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1 Introduction

One of the dominant trends in computational structural mechanics over the last
fifty years is the intensive search of simple low-order finite element formulations that
avoid parametric locking when modelling thin structures like beams, arches, plates,
and shells. The thin structures have in common that when modelled with standard
finite elements of lowest order, convergence typically fails completely unless the
mesh spacing is set below the thickness of the body. Our focus here is on the most
challenging of these problems, the shell problem. For shells, the construction of
efficient low-order elements has been attempted practically over the entire history
of the finite element method. A number of special finite element constructions
known as “shell elements” has resulted. We consider here one of the scientifically
open ones of these formulations, the bilinear shell element of the code ADINA,
known as MITC4. The formulation is due to Bathe and Dvorkin [1, 2]. Our aim
is to put this element in a mathematical and historical frame in view of the theory
developed recently [3, 4, 5, 6].

Our mathematical approach to MITC4 is based on a simplified “twin” formu-
lation of the element in the context of shallow shell models [3, 4]. The simplified
formulation, called MITC4-S, preserves the essential numerical ideas involved in the
original (three-dimensional) formulation but makes the ideas more transparent for
mathematical error analysis. In essence, the MITC4-S interprets the physical and
geometric assumptions of the original 3D formulation as purely numerical modifi-
cations of the otherwise standard bilinear scheme for a classical 2D shell model.

The numerical modifications in MITC4, when uncovered in the mentioned way,
turn out to have a long history. We find that some of the historical roots actually
lead back to the early 1950’s (or perhaps to the 1940’s), to the prime stock of finite
element methodology, then known as the “matrix methods” of structural analysis
[7]. The two main ideas that we find already here are the modifications required to
make the C0 linear finite element locking-free (as we now say) a) in the Timoshenko
beam problem and b) in the corresponding parametric (non-asymptotic) model for
an arch. As often in finite element engineering, the original justification of the
numerical schemes was intuitive, or physical. However, as in case of the MITC4
shell element, we can now understand these formulations in retrospect as purely
numerical modifications within the standard linear element framework. In this way
we see more clearly the historical connections and, what is more important, we
can understand the actual mathematical reasoning behind — which typically is
numerical rather than physical.

Due to the historical connections involved, and also to make the mathematical
theory more transparent, we follow the historical order in our presentation. We
start from the one-dimensional beam and arch problems to explain first the oldest
ideas of dealing with the numerical (shear and membrane) locking in these para-
metric problems. We can explain these ideas quite easily in retrospect, when using
the latest (version 2000) update of finite element theory as presented in [8, Section
6]. Once the one-dimensional locking effects and their classical remedies are under-
stood, we take a step from the Timoshenko beam to its two-dimensional analogue,
the Reissner-Mindlin plate model. Here we follow the historical evolution of the
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simplest bilinear elements. We observe first an unsuccessful first attempt, then a
surprising success in a simple formulation by MacNeal [9], Hughes and Tezduyar
[10], and (a bit later) by Bathe and Dvorkin [1, 11]. This formulation is still one
of the great “bilinear miracles” in the FEM models of structures. Another (some-
what related) bilinear phenomenon is found in plane elasticity [8]. In plate element
technology, the QUAD4 of NASTRAN and the MITC4 of ADINA are among the
trademarks built upon this successful formulation. The mathematical justification
was first given by Bathe and Brezzi [12]. We outline the reasoning briefly using the
later evolution of the theory as presented in [8].

We finally take the step from plate bending to the most challenging problem
in classical structural mechanics: the shell problem. Many attempts have been
made to achieve a finite element control over the various locking effects that dis-
turb the FEM modelling of shells. After a series of successful formulations in the
mentioned simpler parametric problems, one would naturally expect a final success
also here. However, the step from structures like beams, arches and plates to a shell
is very long mathematically. The mentioned simpler structures all have relatively
simple asymptotic behavior at zero thickness, whereas the shell problem breaks
into a multitude of subproblems, each with its own asymptotics and characteristic
locking phenomena, c.f. [13, 14]. For such reasons, it appears less likely that some
magic bilinear (or other low-oder) finite element formulation could handle all these
parametric effects simultaneously. — Note, for example, that a fully locking-free
four-node plane elastic element of arbitrary quadrilateral shape is still a dream el-
ement only [8]. — Anyway, the MITC4 shell element, and its suspected relatives
like the QUAD4 of NASTRAN, are brave attempts to beat a very strong enemy
using traditional weapons. One should analyze these attempts mathematically un-
der realistic assumptions, in order to be able (at least) to set the actual limits of
the possible. We sum up briefly what the theory of MITC4-S can say so far.

2 The beam and the “shear trick”

According to the Timoshenko beam model, the total energy of a beam loaded by a
distributed normal load f is

F(w, θ) =
D

2

∫ L

0

[

(

dθ

dx

)2

+
k

t2

(

θ − dw

dx

)2
]

dx −
∫ L

0

fw dx, (2.1)

where L is the length and t the depth of the beam, w is the transverse deflection
and θ the rotation of the cross-section. Assuming rectangular cross-section we
have D = Et3/12 and k = 12γG/E, where E is the Young modulus, G the shear
modulus, and γ the shear correction factor. We write the energy shortly as

F(u) =
1

2
|||u|||2 − L(u), (2.2)

where u = (w, θ) is the (generalized) displacement field, ||| · ||| is the energy norm
(= square root of the strain energy), and L is the load functional (= potential
energy of the load). In a standard finite element scheme one minimizes the energy
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as given, over a chosen finite element space Uh and under the kinematic constraints
of the problem. This defines the finite element solution uh = (wh, θh) as the best
approximation of the exact solution u in the energy norm, so a rather natural error
indicator is the relative error in that norm:

e(uh) =
|||u − uh|||

|||u||| . (2.3)

This indicator is obviously dimensionless and scaling-invariant.
To obtain a bound for the error in the sense of Eq. (2.3), one needs basically

only the mentioned best approximation property

|||u − uh||| = min
v∈Uh

|||u − v|||. (2.4)

In a parametric situation like the one considered, however, one should also know how
the denominator in Eq. (2.3) scales with the parameters. In a complex problem like
a shell problem this can be far from obvious, but here we can resolve the parametric
dependence of |||u||| quite easily. The parameters in the energy norm are D, k and
t, but D is inactive due to the scaling invariance of the error indicator, and the
dimensionless parameter k may be considered harmless as well. Thus the only truly
active parameter is t — or rather the ratio t/L. From the classical asymptotics of
the problem we know that bending effects dominate when t/L is small, so we may
assume that the denominator in Eq. (2.3) is essentially independent of t/L and
scales like

|||u|||2 ∼
∫ L

0

D

(

dθ

dx

)2

dx, u = (w, θ). (2.5)

(For a different type of loading, the scaling of |||u||| could be different.)
Consider now the simplest finite element approximation of the above problem,

as based on the two-node linear element with w and θ approximated independently.
To estimate the error e(uh) of such an approximation, use first Eq. (2.4) to conclude
that

|||u − uh||| ≤ |||u − ũ|||, (2.6)

where ũ = (w̃, θ̃) is the interpolant of u in Uh. Then use standard interpolation
error estimates, assuming that the solution is sufficiently smooth (c.f. [8]), and Eq.
(2.5), to conclude that the error is at most of order

e(uh) = O
(

h

t

)

