8 Commutative Banach algebras

In this section we are interested in maximal ideals of commutative Banach
algebras. We shall learn that such algebras are closely related to algebras
of continuous functions on compact Hausdorff spaces: there is a natural far
from trivial homomorphism from a commutative Banach algebra A to an
algebra of functions on the set Hom(A, C), which can be endowed with a
canonical topology — related mathematics is called the Gelfand theory.
In the sequel, one should ponder this dilemma: which is more fundamental,
a space or algebras of functions on it?

Examples of commutative Banach algebras:

1. Our familiar C'(K), when K is a compact space.
2. L*=(]0,1]), when [0, 1] is endowed with the Lebesgue measure.
3. A(Q) :=C(Q) N H(Q), when Q C C is open and Q C C is compact.

4. M(R™), the convolution algebra of complex Borel measures on R", with
the Dirac delta distribution at 0 € R"™ as the unit element, and endowed
with the total variation norm.
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5. The algebra of matrices , where o, € C; notice that this

@
0
algebra contains nilpotent elements!

Spectrum of algebra. The spectrum of an algebra A is
Spec(A) := Hom(A, C),

i.e. the set of homomorphisms A — C; such a homomorphism is called a
character of A.

Remark. The concept of spectrum is best suited for commutative al-
gebras, as C is a commutative algebra; here a character A — C should
actually be considered as an algebra representation A — L(C). In order
to fully capture the structure of a non-commutative algebra, we should
study representations of type A — L(X), where the vector spaces X are
multi-dimensional; for instance, if  is a Hilbert space of dimension 2 or
greater then Spec(L(H)) = (). However, the spectrum of a commutative Ba-
nach algebra is rich, as there is a bijective correspondence between characters
and maximal ideals. Moreover, the spectrum of the algebra is akin to the
spectra of its elements:
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Theorem (Gelfand, 1940). Let A be a commutative Banach algebra.
Then:

(a) Every mazimal ideal of A is of the form Ker(h) for some h € Spec(A);
(b) Ker(h) is a mazimal ideal for every h € Spec(A);

(c) z € A is invertible if and only if Vh € Spec(A) : h(z) # 0;

(d) z € A is invertible if and only if it is not in any ideal of A;

(e) o(z) = {h(z) | h € Spec(A)}.

Proof.

(a) Let M C A be a maximal ideal; let [z] :== z + M for z € A. Since
A is commutative and M is maximal, every non-zero element in the
quotient algebra A4/M is invertible. We know that M is closed, so
that A/M is a Banach algebra. Due to the Gelfand—-Mazur Theorem,
there exists an isometric isomorphism A € Hom(A/M, C). Then

h=(xw— A(z]): A—>C
is a character, and

Ker(h) = Ker((z — [z]) : A — A/ M) = M.

(b) Let h : A — C be a character. Now h is a linear mapping, so that
the co-dimension of Ker(h) in A equals the dimension of h(A) C C,
which clearly is 1. Any ideal of co-dimension 1 in an algebra must be
maximal, so that Ker(h) is maximal.

(c) If z € Ais invertible and h € Spec(A) then h(z) € C is invertible, that
is h(z) # 0. For the converse, assume that x € A is non-invertible.
Then

Az ={az | a € A}

is an ideal of A (notice that I = ax = xa would mean that a = z71).
Hence by Krull’s Theorem, there is a maximal ideal M C A such
that Ax C M. Then (a) provides a character h € Spec(A) for which
Ker(h) = M. Especially, h(z) = 0.

(d) This follows from (a,b,c) directly.

(e) (c) is equivalent to
“r € A non-invertible if and only if 3h € Spec(A) : h(z) =07,
which is equivalent to
“MI — z non-invertible if and only if 3h € Spec(A) : h(z) = \” O
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Exercise. Let A be a Banach algebra and z,y € A such that zy = yz.
Prove that o(z +y) C o(z) + o(y) and o(zy) C o(z)o(y).

Exercise. Let A be the algebra of those functions f : R — C for which

F@) =3 fue™, Nfl =Y 1fal < 0.

neZ neZ

Show that A is a commutative Banach algebra. Show that if f € A and
Ve eR: f(z) #0then 1/f € A.

Gelfand transform. Let Abeacommutative Banach algebra. The Gelfand
transform T of an element x € A is the function

Z:Spec(A) = C, Z(¢) := o(x).
Let A := {% : Spec(A) — C | z € A}. The mapping
A=A, 507,

is called the Gelfand transform of A. We endow the set Spec(.A) with the A-
induced topology, called the Gelfand topology; this topological space is called
the mazimal ideal space of A (for a good reason, in the light of the previous
theorem). In other words, the Gelfand topology is the weakest topology on
Spec(.A) making every 7 a continuous function, i.e. the weakest topology on
Spec(A) for which A C C(Spec(A)).

