 9.6. Let m be a measurable function on Rn such that

‖δαhmµ‖t ≤ κ2µ(n/t−|α|γ)hαγ

for all µ ∈ Z and all |α|∞ ≤ d, where Γ := d · γ > t−1 + n(p−1 − 1), t ∈ [1, 2],
and p ∈ ]0, 1]. Then m is a Fourier multiplier on Hp.

Proof. This is very similar to the proof of Cor. 7.3. �
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The unweighted version (Corollary on p. 164 of [81]) of the multiplier theorem
of Strömberg and Torchinsky concludes the boundedness on Hp from the
assumption m ∈ M(t, `) where ` > n/t + n(p−1 − 1). If we denote the infima of
the admissible Γ (in Cor. 9.6) and ` (in the above mentioned result of Strömberg

and Torchinsky) by Γ̃ and ˜̀, respectively, it is clear (for n ≥ 2 and p ∈ ]0, 1[)
that

Γ̃ ≡ 1

t
+ n(

1

p
− 1) < ˜̀≡ n

t
+ n(

1

p
− 1) < nΓ̃.

Since nΓ̃ > ˜̀ is the largest 1-norm possible if the ∞-norm is Γ̃, we find that our
Cor. 9.6 does not recover the result of Strömberg and Torchinsky. But the
converse is false, also, since the largest ∞-norm is ˜̀ > Γ̃ when the 1-norm is
allowed to be ˜̀, and so we find that our result wins if measured in the ∞-norm,
and Strömberg’s and Torchinsky’s if measured in the 1-norm.

A very concrete illustration of this is obtained if we consider the minimum
number of classical derivatives for checking (by methods of Sect. 4) either of the
conditions:

Example 9.7. Take n = 2 and p = 2/3, so that n(p−1−1) = 1, and moreover
t = 2. The smallest integral Γ satisfying Γ > 1/t + n(p−1 − 1) = 1.5 is Γ = 2,
while the smallest integral ` for which ` > n/t + n(p−1 − 1) = 2 is ` = 3.
Now let us compare the required derivatives in our conditions (|α|∞ ≤ 2) and
the Strömberg–Torchinsky conditions (|α|1 ≤ 3). Common to both are the
derivatives

∂/∂x, ∂/∂y, ∂2/∂x2, ∂2/∂x∂y, ∂2/∂y2, ∂3/∂x2∂y, ∂3/∂x∂y2,

in addition, we need ∂4/∂x2∂y2, whereas Strömberg and Torchinsky need
∂3/∂x3 and ∂3/∂y3.

We conclude that our ∞-norm method no longer outperforms for the Hardy
spaces Hp, p ∈ ]0, 1[, but it still yields results that apply to certain situations not
covered by the 1-norm approach. Neither approach is superior in general, but
one or the other might be better suited to a particular situation.

For the case of H1, on the other hand, the situation is just the same as it was
with the Besov and Bôchner spaces: The minimization of the∞-norm simultane-
ously minimizes the 1-norm, and our Mihlin-type result is a genuine improvement
(in the unweighted situation) of the Hörmander-type result of Strömberg and
Torchinsky.

10. Appendix: Proof of Lemma 4.6

We first give a simple but useful lemma, which shows the monotonicity of our
conditions as a function of the smoothness index γ.

Lemma 10.1. Suppose ‖δαhf‖q ≤ κ2µ(n/q−|α|γα)hαγα for all α ∈ I, a stable

collection. Then ‖δαhf‖q ≤ cκ2µ(n/q−|α|γ̃)hαγ̃ for γ̃ ∈ [0,minα∈I γα].
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Proof. If hi ≤ 2µ when αi 6= 0, we can simply estimate 2−µ|α|γαhαγα ≤
2−µ|α|γ̃hαγ̃. Otherwise, let θ ≤ α (thus θ ∈ I if α ∈ I) be defined by θi := αi if
hi ≤ 2µ and θi := 0 otherwise. Then

‖δαhf‖q ≤ 2|α|−|θ|
∥∥δθhf∥∥q ≤ 2|α|−|θ|κ2µ(n/q−|θ|γθ)hθγθ · 1

≤ cκ2µn/q2−µ|θ|γ̃hθγ̃ · (2−µh)(α−θ)γ̃ = cκ2µ(n/q−|α|γ̃)hαγ̃,

so the claim follows in this case, too. �

Now we are ready to prove the first assertion of Lemma 4.6.

Proof of (4.7). By Cor. 2.2, the first condition in (4.5) immediately gives
the estimate ‖δαhf‖q ≤ κ2µ(n/q−|α|)hα for α ∈ I with |α| ≤ b`c. If ` is an integer,

this is all we claimed. Otherwise, we get ‖δαhf‖q ≤ κ2µ(n/q−|α|γ)hαγ for the same

α’s and with γ = `/d`e < 1 from Lemma 10.1.
Finally, for non-integral `, consider |α| = d`e = b`c + 1. Then we can write

(possibly in several ways) α = β + ei, where |β| = b`c. (Since β ≤ α, we always
have β ∈ I as long as α ∈ I.) Thus

‖δαhf‖q =
∥∥∥δβhδei

h f
∥∥∥
q

=
∥∥∥δβh(f − τhieif)

∥∥∥
q
≤ hβ

∥∥Dβ(f − τhieif)
∥∥
q

≤ hβκ2µ(n/q−|β|−ε)hεi = hαhε−1
i κ2µ(n/q−|α|+1−ε).