, (2.7)

where h is the (maximal) mesh spacing. Here the factor 1/t appears because of the
parametric dependence of the energy norm, and because the denominator in Eq.
(2.3) is essentially independent of t as assumed in Eq. (2.5). — Note that for the
lowest-oder FEM, the optimal error bound should be e(uh) = O(h/L) when the
deformation is smooth in the length scale L, as may be assumed here. Thus the
error bound (2.7) predicts error magnification by factor L/t from the optimal rate
when the beam aspect ratio t/L is small. Practice confirms that this prediction is
not pessimistic — in fact, a separate lower bound for the error shows that also,
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see [8, Section 4]. We are facing a typical parametric error amplification or locking

effect in a low-order finite element model.
A remedy for the above problem was found quite early, in fact, by the early FEM

pioneers. We may consult here one of the classics, the paper by Turner et al. of
1956 [15] (the idea of the remedy is probably older). In [15], several low-order finite
element formulations (as now called) are presented, one of which is a modified
linear element for the Timoshenko beam problem. (A related, modified bilinear
plane elastic formulation is also found in [15]. The theory and later successors
of this were discussed in [8].) Consider a reference beam element with nodes at
x = −h/2 and x = h/2. In the standard linear element one proceeds from the local
expansion

(w, θ) = A1 (1, 0) + A2 (x, 0) + B1 (0, 1) + B2 (0, x). (2.8)

Turner et al. [15] propose intstead the expansion

(w, θ) = A1 (1, 0) + A2 (x, 0) + B1 (0, 1) + B2 (1

2
x2 − 1

8
h2, x). (2.9)

Note that as compared with Eq. (2.8), this expansion may be considered more
natural physically, as the last term here is the simplest asymptotic bending mode
of the element when considered a beam of length h. So, with good understanding of
physics (and with perhaps less understanding of finite elements), one might consider
expansion (2.9) as the most natural first attempt. Anyway, let us consider this a
modification of the (to us more natural) linear expansion (2.8). Note that we can
still use the ordinary nodal degrees of freedom after the modification, since the
added quadratic term in Eq. (2.9) vanishes at the nodal points.

When embedded in the energy formulation, the above modification apparently
leaves the first (bending) term (dθ/dx)2 unchanged in Eq. (2.1). In the second
(shear) term, the added quadratic term has the effect of cancelling the linear part
of θ − dw/dx in each element, so the effect is the same as if we used the standard
linear element together with the modification

θ − dw

dx
↪→ Πh

(

θ − dw

dx

)

, (2.10)

where Πh stands for the operator of averaging over each element. The quadratic
term in Eq. (2.9) finally affects also the third (load energy) term in Eq. (2.1), but
this effect is easily shown to be small, so we ignore that below. We thus end up
in a linear finite element scheme where the formulation is standard, except for the
“shear trick” (2.10). By experiment, this modified scheme (which is as simple as the
standard linear scheme) works very well: The error amplification on thin beams is
no more observed.

The above successful formulation can be achieved in many ways, as shown by
the later evolution of finite element methodology. Following roughly the historical
order, the main alternatives of the above derivation are:

(1) Mixed method : Instead of the energy principle, use a mixed variational formu-
lation where the shear stress q = (k/t2) (θ − dw/dx) acts as an independent
unknown. Approximate q by a piecewise constant function in the FEM model.
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(2) Reduced integration (Underintegration): Evaluate the strain energy numeri-
cally using the elementwise midpoint rule.

(3) Mixed interpolation: Interpret Πh in Eq. (2.10) as the interpolation operator
at the midpoints of the elements.

Let us now consider the above formulation in view of the finite element theory.
We want an error bound, hopefully of the optimal order O(h/L), and an (a poste-
riori) explation that presumably comes with the error analysis. In the theory, we
have many options as well. For example, we could follow the original formulation
above, or we could use the mixed finite element theory, as was done in the first error
analysis by Arnold [16]. Here we outline what is perhaps the most straightforward
theoretical reasoning, following the guidelines of [8, Section 6].

We start by defining a modified error indicator

e(uh) =
|||u − uh|||h

|||u||| , (2.11)

where ||| · |||h is the modified energy norm. (We interpret Πh in Eq. (2.10) as the
averaging operator.) Following [8] we split the error (2.11) in two parts, called the
approximation error and the consistency error. (The terminology comes from the
tradition of finite element theory. The consistency error is sometimes referred to
as the equilibrium error in the literature. See the further references in [8].) The
approximation error ea(uh) is defined simply as the error of the best approximation
according to indicator (2.11), i.e.,

ea(uh) = min
v∈Uh

|||u − v|||h
|||u||| . (2.12)

(The kinematic constraints are obeyed here.) The remaining part of the error, the
consistency error ec(uh), is then

ec(uh) =
|||zh|||h
|||u||| , (2.13)

where zh is the finite element solution (according to the modified scheme) when
a) the kinematic constraints of the problem are replaced by the corresponding ho-
mogeneous constraints, and b) the load functional L is replaced by the generalized
load

`h(v) = A(u,v) −Ah(u,v), (2.14)

where u is the exact solution and A(·, ·) is the energy inner product and Ah(·, ·) its
counterpart after modification (2.10).

To bound the approximation error, we choose v = (w̃, θ̃) in Eq. (2.12), where
w̃ ≈ w and θ̃ ≈ θ are properly chosen piecewise linear approximations. The idea is
to choose these as generalized interpolants under the constraint

Πh

[

θ − θ̃ − d

dx
(w − w̃)

]

= 0. (2.15)
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Since here Πh(dw̃/dx) = dw̃/dx, we can solve Eq. (2.15) for w̃, and thus we achieve
our goal by first choosing θ̃ (so far freely) and then solving w̃ from Eq. (2.15).
Setting w̃(0) = w(0) (as possibly forced by a kinematic coinstraint) we conclude
that w̃ is then defined uniquely at each nodal point xj as

w̃(xj) = w(0) +

∫ xj

0

Πh
dw

dx
dx −

∫ xj

0

Πh(θ − θ̃) dx

= w(0) +

∫ xj

0

dw

dx
dx −

∫ xj

0

(θ − θ̃) dx

= w(xj) −
∫ xj

0

(θ − θ̃) dx. (2.16)

Since the choice of θ̃ is so far free, we may enforce here the possible kinematic
constraint w̃(L) = w(L) by choosing θ̃ so that

∫ L

0

(θ − θ̃) dx = 0. (2.17)

This is the only constraint that limits the choice of θ̃.

With θ̃ chosen so that Eq. (2.17) holds (otherwise so far freely) and w̃ defined
by Eq. (2.16), set v = (w̃, θ̃). Then by Eq. (2.15)

|||u − v|||h =

{

D

∫ L

0

[

d

dx
(θ − θ̃)

]2

dx

}1/2

. (2.18)

Denoting henceforth by || · || the L2 - norm on the interval [0, L], i.e.,

||φ|| =

[
∫ L

0

φ2 dx

]1/2

, (2.19)

we thus conclude from Eqs. (2.18) and (2.12) that

ea(uh) ≤ |||u − v|||h
|||u||| =

D1/2 ||θ′ − θ̃′||
|||u||| . (2.20)

Define now finally θ̃ by minimizing the right side of Eq. (2.20) under constraint
(2.17). This defines θ̃ as a slightly deflected interpolant that satisfies the sharp
error bound [8, Section 10]

||θ′ − θ̃′|| ≤ Ch ||θ′′||, C =
1

π
+ O

(

h

L

)

. (2.21)

Combining Eqs. (2.20) and (2.21) we conclude that the approximation error can be
bounded as

ea(uh) ≤ CKQ
h

L
, (2.22)
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where C comes from Eq. (2.21) and K and Q are likewise dimensionless constants
that depend on the exact solution as

K =
D1/2||θ′||
|||u||| , Q =

L ||θ′′||
||θ′|| . (2.23)

Note that here K2 defines the ratio of the bending energy to the total deformation
energy in the exact deformation state, whereas Q relates to the regularity of the
exact solution. At the asymptotic limit t/L = 0 one has K = 1. In that case the
constraint (2.15) must be forced when bounding the approximation error, so our
analysis is sharp when t/L = 0. We note that the bound (2.21) is not improvable
under further regularity assumptions on θ, only the value of C can be reduced
slightly. The smallest possible value of C, obtained when θ ′′′(x) is square integrable
over the interval [0, L], is C = 1/

√
12+O(h/L). (The value of C given in Eq. (2.21)

is for the worst case where the mesh is uniform and θ = θ(x, h) = sin πx/h. The
improved value is obtained when θ is a quadratic polynomial.)

