5 Compact spaces

In this section we mainly concentrate on compact Hausdorff spaces, though
some results deal with more general classes of topological spaces. Roughly,
Hausdorff spaces have enough open sets to distinguish between any two
points, while compact spaces “do not have too many open sets”. Combining
these two properties, compact Hausdorff spaces form an extremely beautiful
class to study.

Compact space. Let X be a set and K C X. A family § C P(X) is
called a cover of K if
K C US;

if the cover S is a finite set, it is called a finite cover. A cover S of K C X
has a subcover 8" C § if &' itself is a cover of K.

Let (X, 7) be a topological space. An open cover of X is a cover U C 7
of X. A subset K C X is compact (more precisely 7-compact) if every open
cover of K has a finite subcover, i.e.

Vucrau cu: Kc|Ju=kKcl|Ju and U]<oo.

We say that (X, 7) is a compact space if X itself is 7-compact.

Examples.

1. If 7y and 7 are topologies of X, 71 C 79, and (X, 73) is a compact space
then (X, 1) is a compact space.

2. (X,{0,X}) is a compact space.

3. If | X| = oo then (X,P(X)) is not a compact space. Clearly any space
with a finite topology is compact. Even though a compact topology can
be of any cardinality, it is in a sense “not far away from being finite”.

4. A metric space is compact if and only if it is sequentially compact (i.e.
every sequence contains a converging subsequence).

5. A subset X C R" is compact if and only if it is closed and bounded
(Heine-Borel Theorem).

6. A theorem due to Frigyes Riesz asserts that a closed ball in a normed
vector space over C (or R) is compact if and only if the vector space is
finite-dimensional.
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Exercise. A union of two compact sets is compact.
Proposition. An intersection of a compact set and a closed set is compact.

Proof. Let K C X be a compact set, and C' C X be a closed set. Let U
be an open cover of K N C. Then {X \ C} UU is an open cover of K, thus
having a finite subcover Y’. Then U’ \ {X \ C} C U is a finite subcover of
K N5 hence K NC is compact O

Proposition. Let X be a compact space and f : X — 'Y continuous. Then
f(X) CY is compact.

Proof. Let V be an open cover of f(X). Then U := {f~'(V) |V € V} is
an open cover of X, thus having a finite subcover ¢’. Hence f(X) is covered
by {f(U) | UelU'}CV O

Corollary. If X is compact and f € C(X) then |f| attains its greatest
value on X (here |f|(z) := |f(x)|) O

5.1 Compact Hausdorff spaces

Theorem. Let X be a Hausdorff space, A, B C X compact subsets, and
AN B =10. Then there exist open sets U,V C X such that AC U, BCYV,
and UNV = 0. (In particular, compact sets in a Hausdorff space are closed.)

Proof. The proofis trivialif A =0 or B =(. So assume z € A and y € B.
Since X is a Hausdorff space and x # y, we can choose neighborhoods Uy, €
V(z) and V, € V(y) such that U, NV, = 0. The collection P = {V,, |y €
B} is an open cover of the compact set B, so that it has a finite subcover

Pz:{vmyj | 1§]§n$}c7)
for some n; € N. Let

U, := ﬂ Usy, -
j=1

Now O = {U, | z € A} is an open cover of the compact set A, so that it has
a finite subcover
O'={U,, |1<i<m}cCO.
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Then define .
v=o, v=JP..
1=1

It is an easy task to check that U and V have desired properties U

Corollary. Let X be a compact Hafzﬁdorﬁ space, © € X, and W € V(x).
Then there ezists U € V(x) such that U C W.

Proof. Now {z} and X \ W are closed sets in a compact space, thus they
are compact. Since these sets are disjoint, there exist open disjoint sets
U,V C X such that x € U and X \ W C V; i.e.

reUCX\VCW.

Hencez cUCUCX\VCW O

Proposition. Let (X, 7x) be a compact space and (Y, 7yv) a Hausdorff space.
A bijective continuous mapping f : X — Y is a homeomorphism.

Proof. Let U € 7x. Then X \ U is closed, hence compact. Consequently,
f(X\U) is compact, and due to the Hausdorff property f(X \ U) is closed.
Therefore (f~1)~Y(U) = f(U) is open O

Corollary. Let X be a set with a compact topology 7o and a Hausdorff
topology 1. If 1 C 15 then 7 = To.

Proof. The identity mapping (z — z) : X — X is a continuous bijection
from (X, 1) to (X, ) O

A more direct proof of the Corollary. Let U € 7,. Since (X, 7») is
compact and X \ U is mp-closed, X \ U must be m-compact. Now 71 C 7o,
so that X \ U is mi-compact. (X, 7y) is Hausdorff, implying that X \ U is
T1-closed, thus U € 7; this yields , C 7 O

Functional separation

A family F of mappings X — C is said to separate the points of the set X
if there exists f € F such that f(z) # f(y) whenever x # y. Later in these
notes we shall discover that a compact space X is metrizable if and only if
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C(X) is separable and separates the points of X.
Urysohn’s Lemma is the key result of this section:

Urysohn’s Lemma (19237). Let X be a compact Hausdorff space, A, B C
X closed non-empty sets, AN B =10. Then there ezists f € C(X) such that

0<f<1, f(A)={0}, F(B)={1}.

Proof. The set QN [0, 1] is countably infinite; let ¢ : N — QN [0, 1] be a
bijection satisfying ¢(0) = 0 and ¢(1) = 1. Choose open sets Uy, U; C X
such that

AcUycUycU cU, c X\B.

Then we proceed inductively as follows: Suppose we have chosen open sets
U¢(0), U¢(1), cee U¢(n) such that

¢(i) < ¢(5) = Us(e) C Up(y)-

Let us choose an open set Ug(,41) C X such that
8(i) < ¢(n+1) < 6(4) = Us(i) C Upns1) C Upns1) € Ug(s)
whenever 0 < i,5 < n. Let us define
r<0=U0.:=0, s>1=U,:=X.

Hence for each ¢ € Q we get an open set U, C X such that

Vr,s€eQ: r<s=U, CU,.
Let us define a function f : X — [0,1] by

flz):=inf{r: z € U,}.

Clearly 0 < f <1, f(A) = {0} and f(B) = {1}.
Let us prove that f is continuous. Take x € X and € > 0. Take r,s € Q
such that
flx)—e<r< flz)<s< f(z)+eg;

then f is continuous at z, since z € U, \ U, and for every y € U, \ U, we have
|f(y) — f(z)| <e. Thus f € C(X) 0

Corollary. Let X be a compact space. Then C(X) separates the points of
X if and only of X is Hausdorff.

Exercise. Prove the previous Corollary.
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