Now we multiply all such estimates for different choices of ei s.t. αi 6= 0; moreover,
the estimate with ei is taken αi times to the product. This gives

‖δαhf‖
|α|
q ≤

(
κ2µ(n/q−|α|+1−ε)hα

)|α| n∏
i=1

h
(ε−1)αi
i

=
(
κ2µ(n/q−|α|+1−ε))|α| hα|α|hα(ε−1) =

(
κ2µ(n/q−|α|γ)hαγ

)|α|
,

where

γ = 1 +
ε− 1

|α|
= 1 +

ε− 1

d`e
=
d`e − 1 + ε

d`e
=

`

d`e
,

and thus the assertion is established. �

In order to prove the second assertion (4.8) of Lemma 4.6 (where the con-
clusion involves differences of possibly much higher order than does the assump-
tion), we need a convenient representation, provided by the following lemma, of
higher order multi-indices as linear combinations of lower order ones. The short
proof, which replaces my original cumbersome argument, was pointed to me by
E. Saksman.

Lemma 10.2. Suppose α ∈ Nn, L ∈ Z+, and L < |α|1. Then there exist
M,mj ∈ Z+, θj ∈ Nn with θj ≤ α and |θj|1 = L (j = 1, . . . , k ∈ Z+), such that

Mα =
k∑
j=1

mjθ
j.
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Proof. The case |α|1 = L+ 1 is immediate from

(|α| − 1)α =
∑
i:αi 6=0

αi(α− ei).

The general case then follows by induction. �

Remark 10.3. In the situation of Lemma 10.2, we have M |α|1 = L
∑k

j=1 mj.
This follows by simply taking the 1-norms of both sides of the asserted represen-
tation formula for α, and using the fact that all entries are non-negative, so that
the 1-norm is additive.

We are now able to prove the following result. Then (4.8) will be a consequence
of (4.7), which is its own special case.

Lemma 10.4. Suppose we have the estimates

‖δαhmµ‖q ≤ κ2µ(n/q−|α|γ̃)hαγ̃

for all h ∈ Rn+, α ∈ Nn with |α| ≤ L̃ ∈ N and some γ̃ ∈ ]0, 1].

Let L̃ < L ∈ N. Then we also have

‖δαhmµ‖q ≤ cκ2µ(n/q−|α|γ)hαγ, γ := γ̃L̃/L

for all h ∈ Rn+ and α ∈ Nn with |α| ≤ L.

Proof. For |α| ≤ L̃, the assertion follows from Lemma 10.1. For |α| > L̃,
take θj, mj as in Lemma 10.2 (with L̃ in place of L in the assumptions). Note
that θj ≤ α ∈ I implies θj ∈ I. For each such θj we estimate

‖δαhmµ‖q ≤ 2|α|−|θj|
∥∥∥δθjh mµ

∥∥∥
q
≤ cκ2µ(n/q−|θj|γ̃)hθ

j γ̃.

We raise this estimate to the power of mj and multiply all the estimates with

different j’s, to the result (we use Rem. 10.3 and also |θj| = L̃)

‖δαhmµ‖M |α|/L̃q ≤
(
cκ2µ(n/q−L̃γ̃)

)M |α|/L̃
hγ̃
∑
mjθ

j

,

‖δαhmµ‖q ≤ cκ2µ(n/q−L̃γ̃)hαγ̃L̃/|α| = cκ2µ(n/q−|α|(γ̃L̃/|α|))hαγ̃L̃/|α|.

For |α| ≤ L, we have γ̃L̃/ |α| ≥ γ̃L̃/L = γ, and hence the conclusion follows from
Lemma 10.1. �

Proof of (4.8). This follows by applying Lemma 10.4 (with γ̃ = `/d`e and
L̃ = d`e) to the estimates in (4.7). �
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11. Appendix: Variations on the theme of Fourier embeddings

In all of this section, mµ and kµ refer to the homogeneous dyadic decomposi-

tion; i.e., mµ = φ̂µm and kµ = φµ ∗ k, where µ ∈ Z.

Lemma 11.1. Suppose
∥∥δθhf∥∥t ≤ 2µ(n/t−γ|θ|)hθγ for θ ≤ dα, where γ ∈ ]0, 1],

and moreover supp f ⊂ {x : |x| ≤ c2µ}. Then
∥∥δθh(f · xβ)

∥∥
t
≤ c2µ(n/t+|β|−γ|θ|)hθγ

for θ ≤ dα.