To bound the consistency error, we note that by the general theory [8], we have
the bound ec(uh) ≤ εh whenever the generalized load functional (2.14) obeys the
bound

|`h(v)| ≤ εh|||u||||||v|||h ∀v ∈ Uh. (2.24)

We can write `h(v) in terms of the shear stress

q =
k

t2

(

θ − dw

dx

)

(2.25)

as

`h(v) =

∫ L

0

[

q

(

η − dξ

dx

)

− Πhq Πh

(

η − dξ

dx

)]

dx, v = (ξ, η) ∈ Uh. (2.26)

Since Πh is here an averaging operator and dξ/dx is piecewise constant, we can
simplify Eq. (2.26) as

`h(v) =

∫ L

0

(q − Πhq)(η − Πhη) dx, v = (ξ, η) ∈ Uh, (2.27)

so that by the Cauchy-Schwarz inequality

|`h(v)| ≤ ||q − Πhq||||η − Πhη||. (2.28)

Bounding here the first term on the right side as

||q − Πhq|| ≤ ||q||, (2.29)

the second term by standard approximation theory as

|||η − Πhη||| ≤ 1

π
h ||η′||, (2.30)
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noting that by the Euler equations of the beam model,

q =
d2θ

dx2
, (2.31)

and finally noting that

||η′|| ≤ D−1/2|||v|||h, v = (ξ, η) ∈ Uh, (2.32)

we conclude, combining Eqs. (2.28)–(2.32), that εh in (2.24) and hence the consis-
tency error can be bounded as

ec(uh) ≤ εh ≤ CKQ
h

L
, (2.33)

where C = 1/π and costants K and Q are defined by Eq. (2.23).

From the analysis so far we conclude that the approximation and consistency
errors are both of order O(h/L). This result was obtained assuming that θ ′′ is square
integrable, in which case the upper bounds in Eqs. (2.22) and (2.33) are nearly the
same. As noted, the approximation error bound (2.22) is essentially optimal even
under stronger regularity assumptions. Instead, the consistency error bound can be
improved considerably by assuming that θ′′′ is square integrable. Namely, recalling
Eq. (2.31), we can then replace Eq. (2.29) by the bound

||q − Πhq|| ≤ 1

π
h ||q′|| =

1

π
h ||θ′′′||. (2.34)

Following the above reasinoning we then conclude that

ec(uh) ≤ C1KQ1

(

h

L

)2

, C1 =
1

π2
, Q1 =

L2 ||θ′′′||
||θ′|| . (2.35)

Thus the consistency error is of order O(h/L) or O(h2/L2), depending on how
smooth the solution is assumed to be.

The total error is bounded by the sum of the approximation and consistency
error terms, ore more precisely [8]

e(uh) = [ e2
a(uh) + e2

c(uh) ]1/2. (2.36)

We conclude that the modified linear finite element scheme is free of parametric
error amplification when the error is measured by indicator (2.11). As the error
analysis shows, the success is mostly based on the existence of an accurate (in
the sense of indicator (2.11)) generalized interpolant of the exact solution. The
“interpolant” constructed above is actually close to the finite element solution itself
in the case where t/L is and h/L are both small and the consitency error is of
order O(h2/L2) so that this error term is negligible. In that case the above theory
thus not only proves convergence but also explains how the finite element algorithm
actually works when minimizing the modified energy.
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3 The arch and the “beam trick”

Consider a circular arch of radius R and length L, of rectangular cross-section,
and subject to a smoothly varying (in the length scale L) traction load distribution
f = (f1, f2), where f1 is the tangential and f2 the normal load component. When the
depth to length ratio t/L is mall, the total energy of the arch is given approximately
by the expression

F(u,w, θ) =
D

2

∫ L

0

[

(

dθ

dx

)2

+
k

t2

(

θ − dw

dx
+

u

R

)2

+
m

t2

(

du

dx
+

w

R

)2
]

dx

−
∫ L

0

(f1u + f2w) dx, (3.1)

where the three terms of the strain energy correspond to bending, transverse shear,
and stretching/compression. Here x is the arc length variable, w is the transverse
deflection (positive when the deflection is away from the center of curvature), θ is
again the rotation of the cross-section, and u is the tangential displacement. The
coefficients D and k are the same as before, and m = 12.

We will again assume the exact solution u = (u,w, θ) to be such that Eq. (2.5)
holds, i.e., the first bending term in Eq. (3.1) is dominant. For the majority of
the problems of the assumed type this holds, but there are also cases where this
assumption does not hold. In such exceptional cases the load term in Eq. (3.1)
takes the specific form

∫ L

0

(f1u + f2w) dx =

∫ L

0

Rf2

(

du

dx
+

1

R
w

)

dx. (3.2)

A necessary condition is that

f1 = −R
df2

dx
, (3.3)

which condition is also sufficient when the kinematic constraints u(0) = u(L) = 0
are imposed. When Eq. (3.2) holds, the deformation energy is concentrated on
the third (stretching) term in Eq. (3.1) at small values of t/L. Such stretching-
dominated deformation states violate assumption (2.5) and are thus excluded from
our consideration. We come back to this problem when considering different defor-
mation states of a shell in Section 5.

Obviously, the simplest finite element approximation of the above problem is
again based on the two-node linear element where now the three components of
the displacement field u = (u,w, θ) are approximated independently. From the
analogous beam model we may deduce that to avoid parametric error amplification
due to the shear energy term in Eq. (3.1), we should perform the “shear trick”

θ − dw

dx
+

u

R
↪→ Πh

(

θ − dw

dx
+

u

R

)

, (3.4)

where Πh is the averaging (or midpoint interpolation) operator. Indeed, this can
again be justified physically by assuming first that w is quadratic on each element
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and then eliminating the quadratic part using the known asymptotics of the model.
Moreover, the same reasoning could be applied to the stretching energy term in
Eq. (3.1) as well: Assuming first that u is likewise quadratic on each element
and eliminating the quadratic term by imposing partly the asymptotic assumption
du/dx + w/R = 0, one would be lead to the “stretching trick”

du

dx
+

w

R
↪→ Πh

(

du

dx
+

w

R

)

. (3.5)

This indeed is the right thing to in the linear-element model, but the original
physical justification was different. In the old matrix methods for arches, it was
considered more natural to approximate the arch just as an assembly of beams
when evaluating the stretching energy [7]. Although such a “beam trick” appears
rather violent, it proved efficient experimentally when assumed in the context of the
lowest-order finite element approximation. The first full mathematical justification
was given by Kikuchi [17]. Following the reasoning in [17], consider an element
with nodes at xj−1 = −h/2 and xj = h/2. Then under the beam approximation
of the element, the relative stretching of the beam in terms of the nodal degrees of
freedom of u and w is given by

β =
1

h̃

[

cos

(

h

2R

)

(uj − uj−1) + sin

(

h

2R

)

(wj−1 + wj)

]

, (3.6)

where h̃ is the length of the beam. Using here the approximations

h̃ ≈ h, cos

(

h

2R

)

≈ 1, sin

(

h

2R

)

≈ h

2R
, (3.7)

we get

β ≈ 1

h
(uj − uj−1) +

1

2R
(wj−1 + wj) = Πh

(

du

dx
+

w

R

)

. (3.8)

The beam assumption thus has practically the same effect as the modification (3.5).
— We can add one more item to the list of different derivations of the same numer-
ical trick!

