Closure and boundary. Let (X,τ) be a topological space. Let $S\subset X$; its closure $\operatorname{cl}_{\tau}(S) = \overline{S}$ is the smallest closed set containing S. The set S is dense in X if $\overline{S} = X$. The boundary of S is $\partial_{\tau} S = \partial S := \overline{S} \cap \overline{X \setminus S}$.

Let (X, τ) be a topological space. Let $S, S_1, S_2 \subset X$. Show that Exercise. (a) $\overline{\emptyset} = \emptyset$,

- (b) $S \subset \overline{S}$,

- (c) $\overline{\overline{S}} = \overline{S}$, (d) $\overline{S_1 \cup S_2} = \overline{S_1} \cup \overline{S_2}$.

Exercise. Let X be a set, $S, S_1, S_2 \subset X$. Let $c: \mathcal{P}(X) \to \mathcal{P}(X)$ satisfy Kuratowski's closure axioms (a-d):

- (a) $c(\emptyset) = \emptyset$,
- (b) $S \subset c(S)$,
- (c) c(c(S)) = c(S),
- (d) $c(S_1 \cup S_2) = c(S_1) \cup c(S_2)$.

Show that $\tau := \{U \subset X \mid c(X \setminus U) = X \setminus U\}$ is a topology of X, and that $\operatorname{cl}_{\tau}(S) = c(S)$ for every $S \subset X$.

Exercise. Let (X,τ) be a topological space. Prove that

- (a) $x \in \overline{S} \iff \forall U \in \mathcal{V}(x) : U \cap S \neq \emptyset$.
- (b) $\overline{S} = S \cup \partial S$.