Proof. Consider the multi-index ζ ≤ θ defined by ζi := θi if hi ≤ 2µ, ζi := 0

otherwise. Then, since
∥∥δθh(fxβ)

∥∥
t
≤ 2|θ|−|ζ|

∥∥∥δζh(fxβ)
∥∥∥
t

and 1 ≤ 2−µ(|θ|−|ζ|)hθ−ζ ,

it suffices to prove the claim when hi ≤ 2µ. (Observe that those hi for which
θi = 0 are completely immaterial.) We then have

∥∥δθh(f · xβ)
∥∥
t
≤
∑
ϑ≤θ

(
θ

ϑ

)∥∥δθ−ϑh f
∥∥
t

∥∥τ(θ−ϑ)hδ
ϑ
hx

β
∥∥
∞,supp δθ−ϑh f

,

where the t-norms are estimated by 2µ(n/t−γ|θ|+γ|ϑ|)h(θ−ϑ)γ and the ∞-norms by
c2µ(|β|−|ϑ|)hϑ ≤ c2µ|β|2−µ|ϑ|γhϑγ. �

Lemma 11.2. Let the assumptions of Lemma 11.1 hold. Let gs(x) := ei2πs·x−
1, where |s| ≤ 2−µ. Then

∥∥δθh(f · xβ · gs)∥∥t ≤ c2µ(n/t+|β|−γ|θ|+1) |s|hθγ for β ∈ Nn
and θ ≤ dα.

Proof. We make the same reduction as in the proof of Lemma 11.1. Again,∥∥δθh(f · xβ · gs)∥∥t ≤ ∥∥δθh(fxβ)
∥∥
t
‖τθhgs‖∞,supp δθhf

+
∑

0 6=ϑ≤θ

(
θ

ϑ

)∥∥δθ−ϑh (fxβ)
∥∥
t

∥∥τh(θ−ϑ)δ
ϑ
hgs
∥∥
∞ .

Here |g(x)| ≤ 2π |x| · |s| ≤ c2µ |s| on the set where we evaluate the ∞-norm,

and
∥∥δϑhgs∥∥∞ ≤ hϑ

∥∥Dϑgs
∥∥
∞ = c |s||ϑ| hϑ ≤ c2−µ|ϑ|2µ |s|hϑ ≤ c2−µ|ϑ|γhϑγ2µ |s|.

Combining these observations with the estimate∥∥δθ−ϑh (fxβ)
∥∥
t
≤ 2µ(n/t+|β|−γ(|θ|−|ϑ|))h(θ−ϑ)γ

from Lemma 11.1, we find that every term above is bounded by

c2µ(n/t+|β|−γ|θ|+1) |s|hθγ,

as we claimed. �
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Lemma 11.3. Let the assumptions of Lemmata 11.1 and 11.2 hold for all
α ∈ {0, 1}n, and Γ := d · γ > 1/t− 1/q′. Then∥∥∥Dβ f̂

∥∥∥
q
≤ C2µ(n/q′+|β|),(∫

|x|>R

∣∣∣Dβ f̂(x)
∣∣∣q dx

)1/q

≤ C2µ((n−1)/q′+|β|+1/t−Γ)R1/t−1/q′−Γ,∥∥∥Dβτsf̂ −Dβ f̂
∥∥∥
q
≤ C2µ(n/q′+|β|+1) |s| ,

and(∫
|x|>R

∣∣∣Dβ f̂(x− s)−Dβ f̂(x)
∣∣∣q dx

)1/q

≤ C2µ((n−1)/q′+|β|+1+1/t−Γ) |s|R1/t−1/q′−Γ.

Proof. This follows from an application of Lemma 4.2 to the conclusions
of Lemmata 11.1 and 11.2. Note that Lemma 4.2 applies to the integrals over
|x| > R only when R ≥ 2−µ, but for R < 2−µ the second and the fourth estimate
above, respectively, are consequences of the first and the third estimate. �

Lemma 11.4. For all µ ∈ Z, let
∥∥δθhmµ

∥∥
t
≤ 2µ(n/t−γ|θ|) for all |θ|∞ ≤ d, where

γ ∈ ]0, 1] and Γ := d · γ > (n − 1)/q′ + |β| + 1/t. Then, if q > 1 or |β| > 0, we
have

∞∑
µ=−∞

(∫
|x|>R

∣∣Dβkµ(x)
∣∣q dx

)1/q

≤ CR−(n/q′+|β|).

Proof. We estimate
(∫
|x|>R

∣∣Dβkµ(x)
∣∣q dx

)1/q

in two ways for different ways

depending on µ.
Case 2µ > R−1. From Lemma 11.3 we have the upper bound

C2µ((n−1)/q′+|β|+1/t−Γ)R1/t−1/q′−Γ,

and summing these up we arrive at

∑
µ:2µ>R−1

(∫ ∣∣Dβkµ(x)
∣∣q dx

)1/q

≤ CR−((n−1)/q′+|β|+1/t−Γ)+(1/t−1/q′−Γ) = CR−n/q
′−|β|.