The error analysis of the linear finite element scheme with modifications (3.4)
and (3.5) can be carried out along the same lines as for the beam. (The error analysis
shows very little difference between the beam assumption and modification (3.5),
so we simply assume the latter.) We define again the error indicator by Eq. (2.11),
where ||| · |||h is the modified energy norm (= square root of the modified strain
energy), and where we assume that the denominator is scaled according to Eq.
(2.5). When bounding the approximation error, we construct again a generalized
interpolant ũ = (ũ, w̃, θ̃) ∈ Uh of the exact solution u = (u,w, θ) in such a way that
the interpolation error is insensitive to the main parameter t. This is achieved by
constructing (ũ, w̃, θ̃) in such a way that

Πh

[

θ − θ̃ − d

dx
(w − w̃) +

1

R
(u − ũ)

]

= 0,

Πh

[

d

dx
(u − ũ) +

1

R
(w − w̃)

]

= 0.

(3.9)
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The construction is analogous to that given above for the beam. Given first θ̃, we
define w̃, ũ at each nodal point xj so that

w̃(xj) = w(xj) −
∫ xj

0

(θ − θ̃) dx − 1

R

∫ xj

0

(u − ũ) dx,

ũ(xj) = u(xj) +
1

R

∫ xj

0

(w − w̃) dx.

(3.10)

That this system is solvable for w̃(xj), ũ(xj) is shown in [18]. To impose the possible
kinematic constraints ũ(L) = u(L), w̃(L) = w(L), one needs to restrict θ̃ by two
integral constraints, otherwise the choice of θ̃ remains free [18]. With v = (ũ, w̃, θ̃)
defined in this way, we may again bound the approximation error by the minimum
of |||u − v|||h with respect to the degrees of freedom of θ̃ that are left free by the
mentioned constraints. We conclude then that Eqs. (2.20)–(2.23) remain valid also
in the arch problem. Thus the approximation error is again of the uniformly optimal
order O(h/L) when θ′′ is square integrable.

The consistency error analysis is likewise a straightforward extension of that for
the beam above: We can expand the generalized load functional (2.14) this time as

`h(v) =

∫ L

0

(q − Πhq)(η − Πhη) dx +

∫ L

0

R−1(q − Πhq)(v − Πhv) dx

+

∫ L

0

R−1(σ − Πhσ)(ξ − Πhξ) dx, v = (v, ξ, η) ∈ Uh, (3.11)

where

q =
k

t2

(

θ − dw

dx
+

u

R

)

, σ =
m

t2

(

du

dx
+

w

R

)

. (3.12)

Using Eq. (3.11) together with the Euler equations

−dσ

dx
+

1

R
q = f1,

1

R
σ +

dq

dx
= f2, q =

d2θ

dx2
, (3.13)

we conclude, by the same reasoning as above, that the consistency error is again of
order O(h/L) or O(h2/L2), depending on the smoothness of θ, f1 and f2. We skip
the further details here.

The final conclusion of the error analysis so far is that the linear finite element
scheme with modification (2.10) in case of a beam or modifications (3.4)–(3.5) in
case of an arch is the lowest-order “dream scheme” where the parametric locking
of the standard linear element is completely removed without any additional cost.
We also conclude that although this scheme has been supported by many kinds
of arguments over the (pre)history of FEM, there remains really just one basic
numerical idea in the end: the idea of averaging elementwise. We note that this
idea, or the nearly equivalent idea of selective reduced integration by the midpoint
rule, works also in the context of more general 2D arches or 3D rods with varying
curvature, c.f. [19] and the further references therein.
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4 The plate and the great bilinear element

According to the Reissner-Mindlin model of plate bending, the deformation of the
plate is expressed in terms of the vector field u = (w,θ), where w is the transverse
deflection and θ = (θ1, θ2) the rotation of the normal at the midsurface. Consider,
as a model problem, a square plate with side length L and thickness t. Assume
that the plate consists of homogeneous isotropic material with Young modulus E
and Poisson ratio ν and that the plate is loaded by a normal pressure distribution
f . Then the energy of the plate according to the Reissner-Mindlin model is given
by

F(u) =
D

2

∫ L

0

∫ L

0

[ ν(κ11 + κ22)
2 + (1 − ν)(κ2

11 + 2κ2
12 + κ2

22) ] dxdy

+
kD

2t2

∫ L

0

∫ L

0

[

(

θ1 −
∂w

∂x

)2

+

(

θ2 −
∂w

∂y

)2
]

dxdy

−
∫ L

0

∫ L

0

fw dxdy, (4.1)

where the coefficients are defined in terms of E, ν and the shear correction factor
γ as

D =
Et3

12(1 − ν2)
, k = 6γ(1 − ν), (4.2)

and κij = κij(θ) are the bending strains as defined by

κ11 =
∂θ1

∂x
, κ22 =

∂θ2

∂y
, κ12 =

1

2

(

∂θ1

∂y
+

∂θ2

∂x

)

. (4.3)

One of the simplest finite element approaches to te above problem is to choose a
four-node bilinear element where the three components of the displacement field are
approximated independently. The finite element space is then defined as Uh = Vh×
Vh×Vh, where Vh is the scalar bilinear space associated to a given rectangular mesh.
We focus on this basic approach below. (The story of the simplest triangular plate
element is interesting as well — but that is another story.) When the energy (4.1)
is minimized as given over the bilinear finite element space Uh, the relative nergy-
norm error indicator again turns red, showing error magnification by factor L/t as
compared with the optimal rate O(h/L). Indeed, we know that this happens even
if the problem reduces to a beam problem (f = f(x), periodic boundary conditions
at y = 0, L). The question then arises, whether the error magnification could again
be avoided by modifying the strain energy numerically. The modifications should
obviously be focused on the second shear energy term of Eq. (4.1), as the large
coefficient in front of this term is the source of the problem.

Let us pause here for a few historical comments. As we have seen, the sim-
ple linear element formulations for beams and arches have deep historical roots,
leading back some 50 years in time. The same is true for the simplest locking-free
bilinear element for plane elasticity, see [8]. In this perspective, the simplest bi-
linear Reissner-Mindlin plate elements seem to represent a historical anomaly, as

14



these constructions are some 20 years old only. One possible explanation could be
that the mentioned early formulations were, perhaps, somewhat lucky constructions
based on occasional physical ideas, whereas in case of plate bending, the physical
intuition alone was (perhaps) insufficient. Note that, when formulating the question
as above, we have taken a purely numerical approach where no physical justification
is asked for. In the engineering applications of FEM, a notable transition towards
this kind of thinking occurred with the advention of selective reduced integration
techniques in the early 1970’s. This purely numerical approach was “elevated from
the realm of tricks to a legitimate methodology” when it was found that there were
many connections to the earlier mixed finite element methodology developed since
the 1960’s [20]. At the time of this new synthesis, the simple locking-free formula-
tion of the bilinear plate-bending element was found. In retrospect it appears that
the formulation was rather close once the right (numerical rather than physical)
approach was taken.

