
Helsinki University of Technology Institute of Mathematics Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2003 A455

MAXWELL’S EQUATIONS WITH SCALAR IMPEDANCE:

DIRECT AND INVERSE PROBLEMS

Yaroslav V. Kurylev Matti Lassas Erkki Somersalo

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Institute of Mathematics Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2003 A455

MAXWELL’S EQUATIONS WITH SCALAR IMPEDANCE:

DIRECT AND INVERSE PROBLEMS

Yaroslav V. Kurylev Matti Lassas Erkki Somersalo

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics



Yaroslav V. Kurylev, Matti Lassas, Erkki Somersalo: Maxwell’s Equa-
tions with Scalar Impedance: Direct and Inverse Problems; Helsinki University of
Technology Institute of Mathematics Research Reports A455 (2003).

Abstract: The article deals with electrodynamics in the presence of anisotropic
materials having scalar wave impedance. Maxwell’s equations written for dif-
ferential forms over a 3-manifold are analysed. The system is extended to a
Dirac type first order elliptic system on the Grassmannian bundle over the
manifold. The second part of the article deals with the dynamical inverse
boundary value problem of determining the electromagnetic material param-
eters from boundary measurements. By using the boundary control method,
it is proved that the dynamical boundary data determines the electromagnetic
travel time metric as well as the scalar wave impedance on the manifold.
This invariant result leads also to a complete characterization of the non-
uniqueness of the corresponding inverse problem in bounded domains of R3.

AMS subject classifications: 35A21, 35J55, 35L50, 35Q60, 35R30, 53C21,
58A10, 58J32, 58J90, 78A25

Keywords: Maxwell’s equations, differential forms, boundary control, inverse
problem, Riemannian manifolds

Erkki.Somersalo@hut.fi

ISBN 951-22-6235-5
ISSN 0784-3143
HUT Mathematics, 2003

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics

P.O. Box 1100, 02015 HUT, Finland

email:math@hut.fi http://www.math.hut.fi/



Introduction

Classically, the laws of electromagnetism expressed by Maxwell’s equations
are written for vector fields representing the electric and magnetic fields.
However, it is possible to rephrase these equations in terms of differential
forms. It turns out that this alternative formulation has several advantages
both from the theoretical and practical point of view. First, the formulation
of electromagnetics with differential forms reflect the way in which the fields
are actually observed. For instance, flux quantities are expressed as 2–forms
while field quantities that correspond to forces are naturally written as 1–
forms. This point of view has been adopted in modern physics at least when
fields in free space are dealt with, see [18]. Furthermore, the formulation
distinguishes the topological properties of the electromagnetic media from
those that depend on geometry. It is understood that geometry is related to
the properties of the material where the waves propagate. The distinction
between non-geometric and geometric properties has consequences also to
the numerical treatment of the equations by so called Whitney forms. An
extensive treatment of this topic can be found in [12], [13]. For the original
reference concerning Whitney elements see [58].

The present work is divided in two parts. In the first part, we pursue further
the invariant formulation of Maxwell’s equations to model the wave propaga-
tion in certain anisotropic materials. More precisely, we consider anisotropic
materials with scalar wave impedance. Physically, scalar wave impedance
is tantamount to a single propagation speed of waves with different polar-
ization. The invariant approach leads us to formulate Maxwell’s equations
on 3-manifolds as a first order Dirac type system. From the operator the-
oretic point of view, this formulation is based on an elliptization procedure
by extending Maxwell’s equations to a Grassmannian bundle over the man-
ifold. This is a generalization of the elliptization of Birman and Solomyak
and Picard (see[1],[46]).

In the second part of the work, we consider the inverse boundary value prob-
lem for Maxwell’s equations. In terms of physics, the goal is to determine
material parameter tensors, electric permittivity ε and magnetic permeability
µ, in a bounded domain from field observations at the boundary of that do-
main. As it is already well established, for anisotropic inverse problems it is
natural to consider the problem in two parts. First, we consider the invariant
problem on a Riemannian manifold, where we recover the travel time metric
and the wave impedance on the manifold. As a second step, we consider the
consequences of the invariant result when the manifold is imbedded to R3.

Although inverse problems in electrodynamics have a great significance in
physics and applications, results concerning the multidimensional inverse
problems are relatively recent. One-dimensional results have existed starting
from the 30’ies, see e.g. [34], [50]. The first breakthrough in multidimen-
sional inverse problems for electrodynamics was based on the use of complex
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geometrical optics [52], [15], [43], [44]. In these papers, the inverse problem
of recovering the scalar material parameters from complete fixed frequency
boundary data was solved even in the non-selfadjoint case, i.e., in the pres-
ence of electric conductivity. These works were based on ideas previously
developed in references [54],[39],[40] to solve the scalar Calderón problem,
that obtained its present formulation in [14].

In the dynamical case, a method to solve an isotropic inverse boundary prob-
lem based on ideas of integral geometry is developed in [48]. The method,
however, is confined to the case of a geodesically simple manifolds and, at
the moment, is limited to finding some combinations of material parameters,
including electric conductivity. An alternative method to tackle the inverse
boundary value problem is the boundary control (BC) method, originated in
[4]. Later, this method was developed for the Laplacian on Riemannian man-
ifolds [7] and for anisotropic self-adjoint [27] – [29] and certain non-selfadjoint
inverse problems [32]. The first application of the BC method to electrody-
namics was done in [9], [6]. The authors of these articles show that, when
the material parameters ε and µ are real scalars or alternatively when ε = µ,
the boundary data determines the wave speed in the vicinity of the bound-
ary. These works employed the Hodge-Weyl decomposition in the domain
of influence near the boundary. The real obstruction for this technique is
that, as time grows, the domain of influence can become non-smooth and the
topology may be highly involved. For these reasons, our paper is based on
different ideas.

In this article, there are essentially two new leading ideas. First, we charac-
terize the subspaces controlled from the boundary by duality, thus avoiding
the difficulties arising from the complicated topology of the domain of influ-
ence. The second idea is to develop a method of waves focusing at a single
point of the manifold. This enables us to recover pointwise values of the
waves on the manifold. The geometric techniques of the paper are presented
in [30] and the book [25].

The main results of this paper can be summarized as follows.

1. The knowledge of the complete dynamical boundary data over a suf-
ficiently large finite period of time determines uniquely the compact
manifold endowed with the electromagnetic travel time metric as well
as the scalar wave impedance (Theorem 4.1).

2. For the corresponding anisotropic inverse boundary value problem with
scalar wave impedance for bounded domains in R3, the non-uniqueness
is completely characterized by describing the class of possible transfor-
mations between material tensors that are indistinguishable from the
boundary (Theorem 11.1).

To the best knowledge of the authors, no global uniqueness results for in-
verse problems for systems with anisotropic coefficients have been previously
known.
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1 Maxwell’s equations for forms

In this chapter we derive an invariant form for Maxwell equations, consider
initial boundary value problem for them and show how energy of fields can
be found using boundary measurements.

We start with Maxwell equations in domain Ω ⊂ R3 equipped with the stan-
dard Euclidean structure. Since our objective is to write Maxwell equations
in an invariant form, we generalize the setting in very beginning and instead
of domain Ω consider manifolds.

Let (M, g0) be a connected, oriented Riemannian 3-manifold possibly with a
boundary ∂M 6= ∅. We assume that all objects in this paper are C∞–smooth.
Consider Maxwell’s equations on M ,

curl E = −Bt, (Maxwell–Faraday), (1)

curl H = Dt, (Maxwell–Ampère), (2)

where E and H are the electric and magnetic fields, and B and D are the
magnetic flux density and electric displacement, assumed for the time being
to be smooth mappings M × R → TM . Here TM denotes the tangent
bundle over M . The curl operator as well as divergence appearing later
will be defined invariantly in formula (5) below. The sub-index t in the
equations (1)–(2) denotes differentiation with respect to time. We denote the
collection of these vector fields as Γ(M ×R). At this point, we do not specify
the initial and boundary values. To avoid non-physical static solutions, the
above equations are augmented with the conditions

divB = 0, divD = 0. (3)

Furthermore, the fields E and D, and similarly the fields H and B are inter-
related through the constitutive relations. In anisotropic and non-dispersive
medium, the constitutive relations assume the simple form

D = εE, B = µH, (4)

where ε, µ are smooth and strictly positive definite tensor fields of type (1, 1)
on M . Our aim is to write the above equations using differential forms.
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Given the metric g0, we can associate in a canonical way a differential 1–form
to correspond each vector field. Let us denote by ∧kT ∗M the k:th exterior
power of the cotangent bundle. We define the mapping

TM → T ∗M, X 7→ X[

through the formula g0(X,Y ) = X [(Y ). This mapping is one-to-one and it
has the following well-known properties (See e.g. [51]): For a scalar field
u ∈ C∞(M), (grad u)[ = du, where d is the exterior differential and for a
vector field X ∈ Γ(M), we have

(curl X)[ = ∗0dX[, div X = −δ0X
[, (5)

where ∗0 denotes the Hodge–∗ operator with respect to the metric g0,

∗0 : ∧kT ∗M → ∧3−kT ∗M,

and δ0 denotes the codifferential 1,

δ0 = (−1)k ∗0 d∗0 : ΩkM → Ωk−1M.

Here, ΩkM denotes the smooth sections M → ∧kT ∗M , i.e. differential
k−forms. Applying now the operator [ on Maxwell’s equations (1)–(2) yields

dE[ = − ∗0 B[
t , dH[ = ∗0D

[
t ,

where we used the identity ∗0∗0 = id valid in 3–geometry2. The divergence
equations (3) read

δ0D
[ = 0, δ0B

[ = 0.

Consider now the constitutive relations (4). Starting with the equation D =
εE, we pose the following question: Is it possible to find a metric gε such
that the Hodge-∗ operator with respect to this metric, denoted by ∗ε, would
satisfy the identity

∗0D
[ = ∗0(εE)[ = ∗εE

[?

Assume that such a metric gε exists. By writing out the above formula in
given local coordinates (x1, x2, x3) and recalling the definition of the Hodge-∗
operator, the left side yields

∗0(εE)[ =
√

g0g
ij
0 ejpqg0,ijε

j
kE

kdxp ∧ dxq

=
√

g0ejpqε
j
kE

kdxp ∧ dxq,

where e is the totally antisymmetric permutation index and g0 = det(g0,ij).
Likewise, the right side reads

∗εE
[ =

√
gεg

ij
ε ejpqg0,ikE

kdxp ∧ dxq,

1Cf. with δ0 = (−1)nk+n+1 ∗0 d∗0 for Riemannian n–manifolds
2For Riemannian n–manifold, we have in general ∗0∗0 = (−1)k(n−k)
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so evidently the desired equality ensues if we set

√
gεg

ij
ε g0,ik =

√
g0ε

k
j .

By taking determinants of both sides we find that

√
gε =

√
g0det(ε).

Thus we see that the appropriate form for the metric tensor in the contravari-
ant form is

gij
ε =

1

det(ε)
gik
0 εj

k. (6)

In the same fashion, we find a metric gµ such that

∗0B
[ = ∗0(µH)[ = ∗µH

[.

In general, the metrics gµ and gε can be very different from each other. In
this article, we consider a particular case. Indeed, assume that the material
has a scalar wave impedance, i.e., the tensors ε and µ satisfy

µ = α2ε,

where the wave impedance, α = α(x), is a smooth function on M . Now we
define two families of 1– and 2–forms on M as follows. We set

ω1 = E[, ω2 = ∗0B
[.

Similarly, we define

ν1 = αH[, ν2 = ∗0αD[. (7)

Observe that the wave impedance scaling renders ω1 and η1 to have the
same physical dimensions, and the same holds for the 2–form. Now it is a
straightforward matter to check that the constitutive relations assume the
form

ν2 = α ∗ε ω1, ω2 =
1

α
∗µ ν1.

We can make these equations even more symmetric by proper scaling of the
metrics. Indeed, since α−1µ = αε, we have a new metric g that is defined as

gij = gij
αε = gij

α−1µ.

We have, by direct substitution that

gij =
1

α2
gij

ε = α2gij
µ . (8)

This new metric will be called the travel time metric in the sequel.
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Assume that
∗ : ∧jT ∗M → ∧3−jT ∗M

denotes the Hodge–∗ operator with respect to some metric ĝ. If we perform
a scaling of the metric as

ĝij → g̃ij = r2ĝij,

the corresponding Hodge operator is scaled as

∗ → ∗̃ = r2j−3 ∗ .

Therefore, if we denote by ∗ the Hodge–∗ operator with respect to the travel
time metric, we have

∗ = α∗ε =
1

α
∗µ : ∧1T ∗M → ∧2T ∗M.

But this means simply that, in terms of the travel time metric, we have

ν2 = ∗ω1, ω2 = ∗ν1. (9)

Consider now Maxwell’s equations for these forms. After eliminating the ν–
forms using the constitutive equations (9), Maxwell–Faraday and Maxwell–
Ampère equations assume the form

dω1 = −ω2
t , δαω2 = ω1

t , δα = (−1)k ∗ αd
1

α
∗ : ΩkM → Ωk−1M (10)

and the divergence equations (3) read

dω2 = 0, δαω1 = 0. (11)

In the sequel, we call equations (10) and (11) Maxwell’s equations.

It turns out to be useful to define auxiliary forms that vanish in the elec-
tromagnetic theory. Let us introduce the auxiliary forms ω0 and ω3 via the
formulas

ω0
t = δαω1, −ω3

t = dω2.