Case 2µ ≤ R−1. Now that R is “small”, we estimate the quantity of interest
by the integral over the whole space, and then∥∥Dβkµ

∥∥
q
≤ C2µ(n/q′+|β|).
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Thus we obtain ∑
µ:2µ≤R−1

(∫
|x|>R

∣∣Dβkµ(x)
∣∣q dx

)1/q

≤ CR−(n/q′+|β|).

It is here that we required the assumption q > 1 (i.e., 1/q′ > 0) or |β| > 0. �

Lemma 11.5. For all µ ∈ Z, let
∥∥δθhmµ

∥∥
t
≤ 2µ(n/t−γ|θ|) for all θ ∈ {0, 1 . . . , d}n,

where γ ∈ ]0, 1] and Γ := d ·γ > (n−1)/q′+ |β|+1/t. Then for all R ≥ 2 |s| > 0,
we have

∞∑
µ=−∞

(∫
|x|>R

∣∣Dβkµ(x− s)−Dβkµ(x)
∣∣q dx

)1/q

≤ CR−(n/q′+|β|)%(
|s|
R

; Γ− (n− 1)/q′ − |β| − 1/t)

where %(x; η) := xη if η ∈ ]0, 1[, %(x; η) := x log(x−1) if η = 1, and %(x; η) := x if
η > 1.

Proof. We divide the estimation of(∫
|x|>R

∣∣Dβkµ(x− s)−Dβkµ(x)
∣∣q dx

)1/q

into three cases, depending on the size of µ.
Case 2µ ≥ |s|−1. Here we estimate the integral by(∫

|x|>R/2

∣∣Dβkµ(x)
∣∣q dx

)1/q

≤ C2µ((n−1)/q′+|β|+1/t−Γ)R1/t−1/q′−Γ,

and summing over the appropriate range of µ, we have

∑
µ:2µ≥|s|−1

(∫
|x|>R

∣∣Dβkµ(x− s)−Dβkµ(x)
∣∣q dx

)1/q

≤ C |s|−((n−1)/q′+|β|+1/t−Γ)R1/t−1/q′−Γ

= CR−(n/q′+|β|)
(
|s|
R

)Γ−(n−1)/q′−|β|−1/t

.

Case 2µ ≤ R−1. Now R is “small”, and we simply estimate the integral over
|x| > R by ∥∥Dβτskµ −Dβkµ

∥∥
q
≤ C2µ(n/q′+|β|+1) |s| .
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The contribution of all the terms with 2µ ≤ R−1 is then estimated by∑
µ:2µ≤R−1

(∫
|x|>R

∣∣Dβkµ(x− s)−Dβkµ(x)
∣∣q dx

)1/q

≤ CR−(n/q′+|β|+1) |s| = CR−(n/q′+|β|) |s|
R
.

Case R−1 < 2µ < |s|−1. Here we apply directly the estimate in Lemma 11.3
to the result(∫

|x|>R

∣∣Dβkµ(x− s)−Dβkµ(x)
∣∣q dx

)1/q

≤ C2µ((n−1)/q′+|β|+1+1/t−Γ) |s|R1/t−1/q′−Γ.

Then, if (n− 1)/q′ + |β|+ 1 + 1/t− Γ > 0, we have∑
µ:R−1<2µ<|s|−1

(∫
|x|>R

∣∣Dβkµ(x− s)−Dβkµ(x)
∣∣q dx

)1/q

≤ C |s|−((n−1)/q′+|β|+1+1/t−Γ)+1 R1/t−1/q′−Γ

= CR−(n/q′+|β|)
(
|s|
R

)Γ−(n−1)/q′−|β|−1/t

,

and if (n− 1)/q′ + |β|+ 1 + 1/t− Γ < 0, we instead obtain the estimate

CR−((n−1)/q′+|β|+1+1/t−Γ)+(1/t−1/q′−Γ) |s| = CR−(n/q′+|β|) |s|
R
.

Finally, if (n− 1)/q′ + |β|+ 1 + 1/t− Γ = 0, an upper bound will be

C log
R

|s|
· |s|R1/t−1/q′−Γ = C log

R

|s|
· |s|R−(n/q′+|β|+1)

≤ CR−(n/q′+|β|) · |s|
R

log
R

|s|
.

Combining the estimates in all cases, we have the assertion. �



CHAPTER 5

Epilogue: On the “Hörmander ∩ Mihlin” theorem

1. Introduction and preliminary considerations

Here we restate and reprove the following result, which was obtained in Chap-
ter 4 as a corollary of results of more general, but also more technical nature. The
underlying ideas of the proof are the same as in the general setting considered in
Chapter 4 but the details are simplified.

Theorem 1.1. Let q ∈ ]1, 2], and suppose that

(1.2)

(
1

rn

∫
r<|ξ|<2r

|Dαm(ξ)|q dξ

)1/q

≤ Cr−|α|

for all r > 0 and all α ∈ {0, 1}n satisfying |α| ≤ bn/qc+ 1. Then m is a Fourier
multiplier on Lp(Rn) for all p ∈ ]1,∞[.