The first systematic attempt to improve the performance of the bilinear plate-
bending element by numerical modification of the shear strains appears to be that
by Hughes et al. in 1977 [21]. Here, as inspired by the successful linear element
formulation for the beam, one proposes in Eq. (4.1) the anologous modifications

θ1 −
∂w

∂x
↪→ Πxy

h

(

θ1 −
∂w

∂x

)

, θ2 −
∂w

∂y
↪→ Πxy

h

(

θ2 −
∂w

∂y

)

, (4.4)

where Πxy
h is the elementwise averaging operator. Alternatively, Πxy

h may be un-
derstood as an interpolation operator at the midpoints of the elements, or one may
consider (as in [21]) the modification arising from selective reduced integration in
the shear energy term using the midpoint rule. Empirically, this modification does
improve the performance of the bilinear element (in many cases at least), but the
theory developed some years later [22] raises questions. The error analysis gives the
desired optimal convergence rate, but it appears that the analysis can go through
only if the mesh is uniform, the exact solution is extremely smooth, and the kine-
matic constraint at the boundary are strong enough (a clamped boundary was
assumed in [22]). The extreme assumptions are needed basically because the modi-
fied scheme (interpreted as a mixed finite element method in [22]) is not sufficiently
stable. Note that in case of no kinematic constraints, modification (4.4) creates an
unphysical zero-energy mode: If u = (w,θ) ∈ Uh is such that θ = 0 and w oscillates
at the nodal points as w(xj, yj) = (−1)i+j, then |||u|||h = 0. Although kinematic
constraints can easily remove this mode, the problem of weak stability remains. –
We note that in light of the current error analysis philosophy (as outlined above,
see [8]), weak stability causes in general the magnification of the consistency error.
Apparently the consistency error due to modification (4.4) is so large that it can be
controlled only under extreme assumptions, like those made in [22].

The conclusion from the theory is thus that the bilinear plate element with mod-
ification (4.4) is an unsuccessful formulation. Meanwhile the practice had drawn
the same conclusion and abandoned the approach, in favor of a much better formu-
lation found in [9, 10] (see also [11]). In this alternative formulation — which still
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is the final word — one replaces Eq. (4.4) by the modifications

θ1 −
∂w

∂x
↪→ Πx

h

(

θ1 −
∂w

∂x

)

, θ2 −
∂w

∂y
↪→ Πy

h

(

θ2 −
∂w

∂y

)

, (4.5)

where Πx
h and Πy

h may still be considered elementwise averaging operators, but this
time the averaging is done only in one of the coordinate directions, as indicated
by the superscript. There are again other interpretations: One may think of the
modification as arising alternatively from selective reduced integration [9] or from
mixed interpolation [10, 11] (see below). Note that since ∂w/∂x is constant in x and
∂w/∂y is constant in y in Eq. (4.5), the modification does not change these terms
and hence causes no unphysical zero-energy modes. In practice the formulation
works extremely well, even when extended (properly, see the referneces cited) to
more general quadrilateral element shapes.

The first error analysis of the above scheme was given by Bathe and Brezzi [12].
Let us try to translate this analysis into our language where we bound the error using
the modified energy-norm error indicator (2.11) and split the error in two parts. The
first task then is to decide, how the modifications (4.5) should be understood when
acting on more general than piecewise bilinear functions. Note that we need this
interpretation in Eq. (2.11), since the modifications in |||u−uh|||h act on u−uh. We
consult here the finite element designers, the majority of whom seem to recommend
mixed interpolation as the most natural approach, especially when extending the
formulation to more general quadrilateral element shapes [10, 11]. Below we choose
to follow this advice when extending the definition of operators Πx

h and Πy
h beyond

the finite element space.
Consider a field q = (q1, q2) defined over the assumed rectangular domain and

satisfying the (minimal) regularity assumption that q1 is integrable with respect
to x for all y and q2 is integrable with respect to y for all x. We want to define
Πhq = (Πx

hq1, Π
y
hq2) under such assumptions. To this end, let K be any given

rectangle in the finite element mesh. The mixed-interpolation idea is then to define
Πhq on K as

Πhq (x, y) = ( c1 + c2y , c3 + c4x ) , (x, y) ∈ K, (4.6)

where the constants ci are defined by requiring that on each edge E of the rectangle
∫

E

t · (q − Πhq) ds = 0, (4.7)

where t is the tangent vector on E. Obviously this defines Πhq = (Πx
hq1, Π

y
hq2)

uniquely on each element and hence on the entire domain. We also observe that in
the case where (a) q1 and q2 are both bilinear on each K and (b) q1 is continuous in
y and q2 is continuous in x, we have not changed the definition of Πx

h and Πy
h from

that assumed above. Hence we can rewrite the modifications (4.5) now as

ρ ↪→ Πhρ, (4.8)

where ρ is the vector of shear strains:

ρ = (ρ1, ρ2) =

(

θ1 −
∂w

∂x
, θ2 −

∂w

∂y

)

. (4.9)
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As noted, the derivative terms in Eq. (4.5) are left unchanged when w ∈ Vh, that is

w ∈ Vh ⇒ Πh∇w = ∇w. (4.10)

This is an important property for stability.
Let us now bound the approximation error under the above interpretation of

modifications (4.5). To obtain a bound that is uniform with respect to parameter
t/L, we need to construct a generalized interpolant ũ = (w̃, θ̃) ∈ Uh of the exact
solution u = (w,θ) such that

Πh[ θ − θ̃ −∇(w − w̃) ] = 0. (4.11)

Under this constraint one has

|||u − ũ|||h = ||θ − θ̃||b, (4.12)

where ||θ||b is defined as the square root of the bending energy (the first term in Eq.
(4.1)). When bounding the approximation error by choosing v = ũ = (w̃, θ̃) in Eq.
(2.12), the question then is: How small can the right side of Eq. (4.12) be made
under constraint (4.11)?

To solve the above problem, we follow the footsteps of Bathe and Brezzi [12].
First note that Eq. (4.11) is equivalent to stating that for each side E of the finite
element mesh

∫

E

t · [ θ − θ̃ −∇(w − w̃) ] ds = 0. (4.13)

For a side E = a1a2 this is further equivalent to
∫

E

t · (θ − θ̃) ds = (w − w̃)(a2) − (w − w̃)(a1). (4.14)

When summing Eq. (4.14) over the edges of a rectangle K we get

∫

∂K

t · (θ − θ̃) ds = 0, (4.15)

or equivalently
∫

K

rot (θ − θ̃) dxdy = 0. (4.16)

where rotθ = −∂θ1/∂y + ∂θ2/∂x. That this holds for every rectangle K of the
finite element mesh is thus a necessary condition for the constraint (4.11) to be
fulfilled. On the other hand, when θ̃ is given so that Eq. (4.16) holds for every
rectangle of the mesh, we can also find w̃ ∈ Vh so that Eq. (4.11) holds. Namely,
we may start from an interpolation condition at any given node and then proceed
to the other nodes using Eq. (4.14) as the definition of w̃. No conflict arises in this
construction under the stated condition on θ̃. A more explicit way of defining w̃ is
simply to solve Eq. (4.11) for ∇w̃. To this end, let w̆ be the usual interpolant of w
in Vh. Then by the definition of Πh one has Πh(∇w −∇w̆) = 0, so that

Πh∇w = Πh∇w̆. (4.17)
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But by Eq. (4.10) one has also Πh∇w̆ = ∇w̆ and Πh∇w̃ = ∇w̃, so Eq. (4.11) can
be written equivalently as

∇w̃ = ∇w̆ − Πh(θ − θ̃). (4.18)

We have now come to a similar situation as in the beam problem above: We observe
that minimizing |||u − ũ|||h with respect to ũ = (w̃, θ̃) ∈ Uh under constraint (4.11)
is the same as first minimizing ||θ − θ̃||b with respect to θ̃ ∈ Vh × Vh under the
elementwise constraints (4.16) and then solving w̃ from Eq. (4.18). The question
that remains is then: How small can the right side of Eq. (4.12) be made under the
elementwise constraints (4.16)?