Theorem (Gelfand, 1940). Let A be a commutative Banach algebra.
Then K = Spec(A) is a compact Hausdorff space in the Gelfand topol-
ogy, the Gelfand transform is a continuous homomorphism A — C(K), and
|ﬁﬂ=zgﬂﬂ¢ﬂ=p@)ﬂrwﬂy$€A~

Proof. The Gelfand transform is a homomorphism, since

- Az(9) = d(Az) = Ag(z) = AF(9) = (AF)(9),
T+ U(8) = bz +y) = $(z) + (y) = Z(¢) + T($) = (Z +7) (),
T(8) = d(zy) = d(x)(y) = F(D)7(4) = @) (9),

(#)

for every A € C, z,y € A and ¢ € K. Moreover,
z(K)={z(¢) | ¢ € K} ={d(z) | ¢ € Spec(A)} = o(z),
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implying
|1z]] = p(z) <[]

Clearly K is a Hausdorff space. What about compactness? Now K =
Hom(A, C) is a subset of the closed unit ball of the dual Banach space A’;
by the Banach-Alaoglu Theorem, this unit ball is compact in the weak*-
topology. Recall that the weak*-topology 7.4 of A’ is the A-induced topology,
with the interpretation A C A”; thus the Gelfand topology 7x is the relative
weak*-topology, i.e.

Tk = Ta k-
To prove that 7x is compact, it is sufficient to show that K C A’ is closed in
the weak*-topology.

Let f € A’ be in the weak*-closure of K. We have to prove that f € K,
ie.

flay) = f(@)f(y) and f(I)=1.
Let z,y € A, ¢ > 0. Let S := {I,z,y,zy}. Using the notation of the proof
of Banach—Alaoglu Theorem,

Uf,Se)={ved: zeS=|vz— fz|<e}
is a weak*-neighborhood of f. Thus choose h, € K NU(f,S,¢). Then
11— f(I)| = [h(I) = f(D] <&
¢ > 0 being arbitrary, we have f(I) = 1. Noticing that |h.(z)| < ||z||, we get
|f (zy) — f(2)f ()l

< [f(@y) = he(zy)| + |he(zy) — he(2) f(y)| + |e(2) f(y) — [ () f(¥)]

= [f(@y) = he(zy)| + [he(2)] - [he(y) = f(W)| + he(2) = f(2)] - |f ()]
e (L4 [lzll + £ ()])-

This holds for every € > 0, so that actually
flzy) = f(2) f(y);

we have proven that f is a homomorphism, f € K O

IN

Exercise. Let A be a commutative Banach algebra. Its radical Rad(A) is
the intersection of all the maximal ideals of A. Show that

Rad(A) =Ker(z — z) ={z € A| p(z) =0},

where z +— T is the Gelfand transform. Show that nilpotent elements of A
belong to the radical.
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Exercise. Let X be a finite set. Describe the Gelfand transform of F(X).

Exercise. Describe the Gelfand transform of the algebra of matrices (g g) ,
where «, 5 € C.

Theorem. Let X be a compact Hausdorff space. Then Spec(C(X)) is
homeomorphic to X.

Proof. For x € X, let us define the function
hy :C(X)—=C, f~ f(z) (evaluation atz € X).
This is clearly a homomorphism, and hence we may define the mapping
¢ : X — Spec(C(X)), x> hy.

Let us prove that ¢ is a homeomorphism.
If x,y € X, x # y, then Urysohn’s Lemma provides f € C'(X) such that
f(z) # f(y). Thereby hy(f) # hy(f), yielding ¢(z) = h, # hy = ¢(y);

thus ¢ is injective. It is also surjective: Namely, let us assume that h €
Spec(C(X)) \ ¢(X). Now Ker(h) C C(X) is a maximal ideal, and for every
x € X we may choose

fz € Ker(h) \ Ker(h;) C C(X).
Then U, := f7'(C\ {0}) € V(z), so that
U={U, |z e X}

is an open cover of X, which due to the compactness has a finite subcover
{Uq, }j—1 CU. Since f,, € Ker(h), the function

f= Z‘f:vJP = Zf%f—mz
j=1 j=1

belongs to Ker(h). Clearly f(z) # 0 for every x € X. Therefore g € C(X)
with g(x) = 1/f(z) is the inverse element of f; this is a contradiction, since
no invertible element belongs to an ideal. Thus ¢ must be surjective.

We have proven that ¢ : X — Spec(C(X)) is a bijection. Thereby X and
Spec(C(X)) can be identified as sets. The Gelfand-topology of Spec(C(X)) is
then identified with the C'(X)-induced topology o of X, which is weaker than
the original topology 7 of X. Hence ¢ : (X,7) — Spec(C(X)) is continuous.
Actually, 0 = 7, because a continuous bijection from a compact space to a
Hausdorff space is a homeomorphism O
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Corollary. Let X and Y be compact Hausdorff spaces. Then the Banach
algebras C(X) and C(Y') are isomorphic if and only if X is homeomorphic
toY.

Proof. By the previous Theorem, X 22 Spec(C(X)) and Y 2 Spec(C(Y)).
If C(X) and C(Y) are isomorphic Banach algebras then

C(X)=C(Y)
X = Spec(C(X)) =  Spec(C(Y)) =Y.

Conversely, a homeomorphism ¢ : X — Y begets a Banach algebra iso-
morphism

:CY) > CX), (®f)(z):= f(d(z)),

as the reader easily verifies O
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