When q = 2, the results of both Hörmander and Mihlin are seen to be
special cases of Theorem 1.1.

The idea of proof is first to verify that the assumptions in fact imply the
boundedness of m, thus the boundedness of the corresponding Fourier multiplier
operator on L2(Rn) according to Plancherel’s theorem. Then it is shown that
the corresponding kernel k = m̌ satisfies Hörmander’s integral condition, which
gives us the boundedness on all Lp(Rn), p ∈ ]1,∞[.

To begin the proof of the theorem, we recall the dyadic decomposition of the
multiplier:

Decomposition of the multiplier. Let ϕ̂ ∈ D(Rn) be identically 1 in B̄(0, 1),

identically 0 outside B̄(0, 2), and with range in [0, 1]. Let φ̂0(ξ) := ϕ̂(ξ)− ϕ̂(2ξ)

and φ̂j(ξ) := φ̂0(2−jξ) for j ∈ Z. Then φ̂j is supported in the annulus 2j−1 ≤
|ξ| ≤ 2j+1, and

∞∑
j=−∞

φ̂j(ξ) ≡ 1, for ξ 6= 0.

The multiplier m is decomposed into the pieces mj(ξ) := φ̂j(ξ)m(ξ). The as-
sumption (1.2) implies the following estimates, which will be useful in the sequel:

Lemma 1.3. Under the assumption (1.2), the following estimates holds for all
j ∈ Z, all |y| ≤ 2−j, and all α ∈ {0, 1}n such that |α| ≤ bn/qc + 1, with C <∞
independent of j:

‖Dαmj‖q ≤ C2j(n/q−|α|),
∥∥Dα[(ei2πy·ξ − 1)mj(ξ)]

∥∥
q
≤ C2j(n/q−|α|+1) |y| .

183
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Proof. By a direct computation(∫
|Dαmj(ξ)|q dξ

)1/q

≤
∑
θ≤α

(∫
2j−1≤|ξ|≤2j

∣∣Dθm(ξ)
∣∣q ∣∣∣2−j(|α|−|θ|)Dα−θφ̂0(2−jξ)

∣∣∣q dξ

)1/q

≤
∑
θ≤α

2jn/q
(

1

2jn

∫
2j−1≤|ξ|≤2j

∣∣Dθm(ξ)
∣∣q dξ

)1/q

2−j(|α|−|θ|)Cα−θ

≤
∑
θ≤α

C2jn/q2−j|θ|2−j(|α|−|θ|)Cα−θ ≤ C2j(n/q−|α|).

To establish the second estimate, note first that

Dα[(ei2πy·ξ − 1)mj(ξ)] = (ei2πy·ξ − 1)Dαmj(ξ) +
∑

0 6=θ≤α

(i2πy)θei2πy·ξDα−θmj(ξ).

When |ξ| ≤ 2j+1, we have∣∣ei2πy·ξ − 1
∣∣ ≤ 2π |y · ξ| ≤ 2π2j+1 |y| = c2j |y| ;

hence ∥∥(ei2πy·ξ − 1)Dαmj(ξ)
∥∥
q
≤ c2j |y| ‖Dαmj‖q ≤ C2j(n/q−|α|+1) |y| .

For 0 6= θ ≤ α we get∥∥(i2πy)θei2πy·ξDα−θmj(ξ)
∥∥
q
≤ c |y|θ

∥∥Dα−θmj

∥∥
q
≤ C |y| |y||θ|−1 2j(n/q−|α|+|θ|);

hence for |y| ≤ 2−j we have |y||θ|−1 ≤ 2−j|θ|+j, and thus∥∥(i2πy)θei2πy·ξDα−θmj(ξ)
∥∥
q
≤ C2j(n/q−|α|+1) |y| .

Now the assertion is clear after summing the estimates just obtained. �

2. From multipliers to kernels: Fourier embeddings

The parts mj into which the multiplier m was divided are Lq functions with
compact support; hence their inverse Fourier transforms kj := m̌j are infinitely
smooth functions in Lq

′
(Rn). In the following, we see how the derivative con-

ditions satisfied by the mj can be exploited to get more precise integrability
conditions on the kernels kj.

As a reminder, we first present a classical embedding theorem which is, how-
ever, insufficient for our purposes:

Proposition 2.1. For q ∈ [1, 2], we have FWN,q ↪→ L1 for N > n/q, and
more precisely, for any r > 0,∥∥∥f̂∥∥∥

1
≤ Crn/q ‖f‖q + Crn/q−N

∑
|α|=N

‖Dαf‖q
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Proof. We divide the integration domain into regions where different esti-
mates are applied:∫

Rn

∣∣∣f̂(x)
∣∣∣ dx =

∫
|x|<r

∣∣∣f̂(x)
∣∣∣ dx+

∞∑
j=0

∫
2jr≤|x|<2j+1r

∣∣∣f̂(x)
∣∣∣ dx

≤ Crn/q
∥∥∥f̂∥∥∥

q′
+ C

∞∑
j=0

∑
|α|=N

1

(2jr)N

∫
2jr≤|x|<2j+1r

∣∣∣xαf̂(x)
∣∣∣ dx

≤ Crn/q
∥∥∥f̂∥∥∥

q′
+ C

∞∑
j=0

(2jr)−N(2jr)n/q
∥∥∥xαf̂(x)

∥∥∥
q′

≤ Crn/q ‖f‖q + Crn/q−N
∑
|α|=N

‖Dαf‖q
∞∑
j=0

2j(n/q−N).