The above problem takes a more familiar form when writing Eq. (4.16) as
∫

K

div (φ − φ̃) dxdy = 0, (4.19)

where φ = (φ1, φ2) = (θ2,−θ1). Continuous piecewise bilinear approximation un-
der constraint (4.19) is a well-known problem that arises in the bilinear/constant
velocity-pressure finite element model for the Stokes flow. The problem appears
also in plane elasticity when modelling coplanar deformations of a solid body con-
sisting of nearly incompressible material [8]. That accurate approximation under
the elementwise constraints (4.19) is indeed possible, is a rather unique “bilinear
miracle” that seems to be hidden in quite many four-node element constructions
developed over the history of FEM. In the present context the connection was found
in [12].

The approximation theory of the bilinear element under constraint (4.19) was
developed in [22, 23]. To apply the theory here, we need to split the exact solution
in two parts as

u = u0 + u1 = (w0,θ0) + (w1,θ1), (4.20)

where (w0,θ0) is the asymptotic Kirchhoff solution that satisifies the constraint
θ0 = ∇w0. (From this on we depart somewhat from the reasoning in [12]). If
the boundary layer part of u is neglected, or if the layer is sufficiently weak, it is
realistric to assume that the second term in the expansion (4.20) is by factor O(t/L)
smaller in the energy norm than the first term, c.f. [24]. (In [24], the effect of the
layer is studied as well. In general, the approximation of the boundary layer has to
be studied as a separate problem, see the remarks ahead.) Under this assumption
the small amplitude of u1 cancels the parametric amplification effect, so that the
accuracy of standard interpolation is sufficient when bounding the approximation
error due to this term. By this reasoning we have then isolated the main difficulty
in the case where the field u = (w,θ) to be approximated satisfies the (Kirchhoff)
constraint θ = ∇w. In that case one has rotθ = 0 in Eq. (4.16), or equivalently,
div φ = 0 in Eq. (4.19). The theory in [23] then applies and states that in the
model problem considered, the accuracy of standard interpolation is maintained
under constraints (4.16). (In fact, the assumptions in [23] do not quite cover a
general rectangular mesh, but the analysis there can be extended easily.) The
conclusion is then that the approximation error is of the uniformly optimal order
O(h/L), assuming that θ is sufficiently smooth in the length scale L. One requires
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here the standard regularity assumption that the second partial derivatives of θ1

and θ2 are square integrable over the domain.
The consistency error analysis is more straightforward. We may expand the

generalized load functional `h in Eq. (2.14) in this case as

`h(v) =

∫ L

0

∫ L

0

(q − Πhq) · Πh(η −∇ξ) dxdy

+

∫ L

0

∫ L

0

q · (η − Πhη) dxdy, v = (ξ,η) ∈ Uh, (4.21)

where q = (k/t2)(θ − ∇w) is the shear stress. Under reasonable regularity as-
sumptions on q one may conclude from this expansion that the consistency error
is likewise of order O(h/L) uniformly with respect to parameter t/L. More details
of this reasoning are found in [25], where the analysis is carried out for a family of
mixed-interpolated elements.

Our final conclusion is that, insofar as the simplest four-node plate element based
on the Reissner-Mindlin model is concerned, the bilinear element with mixed inter-
polation of the shear strains according to Eq. (4.8) is the ultimate dream element.
Variations of the element can be obtained, e.g. by adding one degree of freedom for
the tangential rotation on each edge of the element and then eliminating the added
d.o.f. by discrete Kirchhoff constraints [25]. We note that the basic idea of setting
the degrees of freedom of mixed interpolation on the edges of the element seems the
right approach also when the boundary layer is taken into account. Indeed, there
are examples of other kinds of numerical modifications that result in good perfor-
mance when approximating smooth solutions but cause unwanted error growth at
the layer. Such error growth is seen most clearly at a free boundary where the layer
is relatively strong, see [25, 26]. We note finally that when the above element is
extended to more general quadrilateral element shapes as in [10, 11], the theory
can largely follow. Some weak restrictions on the mesh do arise, due to the still
incomplete theory of the constrained approximation problem above. Otherwise the
theory confirms what is seen in practice: The element preserves its efficiency on
quadrilateral meshes.

5 The shell and MITC4

We consider as a model problem a shallow shell such that the midsurface of the
shell is a small deviation from a plane. We assume that the midsurface occupies a
rectangular domain [0, L] × [0, L] in the coordinates x, y on the plane and that the
thickness t of the shell is small compared with L. The curvature tensor {bij} of
the midsurface of the shell is assumed constant. Below we write a = b11, b = b22,
and c = b12 = b21. The shell is then classified geometrically to be elliptic when
ab − c2 > 0, parabolic when ab − c2 = 0, and hyperbolic when ab − c2 < 0.

To model the deformation of the shell when loaded, we assume the Naghdi (or
Reissner-Naghdi) shell model where the deformation is expressed in terms of the
membrane strains βij, transverse shear strains ρi, and bending strains κij, each
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defined along the midsurface of the shell. The strains are associated to the five-
component displacement field u = (u, v, w, θ1, θ2), where u, v and w are, respec-
tively, the tangential displacements and the transverse deflection of the shell mid-
surface, and θ = (θ1, θ2) is the rotation vector of the normal. We consider a
simplified shell model where the membrane strains are defined as

β11 =
∂u

∂x
+ aw, β22 =

∂v

∂y
+ bw, β12 =

1

2

(

∂u

∂y
+

∂v

∂x

)

+ cw, (5.1)

and the bending and the tranverse shear strains are defined by Eqs. (4.3) and (4.9),
i.e., in the same way as in the plate-bending model. This model may be considered
as an approximation to the geometrically accurate 2D models of classical shell
theory, see [14] for the mathematical reasoning. Here we may consider the model
as the simplest model that contains all the essential features of the (linear) shell
problem from the finite element modelling point of view.

To express the energy of the shell in terms of the strains, we consider separately
two cases, a bending-dominated deformation state and a membrane-dominated de-
formation state. — We note that the concept “shell problem” hides mathematical
diversity not encountered in the simpler parametric problems considered above. In
particular, shell problems can be classidfied (roughly, see [13]) depending on which
type of deformation becomes dominant in the strain energy at the asymptotic limit
t/L → 0. In the bending-dominated case we write the energy as

F(u) =
D

2

∫ L

0

∫ L

0

[ ν(κ11 + κ22)
2 + (1 − ν)(κ2

11 + 2κ2
12 + κ2

22) ] dxdy

+
kD

2t2

∫ L

0

∫ L

0

(ρ2
1 + ρ2

2) dxdy

+
6D

t2

∫ L

0

∫ L

0

[ ν(β11 + β22)
2 + (1 − ν)(β2

11 + 2β2
12 + β2

22) ] dxdy

−
∫ L

0

∫ L

0

(f1u + f2v + f3w) dxdy. (5.2)

Here the coefficients D, k are again defined by Eq. (4.2), and we have assumed
loading in terms of a given surface traction along the midsurface. In the membrane-
dominated case we define the scaling parameter D differently and also reorganize
the strain energy so that the dominant term comes first, writing

F(u) =
D

2

∫ L

0

∫ L

0

[ ν(β11 + β22)
2 + (1 − ν)(β2

11 + 2β2
12 + β2

22) ] dxdy

+
kD

24

∫ L

0

∫ L

0

(ρ2
1 + ρ2

2) dxdy

+
Dt2

24

∫ L

0

∫ L

0

[ ν(κ11 + κ22)
2 + (1 − ν)(κ2

11 + 2κ2
12 + κ2

22) ] dxdy

−
∫ L

0

∫ L

0

(f1u + f2v + f3w) dxdy, (5.3)
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where now D = Et/(1−ν2). We underline that the different scaling (and ordering)
in Eqs. (5.2) and (5.3) is just for clarity. This will not affect the finite element error
analysis, since our error indicator will be scaling-invariant anyway.