Furthermore, we define the corresponding ν–forms as

ν0 = ∗ω3, ν3 = ∗ω0. (12)

Since these auxiliary forms are all vanishing, we may modify the equations
(10) to have

dω1 − δαω3 = −ω2
t , dω0 − δαω2 = −ω1

t . (13)

Putting the obtained equations together in a matrix form, we arrive at the
equation

ωt + Mω = 0, (14)
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where
ω = (ω0, ω1, ω2, ω3)

and the operator M (without defining its domain at this point, i.e., defined
as a differential expression) is given as

M =




0 −δα 0 0
d 0 −δα 0
0 d 0 −δα

0 0 d 0


 . (15)

The equation (14) is called the complete Maxwell system. In the next section,
we treat more systematically this operator.

Remark 1. The operator M has the property

M2 = −diag(∆0
α, ∆1

α, ∆2
α, ∆3

α) = −∆α,

where the operator ∆k
α acting on k–forms is

∆k
α = dδα + δαd = ∆k

g + Q(x,D),

with ∆k
g denoting the Laplace-Beltrami operator on k–forms with respect to

the travel time metric and Q(x,D) being a first order perturbation. Hence,
if ω satisfies the equation (14), we have

(∂2
t + ∆α)ω = (∂t −M)(∂t + M)ω = 0.

In particular, we observe that the assumption that the impedance is scalar
implies a unique propagation speed for the system.

Remark 2. Denote by ΩM = ⊕3
k=0Ω

kM the Grassmannian algebra of
differential forms, where ΩkM are the differential k-forms. Then the operator
M in formula (15) can be also considered as a Dirac operator d−δα : ΩM →
ΩM .

Before leaving this section, let us briefly consider the energy integrals in
terms of the differential forms. In terms of the vector fields, the energy of
the electric field at a given moment t is obtained as the integral

E(E) =

∫

M

εE · EdV =

∫

M

g0(E,D)dV =

∫

M

E[ ∧ ∗0D
[

where dV is volume form of (M, g0). By plugging in the defined forms we
arrive at

E(E) =

∫

M

1

α
ω1 ∧ ∗ω1.

In the same fashion, we find that the energy of the magnetic field reads

E(B) =

∫

M

1

α
ω2 ∧ ∗ω2.

These formulas serve as a motivation for our definition of the inner product
in the following section.
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1.1 Maxwell operator

In this section we establish a number of notational conventions and definitions
concerning the differential forms used in this work.

We define the L2–inner products for k–forms in ΩkM as

(ωk, ηk)L2 =

∫

M

1

α
ωk ∧ ∗ηk, ωk, ηk ∈ ΩkM.

Further, we denote by L2(ΩkM) the completion of ΩkM with respect to the
norm defined by the above inner products. We also define

L2(M) = L2(Ω0M) × L2(Ω1M) × L2(Ω2M) × L2(Ω3M).

Similarly, we define Sobolev spaces Hs(M), s ∈ R,

Hs(M) = Hs(Ω0M) × Hs(Ω1M) × Hs(Ω2M) × Hs(Ω3M),

Hs
0(M) = Hs

0(Ω
0M) × Hs

0(Ω
1M) × Hs

0(Ω
2M) × Hs

0(Ω
3M),

where Hs(ΩkM) are Sobolev spaces of k− forms. At last, Hs
0(Ω

kM) is the
closure in Hs(ΩkM) of ΩkM int, i.e. the subspace of ΩkM of k− forms which
vanish near ∂M .

The domain of the exterior derivative d in the L2–space of k–forms is

H(d, ΩkM) =
{
ωk ∈ L2(ΩkM) | dωk ∈ L2(Ωk+1M)

}
.

Similarly, we set

H(δα, ΩkM) =
{
ωk ∈ L2(ΩkM) | δαωk ∈ L2(Ωk−1M)

}
,

where δα is the weak extension of the operator δα : ΩkM → Ωk−1M. In the
sequel, we shall drop the sub-index α from the codifferential.

The codifferentiation δ is adjoint to the exterior derivative in the sense that
for C∞

0 –forms on M ,

(dωk, ηk+1)L2 = (ωk, δηk+1)L2 .

To extend the adjoint formula for less regular forms, let us first fix some
notations. For ωk ∈ ΩkM , we define the tangential and normal boundary
data at ∂M as

tωk = i∗ωk, nωk = i∗(
1

α
∗ ωk),

respectively, where i∗ : ΩkM → Ωk∂M is the pull-back of the natural imbed-
ding i : ∂M → M . Sometimes, we denote n = nα to indicate a particular
choice α. With these notations, let us write

∫

∂M

i∗ωk ∧ i∗(
1

α
∗ ηk+1) = 〈tωk,nηk+1〉.
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We add here a small caveat that the above formula does not define an inner
product as ωk and ηk+1 are differential forms of different order. For ωk ∈ ΩkM
and ηk+1 ∈ Ωk+1M , the Stokes formula for forms can be written as

(dωk, ηk+1)L2 − (ωk, δηk+1)L2 = 〈tωk,nηk+1〉. (16)

This formula allows the extension of the boundary trace operators t and n

to H(d, ΩkM) and H(δ, ΩkM), respectively. Indeed, if ωk ∈ H1(ΩkM), then
tωk ∈ H1/2(Ωk∂M) and, by formula (16), we may extend

t : H(d, ΩkM) → H−1/2(Ωk∂M).

In the same way, equation (16) gives us the natural extension

n : H(δ, Ωk+1M) = H−1/2(Ω2−k∂M),

In fact, a stronger result holds.

Proposition 1.1 The operators t and n can be extended to continuous sur-
jective maps

t : H(d, ΩkM) → H−1/2(d, Ωk∂M),

n : H(δ, Ωk+1M) → H−1/2(d, Ω2−k∂M),

where the space H−1/2(d, Ωk∂M) is the space of k-forms ωk on ∂M satisfying

ωk ∈ H−1/2(Ωk∂M), dωk ∈ H−1/2(Ωk+1∂M).

This result is due to Paquet [45].

The formula (16) can be used also to define function spaces with vanishing
boundary data. Indeed, let us define

◦

H(d, ΩkM) = {ωk ∈ H(d, ΩkM) | (dωk, ηk+1)L2 = (ωk, δηk+1)L2

for all ηk+1 ∈ H(δ, Ωk+1M)},
◦

H(δ, Ωk+1M)={ηk+1 ∈ H(δ, Ωk+1M) | (dωk, ηk+1)L2 = (ωk, δηk+1)L2

for all ωk ∈ H(d, ΩkM)}.

It is not hard to see that indeed

◦

H(d, ΩkM) = t−1{0},
◦

H(δ, Ωk+1M) = n−1{0}.

We are now in the position prove the following lemma.

Lemma 1.2 The adjoint of the operator

d : L2(ΩkM) ⊃ H(d, ΩkM) → L2(Ωk+1M)

11



is the operator

δ : L2(Ωk+1M) ⊃
◦

H(δ, Ωk+1M) → L2(ΩkM)

and vice versa. Similarly, the adjoint of

δ : L2(Ωk+1M) ⊃ H(δ, Ωk+1M) → L2(ΩkM)

is the operator

d : L2(ΩkM) ⊃
◦

H(d, ΩkM) → L2(Ωk+1M)

Proof: We prove only the first claim, the other having a similar proof.

Let ηk+1 ∈ D(d∗), where d∗ denotes the adjoint of d. By definition, there
exists ϑk ∈ L2(ΩkM) such that

(dωk, ηk+1)L2 = (ωk, ϑk)L2

for all ωk ∈ H(d, ΩkM). In particular, if ωk ∈ ΩkM int, we see that, in the
weak sense,

(dωk, ηk+1)L2 = (ωk, δηk+1)L2 = (ωk, ϑk)L2 ,

i.e., δηk+1 = ϑk ∈ L2(ΩkM). Thus, ηk+1 ∈ H(δ, Ωk+1M), and the claim
follows now since we have

(dωk, ηk+1)L2 = (ωk, δηk+1)L2

for all ωk ∈ H(d, ΩkM), i.e., δ = d∗. 2

In the sequel, we will write for brevity H(d) = H(d, ΩkM), etc. when there
is no risk of confusion concerning the order of the forms.

For later reference, let us point out that the Stokes formula for the complete
Maxwell system can be written compactly as

(η,Mω)L2 + (Mη, ω)L2 = 〈tω,nη〉 + 〈tη,nω〉, (17)

where ω ∈ H with

H = H(d) × [H(d) ∩ H(δ)] × [H(d) ∩ H(δ)] × H(δ) (18)

and η ∈ H1(M) and we use the notations

tω = (tω0, tω1, tω2) nω = (nω3,nω2,nω1),

and, naturally,

〈tω,nη〉 = 〈tω0,nη1〉 + 〈tω1,nη2〉 + 〈tω2,nη3〉.

With these notations, we give the following definition of the Maxwell opera-
tors with electric and magnetic boundary conditions, respectively.
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Definition 1.3 The Maxwell operator with the electric boundary condition,
denoted by

Me : D(Me) → L2(M),

is defined through the differential expression (15), with the domain D(Me) ⊂
L2(M) defined as

D(Me) =
◦

H t :=
◦

H(d) × [
◦

H(d) ∩ H(δ)] × [
◦

H(d) ∩ H(δ)] × H(δ).

Similarly, the Maxwell operator with the magnetic boundary condition, de-
noted by

Mm : D(Mm) → L2(M),

is defined through the differential expression (15), with the domain D(Mm) ⊂
L2(M) defined as

D(Mm) =
◦

H n := H(d) × [H(d) ∩
◦

H(δ)] × [H(d) ∩
◦

H(δ)] ×
◦

H(δ).

Before further discussion, let us comment the boundary conditions in terms
of physics. For vectorial representations of the electric and magnetic fields,
the electric boundary condition is associated with electrically perfectly con-
ducting boundaries, i.e., n×E = 0, n ·B = 0, where n is the exterior normal
vector at the boundary. In terms of differential forms, this means simply that
tE[ = tω1 = 0 and t ∗0 B[ = tω2 = 0. On the other hand, the magnetic
boundary conditions represent a magnetically perfectly conducting bound-
aries, i.e., n × H = 0, n · D = 0, which again in terms of forms reads as
tH[ = t(1/α)ν1 = 0 or t(1/α) ∗ ω2 = nω2 = 0 and t ∗0 D[ = t(1/α)ν2 = 0,
or in terms of ω1, t(1/α) ∗ ω1 = nω1 = 0.

There is an obvious duality between these conditions. It is therefore sufficient
to consider the operator with the electric boundary condition only. This
observation is related to the well-known Maxwell duality principle.

Consider the intersections of spaces appearing in the domains of definition
in the previous definition. Let us denote

◦

H
1
t(Ω

kM) = {ωk ∈ H1(ΩkM) | tωk = 0},
◦

H
1
n(ΩkM) = {ωk ∈ H1(ΩkM) | nωk = 0}.

It is a direct consequence of Gaffney’s inequality (see [51]) that

◦

H(d, ΩkM) ∩ H(δ, ΩkM) =
◦

H
1
t(Ω

kM),

H(d, ΩkM) ∩
◦

H(δ, ΩkM) =
◦

H
1
n(ΩkM).

The following lemma is a direct consequence of Lemma 1.2 and classical
results on Hodge-Weyl decomposition[51].

Lemma 1.4 The electric Maxwell operator has the following properties:
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i. The operator Me is skew-adjoint.

ii. The operator Me defines an elliptic differential operator in M int.

iii. Ker (Me) = {(0, ω1, ω2, ω3) ∈
◦

H n : dω1 = 0, δω1 = 0, dω2 =
0, δω2 = 0, δω3 = 0}.

iv. Ran (Me) = L2(Ω0M) × (δH(δ, Ω2M) + d
◦

H(d, Ω0M)) ×
(δH(δ, Ω2M) + d

◦

H(d, Ω1M)) × d
◦

H(d, Ω2M).

By the skew-adjointness, it is possible to define weak solutions to initial-
boundary-value problems needed later. In the sequel we denote the forms
ω(x, t) just by ω(t) when there is no danger of misunderstanding.

Definition 1.5 By the weak solution to the initial boundary value problem

ωt + Mω = ρ ∈ L1
loc(R,L2(M)),

tω|∂M×R = 0, ω( · , 0) = ω0 ∈ L2, (19)

we mean the form

ω(t) = U(t)ω0 +

∫ t

0

U(t − s)ρ(s)ds,

where U(t) = exp(−tMe) is the unitary operator generated by Me.

In the analogous manner, we define weak solutions with initial data given on
t = T , T ∈ R. Assuming ρ ∈ C(R,L2(M)) and using the theory of unitary
groups, we immediately obtain the regularity result

ω ∈ C(R,L2) ∩ C1(R,H′).

where H′ denotes the dual of H.

We shall need later the boundary traces of the weak solution. To define them,
let (ω0n, ρn) ∈ D(Me) × C(R,D(Me)) be an approximating sequence of the
pair (ω0, ρ) in L2 × C(R,L2). We define

ωn = U(t)ω0n +

∫ t

0

U(t − s)ρn(s)ds,

whence ωn ∈ C(R,D(Me))∩C1(R,L2). Let ϕ = (ϕ0, ϕ1, ϕ2) be a test form,
ϕj ∈ C∞

0 (R, Ωj∂M). Let η be a strong solution of the initial boundary value
problem

ηt + Mη = 0,
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tη = ϕ, η( · , 0) = 0.

We have

(η(T ), ωn(T ))L2 =

∫ T

0

∂t(η, ωn)dt

= −
∫ T

0

((Mη, ωn) + (η,Mωn))dt,

and, by applying Stokes theorem, we deduce

(η(T ), ωn(T ))L2 = −
∫ T

0

〈ϕ,nωn〉.

Hence, we observe that, when going to the limit n → ∞, the above formula
defines nω = limn→∞ nωn ∈ D′(R,D′(∂M)), where

D′(∂M) = D′(Ω0∂M) ×D′(Ω1∂M) ×D′(Ω2∂M).

We conclude this section with the following result.