In the first estimate, Hölder’s inequality (applied to χB̄(0,r) and f̂) was used for
the first term, and the inequality

(2.2) |x|N ≤ C
∑
|α|=N

|xα|

for the second. In the remaining estimates, we used Hölder’s inequality again,

and finally the Hausdorff–Young inequality
∥∥∥f̂∥∥∥

q′
≤ ‖f‖q for q ∈ [1, 2]. The

series in the last step in summable since n/q−N < 0, and hence the assertion is
obtained. �

Remarks. There are good reasons to suspect that the result above is not the
sharpest possible: In estimating the integral of f̂ , we only used our assumptions
concerning the derivatives of f of orders 0 and N , but none of the intermediate
ones.

The crucial estimate above was (2.2). While this is the best one can say for
a general x ∈ Rn, there is a lot of redundancy on the right-hand side if we have
more detailed knowledge concerning the direction of x. E.g., if we know that x is
on (or close to) the diagonal x1 = . . . = xn, then the single term x1 · · ·xn can be
used to bound |x|n. If, on the other hand, some of the xi’s (nearly) vanish, the
terms involving these xi’s are of little use on the right hand side of (2.2). This
suggests that instead of the annular decomposition of Rn which was used in the
proof of Prop. 2.1, one should use a more refined decomposition so as to be able
to keep track of the size of the individual components xi of x, and not just the
length |x|.

Decomposition of space. Let α ∈ {0, 1}n and % ∈ ]0,∞[n. We define the set
E(α, %) ⊂ Rn to consist of those x ∈ Rn, for which xi is “small” if αi = 0 and
“large” if αi = 1:

E(α, %) := {x ∈ Rn : |xi| ≤ %i if αi = 0, |xi| > %i if αi = 1} .
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We further want to know more precisely how large the “large” components
are. Let Nα := {j ∈ Nn : ji = 0 if αi = 0}, and

E(α, %, j) :=
{
x ∈ E(α, %) : 2ji%i < |xi| ≤ 2ji+1%i if αi = 1

}
.

Now obviously, for any % ∈ ]0,∞[n,

R
n =

⋃
α∈{0,1}n

E(α, %), E(α, %) =
⋃
j∈Nα

E(α, %, j),

where the unions are disjoint.
The significance of the sets E(α, %, j) lies in the fact that we have

(2.3) 2j·β%β ≤
∣∣xβ∣∣ ≤ 2|β|+j·β%β ∀ x ∈ E(α, %, j), β ≤ α;

moreover

Lemma 2.4. If 0 6= α ∈ {0, 1}n, x ∈ E(α, %, j) and N ≤ |α|, then∑
β≤α,|β|=N

∣∣xβ∣∣ ≥ (2|j|%α)N/|α|

Proof. Let 2j·γ%γ be the largest among the numbers 2j·β%β, for β ≤ α,
|β| = N . Multiplying the inequalities 2j·γ%γ ≥ 2j·β%β for all

(|α|
N

)
multi-indices

β ≤ α, |β| = N , we get

(2j·γ%γ)(
|α|
N ) ≥

∏
β≤α
|β|=N

2j·β%β

=
∏
β≤α
|β|=N

∏
i:βi=1

2ji%i =
∏
i:αi=1

(2ji%i)
(|α|−1
N−1 ) = (2|j|%α)(

|α|−1
N−1 ),

and division by the binomial coefficient
(|α|
N

)
gives

2j·γ%γ ≥ (2|j|%α)N/|α|.

Now the assertion is clear from (2.3) and the fact that the sum of all the terms∣∣xβ∣∣ is certainly not less than the single term |xγ|. �

Now we are ready to get sharp estimates on the integral of f̂ on each of the
regions E(α, %). We denote ι := (1, . . . , 1) ∈ Nn.

Lemma 2.5. Let q ∈ ]1, 2], and N = bn/qc+ 1. Then∫
E(α,%)

∣∣∣f̂(x)
∣∣∣ dx ≤ C%ι/q−α ‖Dαf‖q ∀ α ∈ {0, 1}n,

and also∫
E(α,%)

∣∣∣f̂(x)
∣∣∣ dx ≤ C%ι/q−αN/|α|

∑
β≤α
|β|=N

∥∥Dβf
∥∥
q

∀ α ∈ {0, 1}n with |α| > N.
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Proof. For α = 0, we immediately get∫
E(0,%)

∣∣∣f̂(x)
∣∣∣ dx ≤ |E(0, %)|1/q

∥∥∥f̂∥∥∥
q′
≤ C%ι/q ‖f‖q .