Note in this context that the exceptional stretching-dominated deformation of
the circular arch mentioned in Section 3 is mathematically equivalent to the mem-
brane state of an infinite cylindrical shell under axially constant loading. This is a
“soft”membrane state in the sense that it relies on the specific angular shape of the
load. Another, “hard”type of membrane state arises when the kinematic constraints
along the edge of the shell (or at joints) are firm enough to prevent inextensional
deformations under any loading [13]. Such deformation states are rather common
in engineering shell structures, so the membrane state of a shell is more a rule than
an exception.

Consider now the finite element approximation of the above problem. One of the
simplest approaches is again to choose the bilinear element where each component
of the displacement field is approximated independently. In the bending-dominated
case, numerical modifications are then again necessary, since otherwise both the
shear and the membrane energy terms in Eq. (5.2) cause error amplification by
factor ∼ L/t. In the lowest-oder shell elements available in the engineering litera-
ture, such modifications are indeed made, but often quite implicitly. In MITC4, the
modifications of the membrane strains arise from the use of the so called faceting

technique while assembling the stiffness matrix. The idea of faceting is to replace
the shell midsurface locally by its isoparametric bilinear approximation when eval-
uating the element stiffness matrix. Such a “facet trick” is obviously an attempt
to extend the successful “beam trick” of arch modelling, so we expect that this can
again be understood as a purely numerical modification of the energy within a geo-
metrically conforming shell model. Indeed, recent analysis by Malinen confirms this
[3, 4]. In the present simplified context, the faceting corresponds (approximately,
see [3, 4]) to the modification of the membrane strains as

β11 ↪→ Πx
hβ11, β22 ↪→ Πy

hβ22, β12 ↪→ Πxy
h β12, (5.4)

where Πx
h, Πy

h and Πxy
h are the mixed-interpolation and elementwise averaging op-

erators as defined above in the plate-bending problem. In addition to these mod-
ifications, MITC4 maintains the mixed interpolation of the shear strains as in the
plate-bending problem, i.e., the modification (4.8) is performed as well.

We will refer to the above interpretation of MITC4 in the shallow shell model as
MITC4-S. — We note that slightly different interpretations of MITC4 are possible,
especially when modifying the membrane strain β12 [3]. These interpretations are
just small variations of each other when the approximation of uniformly smooth
displacement fields is considered, as we do here. Instead when the boundary layers
are taken into account, somewhat larger differences arise, and it seems that the
assumed averaging of β12 is actually a somewhat better numerical modification
than the one contained in MITC4, see [3].

Let us now proceed to the error analysis of the MITC4-S, assuming a rectangular
mesh on the domain. We use again the error indicator (2.11) based on the modified
energy norm. Consider first the case of bending-dominated deformation. As in the
analogous plate-bending problem, the main difficulty in that case is to bound the
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approximation error, and there the main difficulty is further to bound the error
arising from the asymptotic part of the solution when t/L → 0. In the bending-
dominated deformation state of a shell, the asymptotic solution is the inextensional
solution which satisfies the constraints

βij(u) = 0, ρi(u) = 0, i, j = 1, 2. (5.5)

The question then is, whether smooth fields u satisfying constraints (5.5) can be
aproximated accurately by continuous piecewise bilinear fields ũ satisfying the weak-
ened constraints

Πx
hβ11(ũ) = Πy

hβ22(ũ) = Πxy
h β12(ũ) = 0, Πx

hρ1(ũ) = Πy
hρ2(ũ) = 0. (5.6)

When u = (u, v, w,θ) satisfies Eq. (5.5), we can bound the approximation error
with any ũ = (ũ, ṽ, w̃, θ̃) ∈ Uh satisfying Eq. (5.6) as

ea(u) ≤ |||u − ũ|||h
|||u||| =

||θ − θ̃||b
||θ||b

, (5.7)

where ||θ||b is the square root of the bending energy.
When system (5.6) is written in terms of the nodal degrees of freedom of ũ, we

may understand this system as a finite difference approximation to Eq. (5.5). We
take this observation as the starting point, so that our approximation error anal-
ysis is actually based on finite difference analysis. Compared with ordinary finite
difference error analysis, however, there is one essential difference: Stability plays
no role when bounding the approximation error here. In fact, system (5.6) turns
out to be a rather unstable finite difference approximation of Eq. (5.5). However,
this is no problem insofar as the approximation error is concerned. The stability
becomes more a problem in the membrane state when bounding the consistency
error, see below.

So far we have been able to carry out the approximation error analysis under
constraints (5.6) only in the case where the boundary conditions at y = 0, L are
periodic and the mesh is uniform in the y -direction. For simplicity we also assume
that the boundaries at x = 0, L are free. These assumptions allow sharp error
analysis based on continuous and discrete Fourier expansions [5]. The analysis shows
that when choosing ũ in the best possible way, the bound obtained from Eq. (5.7) is
indeed of the uniformly optimal order O(h/L) under the stated conditions. In case
of elliptic shell geometry, the error bound is obtained under the same regularity
assumptions as in the plate-bending problem, i.e., assuming that the second partial
derivatives of θ1 and θ2 are square integrable. In parabolic and hyperbolic shell
geometries an extra degree of regularity is required as a rule: The third partial
derivatives of θ1 and θ2 need to be square integrable, except for the case where
the characteristic lines of the shell (along which the tangential curvature vanishes)
are all parallel with mesh lines. The result (which is sharp by the analysis) means
that if u varies in a given characteristic length scale λ that is much smaller than L,
then the approximation error in the parabolic and hyperbolic cases is magnified by
factor ∼ L/λ as compared with the elliptic case, except for the mentioned specific
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situations. Thus the shell geometry has a mild but notable effect on the finite
element error bound in the bending-dominated case.

The above strong assumptions allow sharp error analysis also in the membrane-
dominated case. For the membrane state of deformation we scale the strain energy
according Eq. (5.3) (for convenience) and assume that the exact solution satisfies

|||u||| ∼ ||u||m, (5.8)

where ||u||m is the square root of the membrane energy (the first term in Eq. (5.3)).
In this case the main error term is the consistency error. Indeed, when Eq. (5.8)
holds, the approximation error is of no concern, since there are no large coefficients
in the scaled deformation energy as expressed by (5.3). The most natural finite
element scheme in this case would then be the standard (unmodified) scheme where
there arises no consistency error.

Let us pause here for a moment. We have now confronted the main challenge
in the finite element modelling of shells. The challenge is to find a low-oder (here
bilinear) formulation that is able to capture two different deformation states with
the same formulation, i.e., without problem specific tuneups. This challenge is not
met when modelling beams, arches or plates, since the deformation in those cases
may be assumed bending-dominated a priori (in most cases, at least). Efficient
finite element designs for these problems also use the assumption vitally, by typi-
cally leaving the assumed dominant part of the energy untouched in the numerical
modifications. Indeed, the bending energy was not modified numerically in any of
the lowest-order finite element approaches considered above. Why the change of
the dominant part is risky in general is basically because of the danger of losing,
or weakening, stability. When the stability is lost, the consistency error becomes
infinite, unless it happens that the generalized load functional (2.14) is zero for the
exact solution u. In the more typical case where the stability is only weakened,
the consistency error remains finite but can be severely amplified. The only chance
to avoid such error growth is then the possibility that the load functional (2.14)
happens to be small enough for every v ∈ Uh, so that the consistency error remains
at a tolerable level even when amplified due to weak stability. Such a compensa-
tion is typically based on strong regularity hypotheses on the exact solution u and
often on specific assumptions on the finite element mesh such as mesh uniformity.
— Recall that it was this consistency error anomaly that was the main cause of
the failure of the first bilinear plate element formulation discussed in the previous
section.