Lemma 1.6 Assume that the initial data ω0 is of the form ω0 = (0, ω1
0, ω

2
0, 0),

where δω1
0 = 0, dω2

0 = 0 and we have ρ = 0. Then the weak solution ω of
Definition 1.5 satisfies also Maxwell’s equations (10), (11), i.e., ω0 = 0 and
ω3 = 0.

Proof: As observed in Remark 1, ω and, in particular, ω0 satisfies the wave
equation

∆0
αω0 + ω0

tt = 0,

in the distributional sense, along with the Dirichlet boundary condition tω0 =
0. The initial data for ω0 is

ω0(0) = ω0
0 = 0,

and
ω0

t (0) = δω1|t=0 = δω1
0 = 0.

Hence, we deduce that also ω0 = 0.

Similarly, ω3 satisfies the wave equation with the initial data

ω3(0) = ω0
3 = 0,

and
ω3

t (0) = −dω2|t=0 = −dω2
0 = 0.

As for the boundary condition, we observe that

tδω3 = tω2
t − tdω1 = ∂ttω

2 − dtω1 = 0,

corresponding to the vanishing Neumann data for the function ∗ω3. Thus,
also ω3 = 0. 2
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1.2 Initial–boundary value problem

Our next goal is to consider the forward problem and the Cauchy data on
the lateral boundary ∂M × R for solutions of Maxwell’s equations. Assume
that ω is a solution of the complete system. The complete Cauchy data of
this solution consists of

(tω(x, t),nω(x, t)), (x, t) ∈ ∂M × R+.

Assume now that ω corresponds to the solution of Maxwell’s equations, i.e.,
we have ω0 = 0 and ω3 = 0. Consider the Maxwell-Faraday equation in (10),

ω2
t + dω1 = 0.

By taking the tangential trace, we find that tω2
t = −dtω1, and further,

tω2(x, t) = ω2(0) −
∫ t

0

dtω1(x, t′)dt′, x ∈ ∂M.

Similarly, by taking the normal trace of the Maxwell-Ampère equation in
(10),

ω1
t − δω2 = 0,

we find that nω1
t = dnω2, so likewise,

nω1(x, t) = nω1(0) +

∫ t

0

dnω2(x, t′)dt′, x ∈ ∂M. (20)

In the sequel we shall mainly consider the case ω(0) = 0, when the lateral
Cauchy data for the original problem of electrodynamics is simply

tω = (0, f,−
∫ t

0

df(t′)dt′), (21)

nω = (0, g,

∫ t

0

dg(t′)dt′) (22)

where f and g are functions of t with values in Ω1∂M .

The following theorem implies that solutions of Maxwell’s equations are so-
lutions of the complete Maxwell system and gives sufficient conditions for the
converse result.

Theorem 1.7 If ω(t) ∈ C(R,H1) ∩ C1(R,L2) satisfies the equation

ωt + Mω = 0, t > 0 (23)

with vanishing initial data ω(0) = 0, and ω0(t) = 0, ω3(t) = 0, then the
Cauchy data is of the form (21)–(22).

Conversely, if the lateral Cauchy data is of the form (21)–(22) for 0 ≤ t ≤ T ,
and ω satisfies the equation (23), with vanishing initial data, then ω(t) is a
solution to Maxwell’s equations, i.e., ω0(t) = 0, ω3(t) = 0.
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Proof: The first part of the theorem follows from the above considerations if
we show that ω(t) is sufficiently regular.

Since ω2 ∈ C(R, H1(Ω2M)) we see that nω2 ∈ C(R, H1/2(Ω2∂M)) with
dnω2 ∈ C(R, H−1/2(Ω2∂M)). Furthermore, as δω1

t (t) = δδω2(t) = 0,

nω1
t ∈ C(R, H−1/2(Ω2∂M)), δω2 ∈ C(R, H−1/2(Ω2∂M)),

which verifies (22).

To prove (21) we use Maxwell duality: Consider the forms

η3−k = (−1)k ∗ 1

α
ωk.

Then η = (η0, η1, η2, η3) satisfies Maxwell’s equations ηt + M̃η = 0 where

M̃ is the Maxwell operator with metric g and scalar impedance α−1. In
sequel, we call Maxwell’s equation with these parameters the adjoint Maxwell
equations and the forms ηj the adjoint solution. Now the formula (22) for
adjoint solution implies (21) for ω.

To prove the converse, it suffices to show that ω0(t) = 0. Indeed, the claim
ω3(t) = 0 follows then by Maxwell duality described earlier. From the equa-
tions

ω0
t − δω1 = 0, (24)

ω1
t + dω0 − δω2, = 0 (25)

it follows that ω0 satisfies the wave equation

ω0
tt + δdω0 = 0.

It also satisfies the initial condition ω0(0) = 0 and ω0
t (0) = 0 and, from (21),

boundary condition tω0 = 0. Thus, ω0 = 0 for 0 ≤ t ≤ T .

2

The following definition fixes the solution of the forward problem considered
in this work.

Definition 1.8 Let f = (f 0, f 1, f 2) ∈ C∞([0, T ];Ω(∂M)) be a smooth bound-
ary source of the form (21), i.e., f 0 = 0, f 2

t = −df 1. Further, let R be any
right inverse of the mapping t. The solution of the initial-boundary value
problem

ωt + Mω = 0, t > 0,

ω(0) = ω0 ∈ L2(M), tω = f,

is given by

ω = Rf + U(t)ω0 −
∫ t

0

U(t − s)(MRf(s) + Rfs(s))ds.
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We remark that the boundary data f could be chosen from a wider class
f ∈ H1/2(∂M × [0, T ]).

Theorem 1.7 motivates the following definition.

Definition 1.9 For solution ω of Maxwell equations (10)–(11) we use the
following notations:

i. The lateral Cauchy data for a solution ω of Maxwell’s equations with
vanishing initial data in the interval 0 ≤ t ≤ T is given by the pair

(tω1(x, t),nω2(x, t)), (x, t) ∈ ∂M × [0, T ].

ii. When ω satisfies initial condition ω(0) = 0 the mapping

ZT : C∞
00([0, T ], Ω1(∂M)) → C∞

00([0, T ], Ω1(∂M)),

ZT (tω1) = nω2|∂M×[0,T ],

is well defined. We call this map the admittance map.

Here C∞
00([0, T ],B) consists of C∞ functions of t with values in a space B ,

i.e. B = Ω1(∂M) in definition 1.9, which vanish near t = 0.

Note that in the classical terminology for the electric and magnetic fields, ZT

maps the tangential electric field n × E|∂M×[0,T ] to the tangential magnetic
field n × H|∂M×[0,T ].

The boundary data and the energy of the field inside M are closely related.
The following result, crucial from the point of view of boundary control, is a
version of the Blagovestchenskii formula (see [5] for the case of the scalar wave
equation). Observe that the following theorem is formulated for any solutions
of the complete system, not only for those that correspond to Maxwell’s
equations.

Theorem 1.10 Let ω and η be smooth solutions of the complete system (14).
Then the knowledge of the lateral Cauchy data

(tω,nω), (tη,nη), 0 ≤ t ≤ 2T,

is sufficient for the determination of the inner products

(ωj(t), ηj(s))L2 , 0 ≤ j ≤ 3, 0 ≤ s, t ≤ T

over the manifold M .

Proof: The proof is based on the observation that, having the lateral Cauchy
data of a solution ω, we also have access to the forms dtω and dnω at the
boundary. On the other hand, t commutes with d so that

tdωj = dtωj, nδωj = t ∗ ∗d 1

α
∗ ωj = dt

1

α
∗ ωj = dnωj.
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Let us define the function

F j(s, t) = (ωj(s), ηj(t)).

From the complete system, it follows that

(∂2
s − ∂2

t )F
j(s, t) = (ωj

ss(s), η
j(t))L2 − (ωj(s), ηj

tt(t))L2 (26)

= −((dδ + δd)ωj(s), ηj(t))L2 + (ωj(s), (dδ + δd)ηj(t))L2

= f j(s, t).

By applying Stokes theorem we obtain further that

f j(s, t) = 〈nωj, tδηj〉 + 〈tωj,ndηj〉 − 〈tδωj,nηj〉 − 〈ndωj, tηj〉,

where we suppressed for brevity the dependence of the boundary values on
s and t. Now the complete system implies that

dωj = −ωj+1
s + δωj+2, δωj = ωj−1

s + dωj−2,

and, similarly,

dηj = −ηj+1
t + δηj+2, δηj = ηj−1

t + dηj−2.

A substitution to the above formulas then gives

f j(s, t) = 〈nωj, tηj−1
t + dtηj−2〉 + 〈tωj,−nηj+1

t + dnηj+2〉

−〈tωj−1
s + dtωj−2,nηj〉 − 〈−nωj+1

s + dnωj+2, tηj〉,

where d stands for the exterior derivative on ∂M . Hence, f j is completely
determined by the lateral Cauchy data. What is more, we have

F j(0, t) = F j(s, 0) = 0, F j
s (0, t) = F j

t (s, 0) = 0. (27)

Hence, we can solve F (s, t) using (26) and (27) as claimed. 2

Remark 3. If ω and η are solutions to Maxwell’s equations (10-11), the
formulas above simplify. We have

f 0(s, t) = f 3(s, t) = 0,

and

f 1(s, t) = 〈nω2
s , tη

1〉 − 〈tω1,nη2
t 〉, f 2(s, t) = 〈nω2, tη1

t 〉 − 〈tω1
s ,nη2〉.

Then, for j = 1 the inner product (ω1(t), ω1(t))L2 defines the energy of the
electric field. Similarly, for j = 2 the inner product (ω2(t), ω2(t))L2 defines
the energy of the magnetic field.
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2 Inverse problem

The main objective of this chapter is to prove the following uniqueness result
for the inverse boundary value problem.

Theorem 2.1 Given ∂M and the admittance map ZT , T > 8diam (M),
for Maxwell’s equations, (10)– (11), it is possible to uniquely reconstruct the
Riemannian manifold, (M, g) and the scalar wave impedance, α.

Observe that, once we know the travel time metric g as well as the wave
impedance α, formula (8) gives the metrics gµ and gε, which correspond to
the material parameters µ and ε.

The proof of the above result is divided in several parts. The first step, which
is discussed in the next sections, is to prove necessary boundary controlla-
bility results. These results are used, in a similar fashion as in [27], [25], to
reconstruct the manifold and the travel time metric.

2.1 Unique continuation results

In the following lemma, we consider extensions of differential forms outside
the manifold M . Let Γ ⊂ ∂M be open. Assume that M̃ is an extension of
M across Γ, i.e. M ⊂ M̃ , Γ ⊂ int(M̃) and ∂M \ Γ ⊂ ∂M̃ . Furthermore, we

assume that the metric g and impedance α are extended smoothly into M̃ as
g̃, α̃. In this case, we say that the manifold with scalar impedance (M̃, g̃, α̃)
is an extension of (M, g, α) across Γ. (See Figure 2.1).

Figure 1: Manifold M̃ is obtained by gluing an “ear” to M .

We have the following simple result.

Lemma 2.2 Assume that M̃ is an extension of M across an open set Γ ⊂
∂M . Let ωk be a k-form on M and ω̃k be its extension by zero to M̃ . Then

1. If ωk ∈ H(d, ΩkM) and tωk|Γ = 0, then ω̃k ∈ H(d, ΩkM̃).
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2. If ωk ∈ H(δ, ΩkM) and nωk|Γ = 0, then ω̃k ∈ H(δ, ΩkM̃).

Proof: External differential, in terms of distributions, of ω̃k can be defined
by

(dω̃k, ϕk)L2 = (ω̃k, δϕ)L2 ,

where ϕk ∈ ΩkM̃ int is arbitrary. However, by the formula (16),

(ω̃k, δϕk)L2(M̃) = (ωk, δϕk)L2(M) = (dω̃k, ϕk)L2(M) + 〈tωk,nϕk〉.

Moreover, since supp (ϕk) ⊂⊂ M̃ int, then supp(nϕk) ⊂ Γ, where tωk van-
ishes. Thus,

(ω̃k, δϕk)L2(M̃) = (dωk, ϕk)L2 ,

i.e. dω̃k is the zero extension of dωk. In particular, dω̃k ∈ L2(M̃), so that

ω̃k ∈ H(d, ΩkM̃).

The claim concerning the codifferential is proved by a similar argument. 2

As a consequence of this result, we obtain the following.

Theorem 2.3 Let ω ∈ C1(R,L2) ∩ C(R,H), tω|Γ×[0,T ] = 0, nω|Γ×[0,T ] = 0,
be a solution of the equation ωt+Mω = 0 in M×[0, T ]. Let ω̃ be its extension
by zero across Γ ⊂ ∂M . Then the extended form, w̃(t) satisfies the complete

Maxwell’s system on (M̃, g̃, α̃), i.e. ω̃t + M̃ω̃ = 0 in M̃ × [0, T ].

We are particularly interested in the solutions of Maxwell’s equations. The
following result is not directly needed but we have included it, since the basic
idea is useful when we will prove the main result of this section.

Lemma 2.4 Assume that ω in the above theorem satisfies Maxwell’s equa-
tions, i.e., ω0 = 0 and ω3 = 0, and ω(x, 0) = 0. If tω1 = 0 and nω2 = 0
on Γ × [0, T ], then ω satisfies Maxwell’s equations in the extended domain

M̃ × [0, T ].

Proof: From Theorem 1.7 it follows that, since ω satisfies Maxwell’s equa-
tions,

tω = (0, tω1,−
∫ t

0

dtω1dt′) = 0, nω = (0,nω2,

∫ t

0

dnω2dt′) = 0

in Γ × [0, T ]. Therefore, the previous theorem shows that the continuation

by zero across Γ, ω̃(t), satisfies the complete system in M̃ × [0, T ].