Concerning 0 6= α ∈ {0, 1}n, we estimate∫
E(α,%)

∣∣∣f̂(x)
∣∣∣ dx =

∑
j∈Nα

∫
E(α,%,j)

∣∣∣f̂(x)
∣∣∣ dx

≤
∑
j∈Nn

1

2|j|%α

∫
E(α,%,j)

∣∣∣xαf̂(x)
∣∣∣ dx

≤ C
∑
j∈Nα

(2|j|%α)−1 |E(α, %, j)|1/q
∥∥∥xαf̂(x)

∥∥∥
q′

≤ C
∑
j∈Nα

(2|j|%α)−1(2|j|%ι)1/q ‖Dαf‖q

= C ‖Dαf‖q %
ι/q−α

∑
j∈Nα

2|j|(1/q−1),

and the first assertion follows from the summability of the series, since we have
1/q − 1 < 0 by assumption.

The second assertion is established by a modification of the argument that
lead to the first one, using Lemma 2.4:∫

E(α,%)

∣∣∣f̂(x)
∣∣∣ dx =

∑
j∈Nα

∫
E(α,%,j)

∣∣∣f̂(x)
∣∣∣ dx

≤
∑
j∈Nα

1

(2|j|%α)N/|α|

∑
β≤α
|β|=N

∫
E(α,%,j)

∣∣∣xβ f̂(x)
∣∣∣ dx

≤ C
∑
j∈Nα

2−|j|N/|α|%−αN/|α|
∑
β≤α
|β|=N

|E(α, %, j)|1/q
∥∥∥xβ f̂(x)

∥∥∥
q′

≤ C%−αN/|α|
∑
j∈Nα

2−|j|N/|α|
∑
β≤α
|β|=N

(2|j|%ι)1/q ‖Dαf‖q

= C%ι/q−αN/|α|
∑
β≤α
|β|=N

∥∥Dβf
∥∥
q

∑
j∈Nα

2|j|(1/q−N/|α|).

The series is summable since

N/ |α| − 1/q ≥ N/n− 1/q > (n/q)/n− 1/q = 0,

and hence the second assertion is established. �
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Next we add the pieces together to estimate the total integral of
∣∣∣f̂(x)

∣∣∣; we also

require a more precise estimate for the integral over the exterior of a ball B̄(0, R).
The first assertion of the following proposition is our promised improvement of
the classical embedding result in Prop. 2.1

Proposition 2.6. For all q ∈ ]1, 2] and 0 < r < R, we have the estimates∫
Rn

∣∣∣f̂(x)
∣∣∣ dx ≤ C

∑
α∈{0,1}n
|α|≤N

‖Dαf‖q r
n/q−|α|

and ∫
|x|>R

∣∣∣f̂(x)
∣∣∣ dx ≤ C

( r
R

)δ ∑
0 6=α∈{0,1}n
|α|≤N

‖Dαf‖q r
n/q−|α|,

where N = bn/qc+ 1 and δ = N/n− 1/q > 0.

Proof. The first estimate follows directly from Lemma 2.5, after adding the

estimates for the integrals of
∣∣∣f̂(x)

∣∣∣ over each of the sets E(α, %), with the choice

% := (r, . . . , r).
We prove the second estimate with

√
nR in place of R. If |x| >

√
nR, then

|xi| > R for some i ∈ {1, . . . , n}. Let %i be the multi-index whose ith component
is R, while the others are r. Then clearly x ∈ E(α, %(i)) for some (possibly
several) i ∈ {1, . . . , n} and α ∈ {0, 1}n such that αi 6= 0. Thus∫

|x|>
√
nR

∣∣∣f̂(x)
∣∣∣ dx ≤

∑
0 6=α∈{0,1}n

∑
i:αi 6=0

∫
E(α,ρ(i))

∣∣∣f̂(x)
∣∣∣ dx

≤
∑

0 6=α∈{0,1}n
|α|<N

C ‖Dαf‖q
∑
i:αi=1

%(i)ι/q−α

+
∑

β∈{0,1}n
|β|=N

C
∥∥Dβf

∥∥
q

∑
α∈{0,1}n
α≥β

∑
i:αi=1

%(i)ι/q−αN/|α|,

where Lemma 2.5 was used to get the second inequality.
Next we observe that %(i)ι = rn−1R, and, for αi = 1, that %(i)α = r|α|−1R.