In the design of a “shell element” that attempts to approximate all deformation
states of the shell, the risk of weakening the stability in the membrane state must
be taken. Indeed, we know that the membrane energy term must be modified
numerically, since otherwise there would arise error growth by factor ∼ L/t in the
bending-dominated case. In the membrane state we then — unavoidably — modify
the leading term. The complete stability loss due to such a modification can always
be avoided by supplementing the energy functional with the additional stabilizing

term

Fh(u) = δ [A(u,u) −Ah(u,u) ], (5.9)
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where δ > 0 is a dimensionless parameter. This extra modification of the strain
energy always saves stability, since one has then

|||u|||2h = Ah(u,u) + Fh(u) ≥ min{1, δ} |||u|||2. (5.10)

Note that adding the term (5.9) is just an example of classical regularization, often
used when solving (nearly) ill-posed problems. In the present case the parameter
δ needs to be rather small, since otherwise the added term would cause a big
consistency error in the bending state. Indeed, in the bending state the term (5.9)
is, effectively, multiplied by factor L2/t2 due to the different scaling of the energy
in that case. Thus to avoid parametric amplification of the consistency error due
to the added stabilizing term, we should choose δ in such a way that

0 ≤ δ ≤ c

(

t

L

)2

, (5.11)

where c is a constant. Under this assumption, the extra consistency error caused by
stabilization is harmless in both deformation states. Below we assume Eq. (5.11),
reserving the choice δ = 0 for schemes that require no stabilization.

Due to Eqs. (5.10) and (5.11), the problem of possibly weakened stability re-
mains after adding the term (5.9). In the case where δ ∼ t2/L2, the weakened
stability may cause the consistency error in the mambrane state to be amplified in
the worst case by facor ∼ L/t, i.e., by the same factor that one wanted to avoid
in the bending state. (Such “shell-bending” elements have actually been proposed
in the mathematical literature.) To avoid such a backlash, one apparently needs to
design the modifications of the membrane strains extremely carefully. In general,
the modifications should be strong enough thinking of the bending state, but simul-
taneously weak enough thinking of the membrane state. The MITC4-S formulation
is obviously an attempt to balance between such conflicting requirements. We have
already seen that the formulation is successful in the bending state (under the as-
sumed conditions), so it remains to see if the modifications are also weak enough so
that the consistency error in the membrane state can be controlled. The first good
sign here is that the MITC4-S requires no stabilization. Namely, stability analysis
shows that after the modification (5.4), Eq. (5.10) is valid with δ ∼ t2/L2, despite
that no stabilization was assumed. This result is based essentially on the fact that
the modifications (5.4) do not affect the derivative terms of βij except for β12. The
mentioned stability result can then be deduced from the corresponding plane-elastic
result stating that the elementwise averaging of β12 does not affect the stability of
the plane-elastic bilinear element, except when the element aspect ratio is high, see
[8, Theorem 6.1].

The consistency error analysis of MITC4-S in the membrane state of deformation
was carried out in [6], where the above stability result was also proven. To allow
a sharp stability and error analysis, the above hypotheses on the semiperiodicity
of the boundary conditions and on the semiuniformity of the mesh were made also
here. It was assumed additionally that the boundary lines at x = 0, L are clamped,
i.e., u = 0 at x = 0, L. Under these conditions it turns out that the weak stability of
the scheme can be somewhat compensated by sharp bounds of the load functional
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(2.14). Extra regularity assumptions (compared with those needed in standard
non-parametric analysis) are also needed here for the exact solution u. Under such
assumptions, the consistency error can be estimated as [6]

ec(uh) ∼ C1

h

L
+ C2

h1+s

tLs
. (5.12)

Here C1, C2 are constants depending on u, and s is a parameter related to the
regularity of u, so that s = 0 means standard and s > 0 extra regularity in the
mentioned sense. Compared with the optimal convergence rate O(h/L), estimate
(5.12) predicts error magnification by factor

K ∼ 1 +
L

t

(

h

L

)s

. (5.13)

When s > 0 (the larger s the better), the error is thus roughly dampened by the
extra factor ∼ (h/L)s from the worst case with s = 0. (When the solution is
assumed smooth in a smaller length scale λ < L, one should replace L by λ in Eq.
(5.13).)

Summarizing the results of the error analysis we conclude that the MITC4
formulation, as we have interpreted it, does improve the performance of the stan-
dard bilinear element considerably, at least under the rather favourable hypotheses
made. In the bending-dominated case the improvement is major, in fact nearly
optimal, under the assumed conditions. In the membrane state the MITC4 formu-
lation causes at best mild, at worst severe, parametric error amplification compared
with the standard bilinear scheme, the amplification being the less the higher the
regularity of the exact solution.

To what extent the above results truly rely on the extremely specific assumptions
made is an open problem. In particular, it is not known how well the MITC4-S
element works when extended to quadrilateral element shapes. A possible extension
would be to leave Πxy

h in Eq. (5.4) as an elementwise averaging operator as it is, and
define the modifications of the diagonal membrane strains via mixed interpolation
in the same way as for the shear. Whether this is still a correct interpretation
of MITC4 is not clear. The true performance of such an algorithm on general
quadrilateral meshes is even less clear.

6 Concluding remarks

We have discussed the mathematical reasoning and error analysis of the lowest-order
linear and bilinear elements for thin structures, starting from beams and closing at
shells. As the mathematical analysis reveals, the various successful formulations
found in the engineering literature have a lot in common. Typically these may
be understood as being based on the usual energy principle with relatively simple
numerical modifications imposed on the critical parametric terms of the energy
expression. These modifications have often deep roots that lead back to the early
history, or even prehistory, of the finite element methodology in structural analysis.
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Following the roots we find a number of different physical justifications for the
ultimately numerical modifications.

For both the finite element designer and the finite element theorist, the most
challenging of the thin structures is the shell. Any “shell element” may be under-
stood mathematically as an attempt to use the same numerical formulation to model
many different deformation states of a shell, including membrane-dominated and
bending-dominated deformations and various boundary layer types. No comparable
challenge is met when modelling simpler thin structures such as beams, arches or
plates, since the deformation type in these problems is typically given, or at least
assumed as a starting point. In view of the difficulties already met in these simpler
problems, lowest-oder shell elements have to be taken as very ambitious attempts
in a rather complex mathematical environment. The MITC4 considered here is
perhaps one the best possible formulations. Very likely rather similar constructions
are hidden under various other shell element trade marks. In the finite element
theory so far, only the first steps have been taken to understand such formulations
and to possibly find their mathematical limits.

In a recent article [27], Lee and Bathe propose a new benchmark program for
evaluating the performance of shell elements. They suggest benchmark testing
that isolates the various asymptotic categories of shell deformations, instead of
the current practice of repeating somewhat formal tests on a narrow selection of
known problems where the exact solution is often an unclear mixture of various
deformation components. We strongly agree with such a program, which actually
is rather parallel with the error analysis philosophy that we have presented. We
would like to add that it is perhaps the time also to open the various“shell elements”
in the commercial codes for mutual comparisons and mathematical error analysis.
If not the combined effort of the engineer and the mathematician can bring out the
ultimate dream element for shells, it could achieve another important goal. It could
raise the art of finite element modelling of shells from occultism to science.
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