However, ω̃0(t) = 0, ω̃3(t) = 0 in M̃ × [0, T ], i.e., ω̃(t) satisfies Maxwell’s

equations with vanishing initial data in the extended manifold M̃ . 2

When we deal with a general solution to Maxwell’s equations, (10)–(11),
which may not satisfy zero initial conditions, and try to extend them by zero
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across Γ, the arguments of Lemma 2.4 fail. Indeed, if ω0 6= 0, then (20) show
that nω2 = 0 is not sufficient for nω1 = 0. However, by differentiating with
respect to time, the parasite term nω1(0) vanishes. This is the motivation
why, in the following theorem, we consider the time derivatives of the weak
solutions.

Denote by τ(x, y) the geodesic distance between x and y on (M, g). Let
Γ ⊂ ∂M be open and T > 0. We use the notation

K(Γ, T ) = {(x, t) ∈ M × [0, 2T ] | τ(x, Γ) < T − |T − t|}

for the double cone of influence with base on the slice t = T . (see Figure
2.1.)

Figure 2: Double cone of influence.

Theorem 2.5 Let ω(t) be a weak solution of Maxwell’s system in the sense
of Definition 1.5 with ω0 = (0, ω1

0, ω
2
0, 0). Assume, in addition, that δω1

0 = 0,
dω2

0 = 0 and ρ = 0. If nω2 = 0 in Γ×]0, 2T [, then ∂tω = 0 in the double cone
K(Γ, T ).

Proof: Let ψ ∈ C∞
0 ([−1, 1]),

∫ 1

−1
ψ(s)ds = 1 be a Friedrich’s mollifier. Then,

for any σ > 0 and ω(t) ∈ C(]0, 2T [),L2(M)) satisfying conditions of the
Theorem, denote by ωσ(t) its time-regularization,

ωσ = ψσ ∗ ω, ψσ(t) = (1/σ)ψ(t/σ).

Then ωσ ∈ C∞([σ, 2T − σ[,L2(M)) continue to be weak solutions to the
Maxwell system and, moreover, to Maxwell’s equations (10)–(11). Thus,

Mωσ = −∂tωσ ∈ C∞([σ, 2T − σ[,L2(M)),

i.e. ωσ ∈ C∞([σ, 2T − σ[,D(Me)). Repeating these arguments,

ωσ ∈ C∞([σ, 2T − σ[,D(M∞
e )),
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with D(M∞
e ) =

⋂
N>1 D(MN

e ).

As nωσ = ψσ ∗ nω,

n(ωσ)2 = 0 on Γ × [σ, 2T − σ[.

Applying (20), we see that n∂tωσ = 0 on Γ × [σ, 2T − σ[.

Denote by ω̃ the extension by zero of ω across Γ and η̃σ that of ∂tωσ. We claim
that, in the distributional sense, η̃σ satisfies the complete Maxwell system,
for σ < t < 2T −σ. Indeed, let ϕ = (ϕ0, ϕ1, ϕ2, ϕ3) ∈ C∞

0 (]σ, 2T −σ[,ΩM̃ int)
be a test form. Using the brackets [ · , · ] to denote the distribution duality,
that extends the inner product

[ψ, φ] =

∫ 2T

0

(ψ(t), φ(t))
L2(M̃)dt,

we have

[∂tη̃σ + M̃η̃σ, ϕ] = −[η̃σ,M̃ϕ + ϕt]

= [ω̃σ,M̃(ϕt) + ϕtt] = [ωσ,M(ϕt) + ϕtt].

As tωσ = 0, it follows from the Stokes’ theorem and the fact that ωσ satisfies
Maxwell’s equations, that

[ω,Mϕt + ϕtt] =

∫ 2T

0

(ωσ,Mϕt + ϕtt)L2(M)dt =

∫ 2T

0

〈nωσ.tϕt〉dt,

As supp(tϕ) ⊂ Γ×]σ, 2T − σ[, where nωσ = 0, the right side of this equation
equals to 0. In addition, t̃ω̃σ = 0 for t ∈]σ, 2T − σ[, where t̃ is the tangential

component on ∂M̃ . Thus, the claim follows.

However, η̃σ ∈ C∞(]σ, 2T − σ[,L2(M̃)). Therefore, similar considerations to
the above shows that this implies that

η̃σ ∈ C∞([σ, 2T − σ[,D∞(Me)),

i.e. η̃σ is infinitely smooth in M̃ int × [σ, 2T −σ[. Since η̃σ = 0 outside M ×R,
the unique continuation result of Eller-Isakov-Nakamura-Tataru [17], that is
based on result of Tataru [55],[57]

for smooth solutions, implies that η̃σ = 0 in the double cone τ̃(x, M̃ \ M) <

T − σ − |T − t|, x ∈ M̃, where τ̃ is the distance on (M̃, g̃). As η̃σ = ∂tωσ

in M , this implies that ∂tωσ = 0 in the double cone

τ(x, Γ) < T − σ − |T − t|, x ∈ M. (28)

When σ → 0, η̃σ → ∂tω, in the distributional sense, while the cone (28) tend
to K(Γ, T ) and the claim of the theorem follows. 2
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We note that the unique continuation result of [17] is related to scalar ε,
µ. However, it is easily generalized to the scalar impedance case due to the
single velocity of the wave propagation.

Following the proof of Theorem 2.5, we can show the following variant of
Theorem 1.7.

Corollary 2.6 Let ω(t) be a weak solution to the complete Maxwell system
in the sense of definition 1.5, with ρ = 0, and, in addition, (22) on Γ×]0, T [.
If T > 2 diam(M), then ω0(t) = 0, ω3(t) = 0 and ω(t) is a solution of
Maxwell’s system for 0 < t < T .

Proof: We will consider only ω0 using the n Maxwell duality for ω3. By
remark 1 and (21),

ω0
tt + δdω0 = 0, tω0|∂M×[0,T ] = 0. (29)

Also
ω1

t + dω0 − δω2 = 0,

imply, together with (22), that

ndω0 = nδω2 − nω1
t = dnω2 − nω1

t = 0

on Γ× [0, T ]. Together with the boundary condition in (29), this shows that
the lateral Cauchy data of ω(t) vanishes on Γ × [0, T ]. Using now the wave
equation in (29), this imply that, due to Tataru’s unique continuation [55],
[57], ω0 = 0 in the double cone K(Γ, T ). As T > 2diam(M), this yield
that ω0(T/2) = ω0

t (T/2) = 0. It now follows from (29) that ω0(t) = 0 for
0 < t < T . 2

2.2 Introduction for controllability

In this section we derive the controllability results for the Maxwell system.
We divide these results in local results, i.e., controllability of the solutions at
short times and in global results, where the time of control is long enough
so that the controlled electromagnetic waves fill the whole manifold. Both
types of results are based on the unique continuation of Theorem 2.5 and
representation of inner products of electromagnetic fields over M , in a time
slice, in terms of integrals of the lateral Cauchy data over the boundary ∂M
over a time interval which is given by Theorem 1.10 .

Consider the initial boundary value problem

ωt + Mω = 0, t > 0, (30)

with the initial data ω(0) = 0 and the electric boundary data of Maxwell
type,

tω = (0, f,−
∫ t

0

df(t′)dt′), (31)

24



where we assume that f ∈ C∞
0 (R+, Ω1∂M). By Theorem 1.7, we know that

ω0(t) = 0 and ω3(t) = 0.

Let ω̃ denote the weak solution of Definition 1.5 with ρ = 0 and ω̃(T ) = ω0.
Assume, in addition, that the conditions of Lemma 1.6 are satisfied so that
ω̃ satisfies also Maxwell’s equations.

As we have seen, Stokes formula implies the identity

(ω(T ), ω0) = −
∫ T

0

〈tω,nω̃〉dt. (32)

We refer to this identity as the control identity in the sequel.

2.3 Local controllability

In this section, we study differential 1−forms in M that can be generated by
using appropriate boundary sources active for short periods of time. Instead
of a complete characterization of these forms, we show that there is a large
enough subspace in L2(Ω1M) that can be produced by boundary sources.
The difficulty that prevents a complete characterization is related to the
topology of the domain of influence, which can be very complicated.

Let Γ ⊂ ∂M be an open subset of the boundary and T > 0 arbitrary. We
define the domain of influence as

M(Γ, T ) = {x ∈ M | τ(x, Γ) < T},

where τ is the distance with respect to the travel time metric g. Observe
that M(Γ, T ) = K(Γ, T ) ∩ {t = T}.
Furthermore, let ω be the strong solution of the initial-boundary value prob-
lem

ωt + Mω = 0, ω(0) = 0,

with the boundary value

tω = (0, f,−
∫ t

0

df(t′)dt′),

where f ∈ C∞
0 (]0, T [, Ω1Γ) with C∞

0 (]0, T [, Ω1Γ) being a subspace of forms
in C∞

0 (]0, T [, Ω1∂M) with support in Γ. To emphasize the dependence of ω
on f , we write occasionally

ω = ωf = (0, (ωf )1, (ωf )2, 0).

We denote

X(Γ, T ) = clL2{(ωf )1(T ) | f ∈ C∞
0 (]0, T [, Ω1Γ)}, (33)
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i.e., X(Γ, T ) is the L2–closure of the set of the electric fields that are generated
by C∞

0 –boundary sources on Γ×]0, T [. Furthermore, we use the notation

H(δ,M(Γ, T )) = {ω2 ∈ H(δ,M), supp (ω2) ∈ M(Γ, T )}.

We will prove the following result.

Theorem 2.7 The set X(Γ, T ) satisfies

δH1
0 (Ω2M(Γ, T )) ⊂ X(Γ, T ) ⊂ clL2

(
δH(δ,M(Γ, T ))

)
.

Here H1
0 (Ω2S), S ⊂ M is a subspace of H1

0 (Ω2M) of forms with support in
cl(S).

Proof: The right inclusion is straightforward: Since ω satisfies Maxwell’s
equations, we have ω0(t) = 0 and, hence,

ω1(T ) =

∫ T

0

δω2dt ∈ δH(δ,M(Γ, T )).

To prove the left inclusion, we show that any field of the form ν1 = δη2 with
η2 ∈ H1

0 (M(Γ, T )) is in (X(Γ, T )⊥)⊥. To this end, let us first assume that
ω1

0 ∈ L2(Ω1M) is a 1–form such that

(ω1
0, ω

1)L2 = 0

for all ω1 = (ωf (T ))1 generated by boundary sources f ∈ C∞
0 (]0, T [, Ω1Γ).

Since ω1 = δω2, it suffices to consider only those forms ω1
0 that are of the

form ω1
0 = δη2

0 for some η2
0 ∈ H(δ). Indeed, by Hodge decomposition (see

[51]) in L2(M), we have

ω1
0 = ω̂1

0 + δη2
0,

where dω̂1
0 = 0, tω̂1

0 = 0 so ω̂1
0 ⊥ ω1 automatically.

Let ω̃ be a weak solution, at the time interval [0, T ], of the initial boundary
value problem (19) with tω̃ = 0, and

ω̃( · , T ) = (0, ω1
0, 0, 0) = ω0.

By our assumption,

(ω(T ), ω0)L2 = (ω1(T ), ω1
0)L2 = 0,

and thus, by the control identity, (32) and conditions (21), (22),

∫ T

0

〈tω,nω̃〉 =

∫ T

0

〈tω1,nω̃2〉 =

∫ T

0

〈f,nω̃2〉 = 0,
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for all differential 1-forms f ∈ C∞
0 (]0, T [, Ω1Γ). Thus, we have

nω̃2 = 0 on Γ×]0, T [.

Furthermore, it is easy to see that, for T + t ∈ [T, 2T ], we have

ω̃(T + t) = (0, ω̃1(T − t),−ω̃2(T − t), 0),

and, therefore, also
nω̃2 = 0 on Γ×]T, 2T [.

But this implies that, as a distribution, nω̃2 vanishes on the whole interval
]0, 2T [ since it is in L2

loc(R, H−1/2(∂M)). By applying the Theorem 2.5, we
can deduce that ω̃t = 0 in the double cone K(Γ, T ). In particular, we have
that dω1

0 = ω̃2
t (T ) = 0 in M(Γ, T ).

Let now ν1 = δη2 ∈ δH1
0 (Ω2M(Γ, T )). Then

(ν1, ω1
0)L2 = (η2, dω1

0)L2 = 0.

This holds for arbitrary ω1
0 ∈ X(Γ, T )⊥, i.e., ν ∈ (X(Γ, T )⊥)⊥ = X(Γ, T ). 2

Remark 4. Later in this work, we are mainly interested in controlling the
time derivatives of electromagnetic fields. Let us denote

◦

C
∞(Γ, T ) = {

∫ t

0

f(t′)dt′ | f ∈ C∞
0 (]0, T [, Ω1Γ)}.

With this notation, we have

X(Γ, T ) = clL2{(ωf
t (T ))1 | f ∈

◦

C
∞(Γ, T )}.

Indeed, if ω1 = (ωf )1 ∈ X(Γ, T ), then (ωf )1 = (ωF
t )1, where

F (t) =

∫ t

0

f(t′)dt′.

Conversely, the time derivative of a field ωf , f ∈
◦

C∞(Γ, T ) satisfies the initial-
boundary value problem with the boundary source ft ∈ C∞

0 (]0, T [, Ω1Γ).

2.4 Global controllability

We start by introducing some notations. Let ω be the strong solution of the
initial-boundary value problem

ωt + Mω = 0, ω(0) = 0,

with the boundary value

tω = (0, f,−
∫ t

0

df(t′)dt′),
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where f ∈ C∞
0 (]0, T0[, Ω

1Γ), T0 > 0 and Γ ⊂ ∂M is an open subset. For
T ≥ T0, we define

Y (Γ, T ) = {ωf
t (T ) | f ∈ C∞

0 (]0, T0[, Ω
1Γ)}. (34)

For Γ = ∂M we denote Y (T ) = Y (∂M, T ). Our objective is to give a
characterization of the set Y (T ) for T0 large enough. In the following,

rad(M) = max
x∈M

τ(x, ∂M). (35)

We prove the following result.