Thus

%(i)ι/q−α = r(n−1)/q−(|α|−1)R1/q−1 = rn/q−|α|
( r
R

)1−1/q

,

and

%(i)ι/q−αN/|α| = r(n−1)/q−(|α|−1)N/|α|R1/q−N/|α| = rn/q−N
( r
R

)N/|α|−1/q

,
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and here N/ |α|−1/q ≥ N/n−1/q > (n/q)/n−1/q = 0; also 1−1/q ≥ N/n−1/q.
Hence, for r ≤ R, we have∫

|x|>
√
nR

∣∣∣f̂(x)
∣∣∣ dx ≤ C

( r
R

)N/n−1/q ∑
0 6=α∈{0,1}n
|α|≤N

‖Dαf‖q r
n/q−|α|,

and so the proposition is proven. �

3. Kernel estimates and conclusion

Combining the estimates in Lemma 1.3 with Prop. 2.6, we immediately derive
the following kernel estimates:

(3.1) ‖kj‖1 ≤
∑

α∈{0,1}n
|α|≤N

Crn/q−|α|2j(n/q−|α|) ≤ C,

after choosing r := 2−j, as we may. Similarly, for |y| ≤ 2−j, we get

(3.2) ‖kj(· − y)− kj‖1 =
∥∥F−1[(ei2πy·ξ − 1)mj(ξ)]

∥∥
1

≤
∑

α∈{0,1}n
|α|≤N

Crn/q−|α|2j(n/q−|α|+1) |y| ≤ C2j |y|

with the same choice of r.
Moreover, for the exterior integral we have

(3.3)

∫
|x|>R

|kj(x)| dx ≤ C
( r
R

)δ ∑
α∈{0,1}n
|α|≤N

rn/q−|α|2j(n/q−|α|) ≤ C(2jR)−δ,

with r = 2−j, once again.
As a consequence of (3.1), we obtain ‖mj‖∞ ≤ ‖kj‖1 ≤ C, and hence ‖m‖∞ ≤

2C. This gives the boundedness of T̂ f = mf̂ on L2(Rn) by Plancherel’s
theorem.

Next we estimate the Hörmander-type integrals∫
|x|>2|y|

|kj(x− y)− kj(x)| dx.

For 2j ≤ |y|−1, we simply ignore the range of integration to estimate this by

‖kj(·)− kj‖1 ≤ C2j |y|

according to (3.2). For 2j > |y|, we make the estimate by

2

∫
|x|>|y|

|kj(x)| dx ≤ C(2j |y|)−δ.
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Using the two estimates directly above, we obtain
∞∑

j=−∞

∫
|x|>2|y|

|kj(x− y)− kj(x)| dx ≤
∑

j:2j≤|y|−1

C2j |y|+
∑

j:2j>|y|−1

C(2j |y|)−δ ≤ C,

since both geometric series are summable.
Thus k =

∑∞
−∞ kj satisfies Hörmander’s condition, and the operator f 7→

k ∗ f = F−1(mf̂) is bounded on L2(Rn). Hence the boundedness on Lp(Rn) for
1 < p <∞ follows from the well-known theory of singular integrals.
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[43] L. Hörmander. Estimates for translation invariant operators in Lp spaces. Acta Math.

104 (1960), 93–140.
[44] T. Hytönen. R-boundedness and multiplier theorems. Master’s thesis, Helsinki Univ.

Techn. Inst. Math. Research Report C16, 2001.
[45] . Convolutions, multipliers and maximal regularity on vector-valued Hardy spaces.

Submitted.
[46] . Fourier-embeddings and Mihlin-type multiplier theorems. Submitted.



193

[47] T. Hytönen, L. Weis. Singular convolution integrals with operator-valued kernel. Sub-
mitted.

[48] . Singular integrals on Besov spaces. Manuscript, 2002.
[49] N. Kalton, G. Lancien. A solution to the problem of Lp-maximal regularity. Math. Z.

235 (2000), 559–568.
[50] N. Kalton, L. Weis. The H∞-calculus and sums of closed operators. Math. Ann. 321

#2 (2001), 319–345.
[51] Y. Katznelson. An Introduction to Harmonic Analysis. Dover, 1976.
[52] P. C. Kunstmann, L. Weis. Perturbation theorems for maximal Lp-regularity. Ann. Sc.

Norm. Super. Pisa Cl. Sci. IV. Ser. 30 (2001), 415–435.
[53] . Maximal Lp-regularity for parabolic problems, Fourier multiplier theorems and

H∞ functional calculus. In preparation.
[54] D. S. Kurtz, R. L. Wheeden. Results on weighted norm inequalities for multipliers.

Trans. Amer. Math. Soc. 255 (1979), 343–362.
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78–91.

[61] T. R. McConnell. On Fourier multiplier transformations of Banach-valued functions.
Trans. Amer. Math. Soc. 285 #2 (1984), 739–757.

[62] S. G. Mihlin (S. G. Mihlin). O mul~tiplikatorah integralov Fur~e (On the
multipliers of Fourier integrals; Russian). Dokl. Akad. nauk SSSR 109 (1956), 701–703.

[63] . Integraly Fur~e i kratnye singul�rnye integraly (Fourier integrals and
multiple singular integrals; Russian, with English summary). Vestnik Leningrad. un-ta,
ser. matem. meh. i astr. 7 (1957), 143–155.

[64] B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal function. Trans.
Amer. Math. Soc. 165 (1972), 207–226.

[65] J. Peetre. Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend.
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[80] Ž. Štrkalj, L. Weis. On operator-valued Fourier multiplier theorems. Univ. Karlsruhe
Fakultät f. Mathematik Preprint Nr. 36, 2000; submitted.
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