Theorem 2.8 Assume that T0 > 2rad(M). Then, for T ≥ T0, clL2(M)Y (T )
is independent of T , i.e. clL2(M)Y (T ) = Y , and, moreover,

Y = {0} × δH(δ) × d
◦

H(d) × {0}. (36)

Remark 5. The result holds also for Y replaced with Y (Γ, T ), when

T0 > 2 max
x∈M

τ(x, Γ).

Proof: Let ω = ωf be a solution. As f = 0 for T ≥ T0, we have

tω1(T ) = 0,

and, consequently,

ωt(T ) = −Mω(T ) = (0, δω2(T ),−dω1(T ), 0)

∈ {0} × δH(δ) × d
◦

H(d) × {0}.

To prove the converse inclusion, we show that the space Y (T ) is dense in

{0}× δH(δ)×d
◦

H(d)×{0}. To this end, let ω0 ∈ {0}× δH(δ)×d
◦

H(d)×{0}
and ω0 ⊥ Y (T ). This means that, for arbitrary ω = ωf satisfying the initial-
boundary value problem (14),

(ω0, ωt(T ))L2 = (ω1
0, ω

1
t (T ))L2 + (ω2

0, ω
2
t (T ))L2 = 0. (37)

Let ω̃ denote the weak solution of the problem

ω̃t + Mω̃ = 0,

tω̃ = 0, ω̃(T ) = ω0.

Observe that the initial value ω0 satisfies

δω1
0 = 0, dω2

0 = 0,
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which implies that ω̃ satisfies Maxwell’s equations. Consider the function
F : R → R,

F (t) = (ω̃(t), ωt(t))L2 .

We have, by using Maxwell’s equations, that

Ft(t) = (ω̃, ωtt)L2 + (ω̃t, ωt)L2

= −(ω̃1, δdω1)L2 − (ω̃2, dδω2)L2 + (dω̃1, dω1)L2 + (δω̃2, δω2)L2 ,

and further, by using Stokes’ theorem,

Ft(t) = −〈tω̃1(t),ndω1(t)〉 − 〈nω̃2(t), tδω2(t)〉.
However, tω̃ = 0 and δω2 = ω1

t . Thus,

Ft(t) = −〈nω̃2, tω1
t 〉 = −〈nω̃2, ft〉.

On the other hand, the initial condition ω(0) = 0, together with the orthog-
onality condition (37), imply that F (0) = F (T ) = 0, so that

∫ T

0

〈nω̃2, ft〉dt = −
∫ T

0

Ft(t)dt = 0.

Since f ∈ C∞
0 (]0, T [, Ω1Γ) is arbitrary, this implies that

nω̃2
t = 0 in Γ×]0, T [.

But now Theorem 2.5 implies that ω̃tt vanishes in the double cone K(Γ, T/2).
By the assumption T0 > 2rad(M), this double cone contains a cylinder

C = M×]T/2 − s, T/2 + s[

with some s > 0 (See Figure 2.4). Therefore, ω̃tt that satisfies Maxwell’s
equations and homogeneous boundary condition tω̃tt = 0. Therefore, it van-
ishes in the whole M × R. In particular, this means that, with some time-
independent forms ω1 and ω2,

ω̃(t) = ω1 + tω2,

with tω1 = 0, tω2 = 0. Again, by Maxwell’s equations, we have

ω2 = ωt = Mω1 + tMω2,

for all t. Therefore,
ω2 = Mω1, Mω2 = 0.

But then, Stokes’ theorem implies that

(ω2, ω2)L2 = (ω2,Mω1)L2 = −(Mω2, ω1)L2 = 0,

i.e., ω2 = 0 and Mω1 = 0. Observe that, by the assumption of the Theorem,

ω1 = ω̃(T ) = ω0 = (0,−δν2, dν1, 0) = Mν,

for some ν ∈ {0} ×
◦

H(d) × H(δ) × {0}. Therefore, a further application of
Stokes theorem gives

(ω1, ω1)L2 = (ω1,Mν)L2 = −(Mω1, ν)L2 = 0,

i.e., also ω1 = ω0 = 0. The proof is therefore complete. 2
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Γ

Figure 3: The double cone contains a slice {T/2}×M and the waves vanish
near the slice t = T/2.

2.5 Generalized sources

So far, we have treated only smooth boundary sources and the corresponding
fields. For later use, we need more general boundary sources.

Let Y = clL2(M)Y (∂M, T ) be the space of the time derivatives of electromag-
netic fields satisfying Maxwell’s equations, see (34), (36). We define the wave
operator

W T : C∞
0 (]0, T [, Ω1∂M) → Y, f 7→ ωf

t (T ),

where T ≥ T0 and T0 > 2 rad (M). By means of the wave operator, we define
the F−norm on the space of boundary sources as

‖f‖F = ‖W T f‖L2 . (38)

The definition of this norm is independent of the choice of T ≥ T0 by con-
servation of energy.

Notice that by Theorem 1.10, the knowledge of the admittance map Z 2T

enables us to calculate explicitly the F–norm of any smooth boundary source.

To complete the space of boundary sources, let us define the equivalence ∼
of sources by setting

f ∼ g iff W T f = W T g.

Further, we define the space F([0, T0]) as

F([0, T0]) = C∞
0 (]0, T [, Ω1∂M)/ ∼ .

Finally, we complete F([0, T0]) with respect to the norm (38). Hence, this
space, denoted by F([0, T0]) consists of Cauchy sequences with respect to the
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norm (38), denoted as

f̂ = (fj)
∞
j=0, fj ∈ C∞

0 (]0, T [, Ω1∂M).

Note that, for any f̂ ∈ F , we can find ĥ ∈ F such that ĥ = f̂ and ĥ = (hj)
∞
j=1,

hj ∈ C∞
0 (]ε, T [, Ω1∂M) for some ε > 0. The reason for this is that Theorem

2.8 is valid also with T0 replaced with T0 − ε, when ε is small enough. Thus,
for small ε > 0, we can define, for any f̂ = (fj)

∞
j=0 ∈ F , the translation

f̂(·+ε) = (fj(·+ε))∞j=0 ∈ F .

These sources are called generalized sources in the sequel. The corresponding
electromagnetic waves are denoted as

ωf̂
t (t) = lim

j→∞
ω

fj

t (t) for t ≥ T0. (39)

By the isometry of the wave operator, the above limit exists in L2 for all
generalized sources.

We note that the above construction of the space of generalized sources in
well-known in PDE-control, e.g. [49], [35].

Remark 6. Observe that since the wave operator W T is an isometry and
F([0, T0]) was defined by closing C∞

0 (]0, T [, Ω1∂M) with respect to the norm
(38), the wave operator extends to a one-to-one isometry

f̂ 7→ ωf̂
t (T ), F([0, T0]) → clL2(Y (∂M, T )),

where the target space is completely characterized in the previous section.

We say that ĥ ∈ F is a generalized time derivative of f̂ ∈ F , if for T = T0,

lim
σ→0+

|| f̂(·+σ) − f̂(· )
σ

− ĥ||F = (40)

= lim
σ→0+

||ω
f̂
t (T + σ) − ωf̂

t (T )

σ
− ωĥ

t (T )||L2(M) = 0

In this case we denote ĥ = Df̂ , or just ĥ = ∂tf̂ . In the following, we use
spaces F s = D(Ds), s ∈ Z+, which are spaces of generalized sources that
have s generalized derivatives. Note that, if (40) is valid for T = T0, it
is valid for all T ≥ T0 due to the conservation of L2-norm for Maxwell’s
equation (energy conservation). Thus, if f̂ ∈ F s, we have, for T ≥ T0,

Msωf̂
t (T ) = ∂s

t ω
f̂
t (t)|t=T ∈ L2(M). (41)

Note that M here is the differential expression given by (15), rather than

an operator with some boundary conditions. Since tω f̂
t = 0 on ∂M×]T0,∞[,

we see that t(∂j
t ω

f̂
t )(t) = 0 for t > T0 and j ≤ s − 1. Thus, for f̂ ∈ F s and

T ≥ T0,

ωf̂
t ∈

s⋂

j=0

(Cs−j([T,∞[,D(Mj
e)) ∩ Ran (Me)). (42)
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Moreover, by (42) and Lemma 1.4,

ωf̂
t (T ) ∈ Hs

loc(M
int) for T ≥ T0.

Next we consider dual spaces to the domains of powers of Me. Since Hs
0 ⊂

D(Ms
e), we have (D(Ms

e))
′ ⊂ H−s. Similarly, we see that H−s

0 ⊂ (D(Ms
e))

′.
These facts will be needed later in the construction of focusing sources.

2.6 Reconstruction of the manifold

In this section we will show how to determine the manifold, M and the travel
time metric, g from the boundary measurements of the admittance map Z.
We will show that the boundary data determines the set of boundary distance
functions. The basic idea is to use a slicing principle, when we control the
supports of the waves generated by boundary sources.

We start by fixing certain notations. Let times T0 < T1 < T2 satisfy

T0 > 2 rad(M), T1 ≥ T0 + diam(M), T2 ≥ 2 T1

We assume in this section that the admittance map ZT2 is known.

PSfrag replacements

M
t = 0

t = T0

t = T1

t = T2

Figure 4: The sources f̂ of the waves ωf̂ (x, t) are supported on the time-
interval [0, T0] which enables us to control the waves at times t > T0. In
the construction of the manifold, the supports of the waves are considered
at time t = T1. To this end, we use the unique continuation in double-cones
(triangle in the figure) intersecting the boundary in the layer ∂M × [T0, T1].

Note that in this layer it is crucial that f̂ = 0.

Let Γj ⊂ ∂M be open disjoint sets, 1 ≤ j ≤ J and τ−
j and τ+

j be positive
times with

0 < τ−
j < τ+

j ≤ diam(M), 1 ≤ j ≤ J.

We define the set S = S({Γj, τ
−
j , τ+

j }) ⊂ M as an intersection of slices,

S =
J⋂

j=1

(
M(Γj, τ

+
j ) \ M(Γj, τ

−
j )

)
. (43)
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Our first goal is to find out, by boundary measurements, whether the set S
contains an open ball or not. To this end, we give the following definition.

Definition 2.9 The set Z = Z({Γj, τ
−
j , τ+

j })J
j=1 consists of those generalized

sources f̂ ∈ F∞([0, T0]) that produce waves ωt = ωf̂
t with

1. ω1
t (T1) ∈ X(Γj, τ

+
j ), for all j, 1 ≤ j ≤ J ,

2. ω2
t (T1) = 0,

3. ωtt(T1) = 0 in M(Γj, τ
−
j ), for all j, 1 ≤ j ≤ J .

Remark 7. Observe that, since ωt satisfies Maxwell’s equations, we have,
in particular,

ω2
tt = −dω1

t , ω1
tt = δω2

t .

These identities imply that, at t = T1, ωtt is of the form

ωtt(T1) = (0, 0, ω2
tt(T1), 0) = (0, 0, dη1, 0),

for the 1–form η1 = −ω1
t , and

supp(dη1) ⊂ S.

This observation is crucial later when we will discuss focusing waves.

The central tool for reconstruction the manifold is the following theorem.

PSfrag replacements

A

Figure 5: In Definition 2.9 we can consider e.g. the case Γ1 = Γ, τ+
1 =

s1, τ−
1 = 0, and Γ2 = ∂M , τ+

2 = diam (M), τ−
1 = s2. Then the waves

that satisfy the definition have the following properties: By 1., the wave

(ωf̂
t )1(T1) coincides with a wave that is supported in M(Γ, s1). This domain

of influence on the figure is the upper part of the cone of influence. Thus,

d(ωf̂
t )1(T1) = (ωf̂

tt)
2(T1) is supported in M(Γ, s1). By 2., the wave (ωf̂

tt)
2(T1)

vanish in the boundary layer M(∂M, s2). Combining these, we see that

ωf̂
tt(T1) is supported in A = M(Γ, s1) \ M(∂M, s2).
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Theorem 2.10 Let S and Z be defined as above. The following alternative
holds:

1. If S contains an open ball, then dim(Z) = ∞,

2. If S does not hold an open ball, then Z = {0}.

In order to prove the above alternative, we need the following observability
result that will be also useful later.

Theorem 2.11 Given the boundary map ZT2, we can determine whether a
given boundary source f̂ ∈ F∞([0, T0]) is in the set Z or not.

Proof: Let f̂ = (fk)
∞
k=0 ∈ F∞([0, T0]) be a generalized source. Consider first

the question whether (ωf̂
t )1(T1) ∈ X(Γj, τ

+
j ). By Remark 4, this is equivalent

to the existence of a sequence,

ĥ = (h`)
∞
`=0, h` ∈

◦

C
∞(Γj, τ

+
j ),

such that

lim
k,`→∞

‖(ωfk

t )1(T1) − (ωh`
t )1(τ+

j )‖ = 0. (44)

By linearity of the initial-boundary value problem, we have

‖(ωfk

t )1(T1) − (ωh`
t )1(τ+

j )‖ = ‖(ωgk,`)1(T1)‖,

where the source gk,` is

gk,`(t) = (fk)t(t) − (h`)t(t + τ+
j − T1) ∈ C∞

0 (]0, T1[; Ω
1∂M).

However, by Lemma 1.10, ‖(ωgk,`)1(T1)‖ is completely determined by the
admittance map, ZT2 making possible to verify (44).

In a similar fashion, Condition 2 of the definition of Z is valid for f̂ , if

lim
k→∞

‖(ωfk

t (T1))
2‖ = 0,

and this condition can also be verified via the admittance map, ZT2 .

Finally, consider Condition 3. We assume here that we already know that f̂

satisfies Conditions 1–2. First, we observe that ωtt = ωf̂
tt satisfies

(∂t + M)ωtt = 0 in M × R+,

along with the boundary condition

tωtt = 0 in ∂M × [T0,∞[.
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If Condition 3 holds, by the finite propagation speed, ωtt vanishes in a double
cone around Γj, i.e.,

ωtt = 0 in Kj = {(x, t) ∈ M × R+ | τ(x, Γj) + |t − T1| < τ−
j },

for all j = 1, . . . , J . In particular, this means that, in each Kj, ωt does not
depend on time, and Condition 2 implies that ω2

t = 0 in Kj. Hence, we have

nω2
t = ZT2f = 0 on Γj×]T1 − τ−

j , T1 + τ−
j [. (45)

Conversely, assume that condition (45) holds together with Conditions 1–2.
Then ωt satisfies

(∂t + M)ωt = 0 in M × R+

with the boundary conditions

tω1
t = 0, nω2

t = 0 in Γj×]T1 − τ−
j , T1 + τ−

j [.

Here we used the fact that T1−τ−
j > T0, so that f̂ = 0 in Γj×]T1−τ−

j , T1+τ−
j [.

Now the Unique Continuation Principle, given by Theorem 2.5, implies that
ωtt = 0 in Kj and, in particular, Condition 3 is valid. The proof is complete
as it is clear that the condition (45) is readily observable if the admittance
map, ZT2 , T2 > T1 + τj, is known. 2

Now we can give the proof of Theorem 2.10.

Proof of Theorem 2.10: Assume that there is an open ball B ⊂ S. Let
0 6= ϕ ∈ Ω2B be an arbitrary smooth 2–form with supp (ϕ) ⊂ B. From
the global controllability result, Theorem 2.8, it follows the existence of a
generalized source f̂ ∈ F([0, T0]) such that

ωf̂
t (T1) = (0, δϕ, 0, 0). (46)

Moreover, ϕ ∈ Ω2B implies that ϕ ∈ D(Ms
e) for any s > 0 so that f̂ ∈

F∞([0, T0]).

We will now show that f̂ ∈ Z. Indeed, Conditions 1–2 are obvious from the
definition (46) of f̂ . Finally, we observe that

ωf̂
tt(T1) = −Mωf̂

t (T1) = (0, 0,−dδϕ, 0),

so Condition 3 is also satisfied. This proves the first statement of the theorem.

To prove the second part, assume that S does not contain an open ball.
Suppose, on the contrary to the claim, that there is a non-vanishing source

f̂ ∈ Z which produces the wave ω(t) = ω f̂ (t). Then, by Conditions 1 and 2
in Definition 2.9,

supp(ωt(T1)) ⊂
J⋂

j=1

M(Γj, τ
+
j ) = S+.
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Furthermore,
ωtt(T1) = −Mωt(T1),

so that
supp(ωtt(T1)) ⊂ S+.

On the other hand, Condition 3 in Definition 2.9 imply that

ωtt(T1) = 0 in
⋃J

j=1 M(Γj, τ
−
j ) = S−.

Thus suppωtt(T1) ⊂ S+ \S−. However, if the set S does not contain an open
ball, then the set S+ \S− in nowhere dense. Since ωtt(T1) is smooth in M int,
it vanishes in M . In particular, Maxwell’s equations imply that

dω1
t (T1) = −ω2

tt(T1) = 0. (47)

On the other hand, ωt ∈ clL2(Y (∂M, T1)), so Theorem 2.8 implies that ω1
t (T1)

is of the form
ω1

t (T1) = δη2,

for some 2–form η. Since, in addition, tω1
t (T1) = 0 it then follows, by Stokes

formula, that

(ω1
t (T1), ω

1
t (T1))L2 = (δη2, ω1

t (T1))L2 = (η2, dω1
t (T1))L2 = 0.

Together with Condition 2, this implies

ωt(T1) = 0,

contradicting to the assumption f̂ 6= 0. The proof is complete. 2

We are now ready to construct the set of the boundary distance functions.
For each x ∈ M , the corresponding boundary distance function, rx is a
continuous function on ∂M given by

rx : ∂M → R+, rx(z) = τ(x, z), z ∈ ∂M.

They define the boundary distance map R : M → C(∂M), R(x) = rx, which
is continuous and injective (see [30], [25]). We shall denote the set of all
boundary distance functions, i.e., the image of R, by

R(M) = {rx ∈ C(∂M) | x ∈ M}.

It can be shown (see [30], [25]) that, given R(M) ⊂ L∞(∂M) we can endow
it, in a natural way, with a differentiable structure and a metric tensor g̃, so
that (R(M), g̃) becomes an isometric copy of (M, g),

(R(M), g̃) ∼= (M, g).

Hence, in order to reconstruct the manifold (or more precisely, the isometry
type of the manifold), it suffices to determine the set, R(M), of the boundary
distance functions. The following result is therefore crucial.
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Theorem 2.12 Let the admittance map ZT2 be given. Then, for any h ∈
C(∂M), we can find out whether h ∈ R(M).

Proof: The proof is based on a discrete approximation process. First, we
observe that the condition h ∈ R(M) is equivalent to the condition that for
any sampling z1, . . . , zJ ∈ ∂M of the boundary, there must be x ∈ M such
that

h(zj) = τ(x, zj), 1 ≤ j ≤ J.

Let us denote τj = h(zj). By the continuity of the distance function, τ(x, z)
in x ∈ M, z ∈ ∂M , we deduce that the above condition is equivalent to the
following one:

For any ε > 0, the points zj have neighborhoods Γj ⊂ ∂M with diam(Γj) < ε,
such that

int
( J⋂

j=1

M(Γj, τj + ε) \ M(Γj, τj − ε)
)
6= ∅. (48)

On the other hand, by Theorem 2.10, condition (48) is equivalent to

dim
(
Z({Γj, τj + ε, τj − ε}

)
= ∞,

that, by means of Theorem 2.11, can be verified via boundary data. 2

As a consequence, we obtain the main result of this section.

Corollary 2.13 The knowledge of the admittance ZT2 is sufficient for the
reconstruction of the manifold, M endowed with the travel time metric, g.

Having the manifold reconstructed, the rest of this article is devoted to the
reconstruction of the wave impedance, α.

2.7 Focusing sources

In the previous section it was shown that, using boundary data, one can

control supports of the 2–forms (ω f̂
tt)

2(t). In this section, the goal is to con-

struct a sequence of sources, (f̂p), p = 1, 2, · · · such that, when p → ∞, the

corresponding forms (ω
f̂p

tt )2(T1) become supported at a single point, while

(ω
f̂p

tt )1(T1) = 0. For t ≥ T1, these fields behave like point sources, a fact that
turns out to be useful for reconstructing the wave impedance.

In the following, let δy denote the Dirac delta at y ∈ M int, i.e.,

∫

M

δy(x)φ(x)dVg(x) = φ(y),

where φ ∈ C∞
0 (M) and dVg is volume form of (M, g).
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Since the Riemannian manifold (M, g) is already found, we can choose Γjp ⊂
∂M , 0 < τ−

jp < τ+
jp < diam(M), so that

Sp+1 ⊂ Sp,

∞⋂

p=1

Sp = {y}, y ∈ M int. (49)

Then, Zp = Z({Γjp, τ
−
jp, τ

+
jp}J(p)

j=1 }) is the corresponding set of generalized
sources defined in Definition 2.9.

Definition 2.14 Let Sp, p = 1, 2, · · · , satisfy (49). We call the sequence

f̃ = (f̂p), p = 1, 2, · · · with f̂p ∈ Zp, a focusing sequence of generalized sources
of order s (for brevity, focusing sources), s ∈ Z+, if there is a distribution-
form A = Ay on M such that

lim
p→∞

(ω
∂tf̂p

t (T1), η)L2 = (Ay, η)L2 ,

for all η ∈ D(Ms
e).

Remark 8. Observe that, by the identity,

ω
∂tf̂p

t = ω
f̂p

tt (50)

and Remark 7, the electromagnetic wave ω
∂tf̂p

t (T1) is supported in cl(Sp), so
Ay must be supported on {y}.
We will show the following result.

Lemma 2.15 Let the admittance map ZT2 be given. Then, for any s ∈ Z+

and any sequence of generalized sources, (f̂p), p = 1, 2 · · ·, one can determine

if (f̂p) is a focusing sequence or not.

Proof: Let η ∈ D(Ms
e). We decompose η as η = η1 + η2, where

η1 ∈ D(Ms
e) ∩ cl(Y ), η2 ∈ D(Ms

e) ∩ Y ⊥.

By the global controllability result, Theorem 2.8, and isometry of the wave
operator W T , T ≥ T0,

η1 = ωĥ
t , ĥ ∈ F s([0, T0]).

Since ω
∂tf̂p

t ∈ clL2(Y ), so that ω
∂tf̂p

t ⊥ η2, the condition that f̃ is a focusing
source is tantamount to the existence of the limit

(Ay, η) = lim
p→∞

(ω
∂tf̂p

t (T1), ω
ĥ
t )L2 , (51)
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for all ĥ ∈ F s([0, T0]). However, by Theorem 1.10, the existence of this limit
can be verified if we are given ZT2 .

Conversely, assume that the limit (51) does exist for all ĥ ∈ F s([0, T0]).
Then, by the Principle of Uniform Boundedness, the mappings

η 7→ (ω
∂tf̂p

t (T1), η)L2 , p ∈ Z+,

form a uniformly bounded family in the dual of D(Ms
e). By the Banach-

Alaoglu theorem, we find a weak∗-convergent subsequence

ω
∂tf̂p

t (T1) → Ay ∈
(
D(Ms

e)
)′

,

which is the sought after limit distribution-form. 2

Since supp(Ay) is a point, Ay consists of the Dirac delta and its derivatives.
The role of the smoothness index, s is just to select the order of this distri-
bution, as is seen in the following result.

Lemma 2.16 Let Ay = limp→∞ ω
∂tf̂p

t (T1) is a distribution of order s = 3.
Then Ay is of the form

Ay(x) = (0, 0, d(λδy(x)), 0), (52)

where λ is a 1–form at y, λ ∈ T ∗
y M . Furthermore, for any λ ∈ T ∗

y M there

is a focusing source f̃ = with Ay of form (52).

Proof: From the results in Section 2.5, we deduce that, when s = 3,

Ay ∈
(
D(M3

e)
)′ ⊂ H−3.

Furthermore, from Remark 7, the electromagnetic waves (50) are of the form

ω
∂tf̂p

t (T1) = (0, 0, dηp, 0), (53)

for some 1-forms ηp. Combining ( these with the fact that supp(Ay) = {y},
we see that Ay = (0, 0, A2

y, 0). Here A2
y, expressed, for example, in Riemann

normal coordinates (x1, x2, x3) near y, must be of the form

A2
y(x) = ajδy(x)θj + bjk∂kδy(x)θj,

where θj = (1/2)ejk`dxk ∧ dx` and ejk` is the totally antisymmetric permu-
tation symbol. Furthermore, by (53),

dA2
y = (aj∂jδy(x) + bjk∂k∂jδy(x))dVg = 0.

Let ϕ be a compactly supported test function and, in the vicinity U of y,

ϕ(x) = xj, j = 1, 2, 3.
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It follows that

0 = (dA2
y, ϕ) = aj.

Further, let ψ be a compactly supported test function and, in the vicinity U
of y,

ψ(x) = xjxk, j, k = 1, 2, 3.

As before, we obtain

0 = (dA2
y, ψ) = bjk + bkj.

Thus, bjk may be represented as bjk = ejk`λ`, λ` ∈ T ∗
y M , implying that

A2
y(x) = ejk`λ`∂kδy(x)θj. (54)

By the properties of the permutation symbols, ejk`,

ejk`θj =
1

2
ejk`ejpqdxp ∧ dxq = δk

pδ
`
qdxp ∧ dxq.

Substituting this expression back to (54), we finally obtain

A2
y(x) = λ`∂kδy(x)dxk ∧ dx` = d(δy(x)λ`dx`),

as claimed. 2

By the above results, for any y ∈ M int and λ ∈ T ∗
y M , we can, in princi-

ple, find focusing sequences f̃ such that ωf̃
tt(T1) = Ay, where Ay is of form

(52). We should, however, stress that, at this stage, we can not control the
corresponding λ = λ(y).

Consider now a family of focusing sources f̃y, y ∈ M int, with the correspond-
ing 1−forms λ(y).

Lemma 2.17 Given the admittance map ZT2, it is possible to determine
whether the map y 7→ λy is a nowhere vanishing 1-form valued C∞–function.

Proof: Let ϕ ∈ Ω1M int be an arbitrary compactly supported test 1−form.
By Theorem 2.8, there is a generalized source ĥ ∈ F∞ such that

(ωĥ
t )1(T1) = ϕ.

Let f̃ = (f̂p), p = 1, 2, · · · , be a focusing source of order s = 3. Then, by
Lemma 2.16 and the definition of the focusing sources, we have

lim
p→∞

(ω
f̂p

tt (T1), ω
ĥ(T1)) = (Ay, ω

ĥ(T1)) (55)

= (d(λδy), (ω
ĥ)2(T1)) =

∫

M

λyδy ∧ ∗δ(ωĥ)2(T1).
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Further, by Maxwell’s equations,

λy ∧ ∗δ(ωĥ)2(T1) = λy ∧ ∗(ωĥ
t )1(T1)

= λy ∧ ∗ϕ(y),

Here, for λ, η ∈ T ∗
y M ,

λ ∧ ∗η = 〈λ, η〉y dVg = gjkλjηk dVg.

Thus,

lim
p→∞

(ω
f̂p

tt (T1), ω
ĥ(T1)) = 〈λ, ϕ(y)〉y. (56)

By Theorem 1.10, the inner products on the left side of equation (56) are ob-
tainable from the boundary data. Thus, we can find the map y → 〈λ, ϕ(y)〉y, y ∈
M int. Since ϕ ∈ Ω1M int is arbitrary, this determines whether λ ∈ Ω1M int.
It also determines whether λy = 0 or not for any y ∈ M int. This yields the
claim. 2

Another way to look at Lemma 2.17 is that the admittance map, ZT2 deter-
mines, for any boundary source h ∈ C∞

0 (]0, T0[; Ω
1∂M), the values, at any

y ∈ M int, of 〈λ, (ωh
tt)

1(t)〉y for some unknown λ ∈ Ω1M int and T1 < t <
T2 − diam(M). Moreover, using this map, we can verify that the 1−forms

λk(y), corresponding to three families of focusing sources f̃k(y), k = 1, 2, 3,
are linearly independent at any y ∈ M int. These give rise to the following
result.

Lemma 2.18 Let ZT2 be the admittance map of the Riemannian manifold
with impedance (M, g, α). Then, for T1 ≤ t ≤ T2 − diam(M) and ĥ ∈
F(]0, T0[), it is possible to find the forms

L(y)(ωĥ
t (y, t))1, K(y)(ωĥ

t (y, t))2,

at any y ∈ M int. Here L(y) : T ∗
y M → T ∗

y M and K(y) : ∧2T ∗
y M → ∧2T ∗

y M
are smooth sections of End(T ∗M int) and End(Λ2T ∗M int), correspondingly.

We emphasize that, at this stage, L(y) and K(y) are unknown. However,

they are independent of t or ĥ.

Proof: As M is already found, we can choose three differential 1−forms,
ξk ∈ Ω1M int which, at any y ∈ M int, form a basis in T ∗

y M . Using the

families f̃k(y) of focusing sources introduced earlier, we can construct, for

any ĥ ∈ F∞(]0, T0[), the differential 1− form,

ρĥ(y, t) := 〈λk(y), (ωĥ
t (y, t))1〉y ξk(y). (57)

This defines a smooth section, L(y) of End(T ∗M int),

L(y)(ωĥ
t (y, t))1 = ρĥ(y, t) ∈ Ω1M int,
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proving the assertion for (ωĥ
t (y, t))1 with ĥ ∈ F∞(]0, T0[). Its extension to

ĥ ∈ F(]0, T0[) is an immediate corollary of the fact that F∞(]0, T0[) is dense
in F(]0, T0[) in the F−norm.

To analyse (ωĥ
t (y, t))2 , consider the form

η = (
1

α
∗ ω3,

1

α
∗ ω2,

1

α
∗ ω1,

1

α
∗ ω0) (58)

(cf. ν-forms in formulae (9) and (12)). This form satisfies the complete
Maxwell system

ηt + M̃η = 0,

where M̃ is the differential expression (15), corresponding to the manifold
(M, g, α−1). Then the admittance map tη1|∂M×]0,T2[ → nα−1η2|∂M×]0,T2[ is the
inverse of the given admittance map ZT2 : tω1|∂M×]0,T2[ → nαω2|∂M×]0,T2[.

Thus, ZT2 determine the admittance map, Z̃T2 for M̃ and we can apply

the results for (ωĥ
t )1 to (ηf̂

t )1, where f̂ = ZT2ĥ. Namely, we can find

L̃(y)(ηt(y, t))1, where L(y) : T ∗
y M → T ∗

y M is a smooth section of End(T ∗M int)
which, at this stage, is unknown. At last, since

∗L̃(y)(ηf̂
t (y, t))1 = K(y)(ωĥ

t (y, t))2,

for some smooth section, K(y) of End(Λ2T ∗M int), the assertion follows. 2

We note for the further reference, that, similar to the case of the 1−forms,
the construction of K(y) involves a choice of three differential 2−forms, that
we denote by µk ∈ Ω2M int, and three families of generalized sources κ̃k(y)
that satisfy

ω∂tκ̃k
t (T1) = (0, δ(µkδy(x)), 0, 0), µk ∈ Λ2T ∗

y M, k = 1, 2, 3. (59)

Below we call the generalized sources f̃k(y) the focusing sources for 2–forms
and κ̃k(y) the focusing sources for 1–forms.

Before going to a detailed discussion in the next sections of the reconstruc-
tion of α, let us explain briefly the main outline of this construction. It
follows from Lemma 2.18 that, using the admittance map Z, we can find the
electromagnetic waves ωf

t (t), T1 < t < T2 − diam (M), up to unknown linear
transformations, L and K. We observe that, by Theorem 2.8, for any basis
ξk(y), k = 1, 2, 3, there are families f̃k(y) of focusing sources, such that the
corresponding transformation L is just identity. Indeed, to achieve this goal,
we should choose f̃k(y) in such a manner that, at any y ∈ M int,

(ω
f̃k(y)
tt )2(T1) = d(λk(y)δy), (60)

where λk(y) is dual to ξk(y),

〈λk(y), ξj(y)〉y = δkj. (61)

In the next sections we will identify conditions on f̃k(y) and κ̃k(y), verifiable
in terms of Z, which make L and K to be identities.
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2.8 Reconstruction of the wave impedance

In the previous section, it was shown how to select a family f̃y, y ∈ M int of
focusing sequences such that the corresponding electromagnetic fields con-
centrate at t = T1 at a single point, y,

lim
p→∞

ω
fp

tt (T1) = (0, 0, d(λδy), 0).

Here λ = λy ∈ T ∗
y M is yet unknown. Moreover, we can select this family in

such a manner that, as a function of y, λy ∈ Ω1M int. In particular, it means
that for times 0 < t < ty = τ(y, ∂M), the electromagnetic wave defined as

Ge(y) = Ge(x, y, t) = Ge[λ](x, y, t) = lim
p→∞

ω
fp

tt (t + T1), (62)

satisfies the initial-boundary value problem

(∂t + M)Ge(y) = 0 in M×]0, ty[,

tGe(y) = 0 in ∂M×]0, ty[, (63)

Ge(y)|t=0 = (0, 0, d(λδy), 0).

The solution to this problem is called the electric Green’s function. We will
use this solution to reconstruct the scalar wave impedance, α on M . We
start with analysis of some properties of Ge. To this end, we will represent
Ge in terms of the standard Green’s function, G = G(x, y, t) for the wave
equation on 1− forms. Thus, G is defined as the solution to the following
initial-boundary value problem

(∂2
t + dδ + δd)G(x, y, t) = (∂2

t + ∆1
α)G(x, y, t) = λδy(x)δ(t) in M × R

tG(x, y, t) = 0, (64)

G(x, y, t)|t<0 = 0,

where λ ∈ T ∗
y M is a given 1–form.

This Green’s function has the following asymptotic behaviour.

Lemma 2.19 For 0 < t < ty, Green’s function G(x, y, t) for the 1–form
wave equation (64), has the representation

G(x, y, t) = δ(t − τ(x, y))Q(x, y)λ + r(x, y, t).

Here Q(x, y) : T ∗
y M → T ∗

xM is a bijective map that corresponds to a (1, 1)–
tensor depending smoothly on (x, y) ∈ M int×M int \diag(M int). The remain-
der r(x, y, t) is a bounded function, when t < ty, where ty is small enough.

The proof of this lemma is postponed in the Appendix.
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In the following, we fix y ∈ M int and λ = λy ∈ T ∗
y M . By operating with the

exterior derivative d on the both sides of the differential equation in (64), we
see that

(∂2
t + ∆2

α)dG(x, y, t) = d(λδy)δ(t).

Hence, using the decomposition (∂2
t + ∆) = (∂t +M)(∂t −M), we find that

the form ω(t) = (0, 0, dG(x, y, t), 0) satisfies the equation

(∂t + M)
(
(∂t −M)(0, 0, dG(x, y, t), 0)

)
= Dy,λδ(t),

where
Dy,λ = (0, 0, d(λδy), 0).

Let G̃e(y) = G̃e(x, y, t) be defined as

G̃e(x, y, t) = (∂t −M)(0, 0, dG(x, y, t), 0)

= (0, δdG(x, y, t), ∂tdG(x, y, t), 0).

Then, due to the finite propagation speed, G(y)|∂M×]0,ty [ = 0, so that G̃e(x, y, t)

satisfies the boundary condition tG̃e(y) = 0 for t < ty. Invoking the unique-

ness of solution for (63), we see that G̃e(y) = Ge(y), t < ty.

Now, using Lemma 2.19, we obtain that

dG1
e(x, y, t) = (Q(x, y)λy ∧ dτ(x, y))δ(1)(t − τ(x, y)) + r1(x, y, t),

where δ(1) is derivative of the delta-distribution and the residual r1 is sum of
the delta-distribution on ∂By(t), where By(t) is the ball of radius t centered
in y, and a bounded function. Thus, we see that

∂tdG1
e(x, y, t) = (Q(x, y)λy ∧ dτ(x, y))δ(2)(t − τ(x, y)) + r2(x, y, t),

δdG1
e(x, y, t) = ∗ (dτ(x, y) ∧ ∗(Q(x, y)λy ∧ dτ(x, y))) δ(2)(t − τ(x, y))

+r3(x, y, t), (65)

where residuals r2 and r3 are sums of first and zeroth derivatives of the delta-
distribution on ∂By(t) and a bounded function. Moreover, by formulae (65),

tBy(t)[Q(x, y)λy ∧ dτ(x, y)] = 0, (66)

nBy(t) [∗ (dτ(x, y) ∧ ∗(Q(x, y)λy ∧ dτ(x, y)))] = 0, (67)

where tBy(t)ω
k, nBy(t)ω

k are the tangential and normal components of ωk on
∂By(t). This corresponds to the physical fact that the wavefronts of the
electric and magnetic fields are perpendicular to the propagation direction.
Let now f̃y be a focusing source for a point y ∈ M int. Due to the definition
(51) and the definition of the generalized source (39), there is a sequence
(f y

p )∞p=1, f y
p ∈ C∞

0 (]0, T0[; Ω
1∂M), p = 1, 2, · · · such that

ω
f̃y

t (T1) = lim
p→∞

ω
fy

p

t (T1),
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and the right side is understood in the sense of the distribution-forms on
ΩM int. Then, for t ≥ 0,

ω
f̃y

t (t + T1) = lim
p→∞

ω
fy

p

t (t + T1). (68)

Applying Lemma 2.18, it is possible to find, via given ZT2 , the magnetic
components K(x)(ωf

t (x, t + T1))
2, f = f y

p of these fields with K being a
smooth section of End(Λ2T ∗M int). At last, using (68), we find

K(x)(ω
f̃y

t (x, t + T1))
2 = lim

p→∞
K(x)(ω

fy
p

t (x, t + T1))
2 ∈ D′(Ω2M int).

Since

ω
f̃y

tt (T1) = (0, 0, d(λδy), 0),

we see that

ω
f̃y

tt (t + T1) = Ge(· , y, t),

when t < ty. In particular, we can find the singularities of Green’s function
up to a linear transformation K(x).

Hence we have shown:

Lemma 2.20 Let f̃y = (f y
p ), p = 1, 2, · · · , be a focusing source for a point y.

Then, given the admittance map, ZT2, it is possible to find the distribution
2−form KGe(y)2 for all x satisfying τ(x, y) < t̂y, where t̂y is small enough.
In particular, the leading singularity of this form determine the 2−form

K(x)(Q(x, y)λy ∧ dτ(x, y)). (69)

PSfrag replacements

~v~w

Figure 6: Vector ~v is the right singularity of the electromagnetic wave in the
plane M × {t}. The reconstructed singularity ~w has wrong direction, if the
transformation matrix K(x) is not isotropic.

As shown at the end of the previous section, K ∈ End(Λ2T ∗M int) was ob-
tained by using three focusing sources κ̃k(x), k = 1, 2, 3. Our next goal is to
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formulate conditions, verifiable using boundary data, for K to be isotropic,
i.e.

K(x) = c(x)I, (70)

with c(x) being a smooth scalar function.

We start with observation that, for a given κ̃k(x), k = 1, 2, 3, and any f̃y,
we can find tBy(t)K(·)(Q(·, y)λ ∧ dτ(·, y))|x, for x ∈ ∂By(t) and small t > 0.
Here K(x) is the linear transformation corresponding to the chosen κ̃k(x).
This follows from Lemma 2.20 and the fact that the underlying Riemannian
manifold (M, g) is already found. When K is isotropic, it follows from (66)
that

tBy(t)K(·)(Q(·, y)λ ∧ dτ(·, y)) = 0. (71)

Let us show that the condition (71), which is verifiable via boundary data,
actually guarantees that K is of form (70).

Indeed, for a given λ ∈ T ∗
y M and any x, t with sufficiently small t = τ(x, y),

(71) means that K(x)(Q(x, y)λ ∧ dτ(x, y)) continues to be normal to the
2−dimensional subspace, Tx(∂By(t)) ⊂ TxM , i.e.

[K(x)(Q(x, y)λ ∧ dτ(x, y))] (X,Y ) = 0, X, Y ∈ (Tx∂By(t)).

As Q(x, y) : T ∗
y M → T ∗

xM is bijective, Q(x, y)λ ∧ dτ(x, y) runs through the
whole 2−dimensional subspace in Λ2T ∗

xM , normal to Tx(∂By(t)), when λ
runs through T ∗

y M . Therefore, (71) implies that K(x) keeps this subspace
invariant.

Let us now vary y and t keeping x fixed. Then Tx(∂By(t)) runs through the
whole Grassmannian manifold, G3,2(TxM). Therefore, (71) implies that, if
ω2 ∈ Λ2T ∗

xM is normal to a subspace L ∈ G3,2, then K(x)ω2 remains to be
normal to L. This is implies that the eigenspace of K(x) has dimension three
and hence we must have

K(x) = c(x)I,

where c(x) is a scalar function and I is the identity map in Λ2T ∗
xM .

In the following, we always take focusing sources which satisfy (70).

Thus, we can find the values of the 2-forms

(ω̃f̂
t (x, T1)

2 =def c(x)(ωf̂
t (x, T1))

2, f̂ ∈ F .

Our further considerations are based on the equation,

d(ωf̂
t (T1)

2) = 0. (72)
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Thus, we intend to choose those focusing sources κ̃k(x) which produce K(x) =
c(x)I with

d(ω̃f̂
t (T1))

2 = 0, f̂ ∈ F∞.

In this case,

0 = d(c(x)(ωf̂
t T1))

2) = dc(x) ∧ (ωf̂
t (T1))

2,

due to (72). By the global controllability, the form (ω f̂
t )2(x, T1) runs through

the whole Λ2T ∗
xM . This implies that dc(x) = 0 at any x ∈ M int. Hence,

c(x) = c0 is a constant. Thus, we choose focusing sources, κ̃k(x), so that

(ω̃ĥ
t (T1))

2 = c0(ω
ĥ
t (T1))

2.

Evaluating the inner products,
∫

M

ω̃2
t (x, T1) ∧ ∗ω̃2

t (x, T1) =

∫

M

c0ω
2
t (x, T1) ∧ ∗c0ω

2
t (x, T1),

we can compare them with the energy integrals,
∫

M

1

α(x)
ω2

t (x, T1) ∧ ∗ω2
t (x, T1),

which can be found from the boundary data by means of Theorem 1.10 . By

considering waves ω
f̂j

t (x, T1) with

lim
j→∞

supp(ωf̂j

t (·, T1)) = {y},

we find the ratio

lim
j→∞

∫
M

(ω̃
f̂j

t (x, T1))
2 ∧ ∗(ω̃f̂j

t (x, T1))
2

∫
M

1
α(x)

(ω
f̂j

t (x, T1))2 ∧ ∗(ωf̂j

t (x, T1))2
= c2

0α(y).

The above considerations imply that, using ZT2 , we can determine α(x) up
to a constant c2

0. Since the impedance map satisfies ZM,g,cα = c−1ZM,g,cα, we
see that, knowing the impedance map, we can also determine c0.

As the fact that ZT , T ≥ 4 diamM determines (M, g) is already proven, this
completes the proof of Theorem 2.1. 2

2.9 Back to R3

In this section we use the obtained uniqueness result for Maxwell equation on
a 3-dimensional manifold to analyze to the group of transformations which
preserve the boundary data in the dynamical inverse problem for Maxwell’s
equation (1) in a domain Ω ⊂ R3.
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Assume that two Maxwell systems with electric and magnetic permittivities
εj
k(x), µj

k(x) and ε̃j
k(x), µ̃j

k(x), x ∈ Ω, have the same admittance map ZT on

∂Ω×[0, T ], where T is sufficiently large. Denote by (M, g, α) and (M̃, g̃, α̃) the
corresponding abstract Riemannian manifolds with impedance. By Theorem
2.1,

(M̃, g̃, α̃) = (M, g, α)

i.e., there is an isometry H : (M, g) → (M̃, g̃) and α = H∗α̃. We can repre-
sent the abstract manifold (M, g, α) as the domain Ω with the metric tensor,
gij(x), given in Euclidean coordinates by (6), (8), and scalar impedance,

α(x) in these coordinates. Similarly, we represent manifold (M̃, g̃, α̃) using
Euclidean coordinates in Ω and obtain the metric tensor g̃ij and impedance

α̃. Then H : M̃ → M corresponds to a diffeomorphism,

X̃ : Ω → Ω, X̃|∂Ω = id|∂Ω, (73)

and

g̃ = X̃∗g, i.e., g̃ij(x̃) =
∂x̃i

∂xp

∂x̃j

∂xq
gpq(x), x̃ = X̃(x), (74)

α̃ = X̃∗α, i.e., α̃(x̃) = α(x).

Using (74) and (8), we see also that

g̃ε = X̃∗gε, i.e., g̃ij
ε (x̃) =

∂x̃i

∂xp

∂x̃j

∂xq
gpq

ε (x), x̃ = X̃(x). (75)

Employing formula (6), we obtain

εp
q =

√
gεg

pr
ε δpq, ε̃p

q =
√

g̃εg̃
pr
ε δpq. (76)

Combining formulae (74)–(76) and introducing

εpq = εp
rδ

jq, ε̃pq = ε̃p
rδ

jq,

we obtain

ε̃pq =
1

Det (DX̃)

∂x̃i

∂xp

∂x̃j

∂xq
εpq(x), x̃ = X̃(x). (77)

Similarly,

µ̃pq =
1

Det (DX̃)

∂x̃i

∂xp

∂x̃j

∂xq
µpq(x), x̃ = X̃(x) (78)

Clearly, if X̃ : Ω → Ω and X̃|∂Ω = id, the admittance map ZT , T > 0 is
preserved in transformations (73), (77), (78).

Thus we have proven the following result.
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Theorem 2.21 The group of transformations for Maxwell’s equations (1)–
(4) with a scalar wave impedance, which preserves the admittance map ZT ,
T > 4 diam(M, g), is generated by the group of diffeomorphisms of Ω satisfy-
ing (73). The corresponding transformations of ε and µ are then defined by
formulae (77), (78).

Remark 9. It follows from (77), (78), that εjk and µjk do not transform like
tensors. This is due to the special role played by the underlying Euclidean
metric gij

0 = δij, which does not change by diffeomorphisms X̃. It should
be noted that this form of transformations is observed also in the study
of the Calderón inverse conductivity problem. Indeed, it is shown in [53]
that, for the conductivity equation in Ω ⊂ R2, the boundary measurements
determine the anisotropic conductivity up to same group of transformations
as described in Theorem 2.21. The Calderon problem is closely related to
the inverse problem for Maxwell’s equation, for instance, the low-frequency
limit of the admittance map Z∞ is related to the Dirichlet-to-Neumann map
for the conductivity equation [38].

2.10 Outlook

There are several direction to which the present work can be extended.

1. Natural question is the minimal observation time required to parameter
reconstruction. It can be shown that the admittance map Z t for any t > 0.
Thus, it follows from the above, that ZT , T > 2 radM determines uniquely
the manifold M , metric g and wave impedance α. The reconstruction of Z t

for any t > 0 may be obtained by a direct continuation of the admittance
map, i.e., without solving the inverse problem. This continuation is a direct
generalization to the considered Maxwell’s case of the technique developed
in [31], [25] for the scalar wave equation. An analogous method has recently
be applied to Maxwell’s equations in [10].

2. Another natural inverse boundary value problem is the inverse boundary
spectral problem for the electric Maxwell operator Me defined in Definition
1.3. The problem is to determine the metric g and wave impedance α, or,
in the other words, ε and µ from the non-zero eigenvalues λj of Me and the
normal boundary values of the corresponding eigenforms. This problem was
studied in, e.g. [36], [37], for scalar Maxwell’s equations. For the consid-
ered anisotropic case, this requires significant modifications of the method
developed in this paper and will be published elsewhere.

3. It often occurs in applications that the measurements are made only on
a part of boundary. In formalism of this paper this means that we actually
know only the restriction of the admittance map to the part Γ× [0, T ] of the
lateral boundary, i.e. we are given

ZT f |Γ×[0,T ], f ∈ C∞
0 ([0, T ]; Ω1Γ).
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For the scalar wave equation the corresponding problem is studied in [23],
[24] (see also [33], [25], [26]). The combination of these methods and those
of the present paper will be useful for analyzing the corresponding problem
for Maxwell’s equations.

Appendix: The WKB approximation

Here we consider asymptotic results for Green’s function or, more precisely,
for Green’s 1-form, G(x, y, t) = Gλ(x, y, t), which is defined as the solution
for the wave equation

∂2
t Gλ + (dδ + δd)Gλ = aδy(x)δ(t) in M × R+, (79)

Gλ(·, y, t) = 0 for t < 0, tGλ(·, y, t) = 0,

where δ = δα. Here, λ is a 1-form λ =
∑3

i=1 λi dxi in normal coordinates
(By(ρ), X), X = (x1, x2, x3), near a point y ∈ M int, X(y) = 0. We assume
that By(ρ) ∩ ∂M = ∅. In these coordinates, δy(x) = δ(x), when x ∈ U .
Clearly, we can find, instead of the solution to (79), the fundamental solution

∂2
t G + (dδ + δd)G = Iδ(x)δ(t) in M × R+, (80)

G(·, y, t) = 0 for t < 0, tG(·, y, t) = 0,

where I is the 3 × 3 identity matrix. Equation (80), written in normal
coordinates, becomes a hyperbolic system

{
(∂2

t − gij∂i∂j)I + Bi∂i + C
}

G = Iδ(x)δ(t). (81)

Here gij(x) is the metric tensor in these coordinates with

gij(0) = δij, ∂kg
ij(0) = 0, (82)

and Bi(x), C(x) are smooth 3× 3 matrices. We note that, in normal coordi-
nates, τ(x, y) = |x|. However, we prefer to keep the notation τ to stress the
invariant nature of considerations below.

Following [16], [2], which deal with the scalar case, we search for the solution
to (81) in the WKB form:

G(x, t) = G0(x) δ(t2 − τ 2) +
∑

l≥1

Gl(x) Sl−1(t
2 − τ 2), (83)

where Sl(s) = sl
+/Γ(l +1). Substitution of expression (83) into equation (81)

gives rise to the recurrent system of (transport) equations. The principal one
is the equation for G0,

4τ
dG0

dτ
(τ x̂) +

{
(gij(τ x̂) ∂i∂jτ

2(τ x̂) − 6) I + Bi(τ x̂) ∂iτ
2(τ x̂)

}
G0(τ x̂) = 0,(84)

50



where x̂ = x/τ. In addition, to satisfy initial conditions Iδ(x)δ(t), corre-
sponding to the right side in the wave equation (80), we require that

G0(0) =
1

2π
I. (85)

By (82), gij∂i∂jτ
2−6 is a smooth function near x = 0 and gij∂i∂jτ

2|x=0−6 =
0. Also, ∂iτ

2|x=0 = 0. Therefore,

1

4τ

{
(gij(τ x̂) ∂i∂jτ

2(τ x̂) − 6) I + Bi(τ x̂) ∂iτ
2(τ x̂)

}

is a smooth function of (τ, x̂), so that G0(x) is a smooth 3 × 3 matrix of x
for τ > 0.

Actually, the matrix G0(x) is smooth everywhere in the neighborhood of y,
i.e. x = 0, including x = 0 itself. Indeed, if we write the Taylor expansion
of (gij(x)∂i∂jτ

2(x)− 6) I + Bi(x)∂iτ
2(x) near x = 0 and divide the result by

τ = |x|, we obtain that

(gij(x)∂i∂jτ
2(x) − 6) I + Bi(x)∂iτ

2(x) =
∑

|β|≥1

Dβτ |β|−1x̂β. (86)

Substituting the Taylor expansion (with respect to τ) of G0(τ, x̂),

G0(τ, x̂) =
∑

p≥0

G0,p(x̂)τ p,

into (84) and using (86), (85), we obtain that G0,p(x̂)τ p are homogeneous
polynomials of x of degree p:

G0,p(x̂)τ p =
∑

|β|=p

G0,βxβ.

Then, Gp
0(x) =

∑
|β|<p G0,β xβ satisfies

4τ
dGp

0

dτ
+

{
(gij ∂i∂jτ

2 − 6) I + Bi ∂iτ
2
}

Gp
0 = θp, (87)

where

θp(τ, x̂) = θp(x) ∈ C∞(U), θp(x) = O(τ p). (88)

We construct G0 as Gp
0 (I + G̃p

0). Substituting this expression into (84) and
using (87), (88), we obtain that

4τ
dG̃p

0

dτ
(τ, x̂) = Ap(τ, x̂) + Ap(τ, x̂) G̃p

0(τ, x̂), G̃p
0(0) = 0,

where

Ap(τ, x̂) = − (Gp
0(τ, x̂))−1 θp(τ, x̂).
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Therefore, Ap(τ, x̂) ∈ C∞ as a function of (τ, x̂) and Ap(τ) = O(τ p). This

implies that G̃p
0(τ, x̂) = O(τ p) and is C∞ smooth as a function of (τ, x̂), so

that G̃p
0, considered as a function of x = τ x̂ is in Cp(By(ρ)). As p > 0 is

arbitrary and the solution G0 of (84), (85) is unique, G0 ∈ C∞(U).

For Gl, l ≥ 1, we obtain transport equations

4τ
dGl

dτ
+

{
(4l − 6 + gij(x)∂i∂jτ

2(x)) I + Bi(x)∂iτ
2
}

Gl

=
[
gij∂i∂jI − Bi∂i − C

]
Gl−1,

and Gl(0) = 0. If we write Gl = G0Fl, we obtain for Fl the equations

4τ
dFl

dτ
+ 4l Fl = G−1

0

[
gij∂i∂jI − Bi∂i − C

]
Gl−1, Fl(0) = 0, (89)

with their solutions

Fl(x) =
1

4
τ−l

∫ τ

0

G−1
0 (sx̂)

{[
gij∂i∂jI − Bi∂i − C

]
Gl−1

}
(sx̂) sl−1ds, (90)

being a smooth function of x.

As (81) is a hyperbolic system, it is easy to show that the right side of (83)
represents the asymptotics with respect to smoothness of the Green’s 1−form
G(x, y, t), when t < τ(y, ∂M). Clearly, (83) can also be written in the form

G(x, t) = G0(x) δ(t2 − τ 2) + r(x, t)

where r(x, t) is a bounded 3 × 3 matrix.
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