2 Algebras

Algebra. A vector space A over the field C is an algebra if there exists an
element T4 € A\ {0} and a mapping A x A — A, (z,y) — xy, satisfying

z(yz) = (zy)z,
z(y+2)=xy+xz, (x+y)z=21x2+yz2,

AMzy) = (A\z)y = z(\y),
lpr =2 =2aly

for every z,y,z € Aand A € C. We briefly write zyz := z(yz). The element
I := 14 is called the unit of A, and an element x € A is called invertible
(with the unique inverse 1) if there exists ! € A such that

If xy = yx for every =,y € A then A is called commutative.

Warnings: In some books the algebra axioms allow I 4 to be 0, but then
the resulting algebra is simply {0}; we have omitted such a triviality. In
some books the existence of a unit is omitted from the algebra axioms; what
we have called an algebra is there called a unital algebra.

Examples of algebras.

1. C is the most important algebra. The operations are the usual ones for
complex numbers, and the unit element is I = 1 € C. Clearly C is a
commutative algebra.

2. The algebra F(X) :={f | f: X — C} of complex valued functions on
a (finite or infinite) set X is endowed with the same algebra structure
as in the example in “Informal introduction” section (pointwise opera-
tions). Function algebras are commutative, because C is commutative.

3. The algebra L(V) :={A:V — V | Ais linear} of linear operators on
a vector space V # {0} over C is endowed with the usual vector space
structure and with the multiplication (A4, B) — AB (composition of
operators); the unit element is Iy = (v — v) : V. — V, the identity
operator on V. This algebra is non-commutative if V' is at least two-
dimensional.



Exercise. Let A be an algebra and z,y € A. Prove the following claims:
(a) If z, zy are invertible then y is invertible.
(b) If zy, yx are invertible then z,y are invertible.

Exercise. Give an example of an algebra A and elements z,y € A such
that zy = I 4 # yx. Prove that then (yx)? = yx # 0. (Hint: Such an algebra
is necessarily infinite-dimensional).

Spectrum. Let A be an algebra. The spectrum o(x) of an element z € A
is the set

oa(z) =o0(x) ={A € C: Al — z is not invertible}.

Examples of invertibility and spectra.

1. An element A € C is invertible if and only if A # 0; the inverse of an
invertible \ is the usual A™! = 1/\. Generally, oc()\) = {\}.

2. An element f € F(X) is invertible if and only if f(z) # 0 for every x €
X. The inverse of an invertible f is g with g(z) = f(z)~!. Generally,

orx)(f) = f(X) :={f(2) | z € X}.

3. An element A € L(V) is invertible if and only if it is a bijection (if and
only if 0 & orv)(A)).

Exercise. Let A be an algebra and z,y € A. Prove the following claims:
) I — yx is invertible if and only if I — zy is invertible.

(a
(b) o(yz) C o(zy) U0}
(c) If z is invertible then o(zy) = o(yz).

Ideals. Let A be an algebra. An ideal J C A is a vector subspace J # A
satisfying
Vee AVye J : zy,yz € T,

ie. 2J,Jx C J for every x € A. A mazimal ideal is an ideal not contained
in any other ideal.

Warning. Insome books our ideals are called proper ideals, and there ideal
is either a proper ideal or the whole algebra.
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Remark. Let J C A be an ideal. Because zI = z for every z € A, we
notice that I ¢ J. Therefore an invertible element x € A cannot belong to
an ideal (since z7'z =1¢ J).

Examples of ideals. Intuitively, an ideal of an algebra is a subspace re-
sembling a multiplicative zero; consider equations z0 = 0 = Oz.

1. Let A be an algebra. Then {0} C A is an ideal.
2. The only ideal of C is {0} C C.
3. Let X be aset, and ) # S C X. Now
Z(S) :={f e F(X) [Ve € S: f(z) =0}

is an ideal of the function algebra F(X). If x € X then Z({z}) is
a maximal ideal of F(X), because it is of co-dimension 1 in F(X).
Notice that Z(S) C Z({z}) for every z € S; an ideal may be contained
in many different maximal ideals (cf. Krull’s Theorem in the sequel).

4. Let X be an infinite-dimensional Banach space. The set
LC(X):={A € L(X) | A is compact}

of compact linear operators X — X is an ideal of the algebra £(X) of
bounded linear operators X — X.

Theorem (W. Krull). An ideal is contained in a mazimal ideal.

Proof. Let J be an ideal of an algebra A. Let P be the set of those ideals
of A that contain J. The inclusion relation is the natural partial order on
P; the Hausdorff Maximal Principle says that there is a maximal chain
C CP. Let M:=JC. Clearly J C M. Let A\ € C, z,y € M and z € A.
Then there exists Z € C' such that =,y € Z, so that

MeELICM, z+yeICM, zzzxzel C M,

moreover,
Te (A\TD) =A\[JT=A\M,
TeC TeC
so that M # A. We have proven that M is an ideal. The maximality of the
chain C implies that M is maximal [l
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Quotient algebra. Let A be an algebra with an ideal J. For x € A, let
us denote
[zl:=2+T ={z+jlje T}

Then the set A/J = {[z] | = € A} can be endowed with a natural algebra
structure: Let us define

Aol = [Az], [zl + [yl =[xz +yl, [2]ly] = [zy], Tag:=[L4];

first of all, these operations are well-defined, since if A € C and j,j1,7. € J
then

Mz +7) = A+ Aj€[A\],
(z+5)+W+i) = (+y)+ (1L +5)€z+yl
(x+7)w+72) = zy+jiy+ajs+jije € [2yl.

Secondly, [I4] =14+ J # J = [0], because 14 ¢ J. Moreover,

(@4 71)Ta+j2) = x4 1+ xjo+ jije € [z],
Ta+jo)(z+41) = x4 1+ jox + jaji € [z].

Now the reader may verify that A/J is really an algebra; it is called the
quotient algebra of A modulo J.

Remarks: Notice that A/J is commutative if A is commutative. Also
notice that [0] = J is the zero element in the quotient algebra.

Homomorphisms. Let A and B be algebras. A mapping ¢ : A — B is
called a homomorphism if it is a linear mapping satisfying

d(zy) = ¢(x)9(y)

for every z,y € A (multiplicativity) and

¢(I4) = Ip.
The set of all homomorphisms .4 — B is denoted by
Hom(A, B).
A bijective homomorphism ¢ : A — B is called an isomorphism, denoted by

¢: A= B.
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Examples of homomorphisms.

1. The only homomorphism C — C is the identity mapping, Hom(C, C) =
{z — z}.

2. Let x € X. Let us define the evaluation mapping ¢, : F(X) — C by
f+— f(z). Then ¢, € Hom(F(X), C).

3. Let J be an ideal of an algebra A, and denote [z] = 2 + J. Then
(x — [z]) € Hom(A, A/T).

Exercise*. Let ¢ € Hom(A,B). If z € A is invertible then ¢(x) € B is
invertible. For any x € A, o5(¢(z)) C o4(x).

Exercise. Let A be the set of matrices

(‘3‘ g) (, B € C).

Show that A is a commutative algebra. Classify (up to an isomorphism)
all the two-dimensional algebras. (Hint: Prove that in a two-dimensional
algebra either 3z 20 : z2 =0or 3z ¢ {I,-1}: 2?2 =1.)

Proposition. Let A and B be algebras, and ¢ € Hom(A, B). Then ¢(A) C B
is a subalgebra, Ker(¢) := {z € A | ¢(z) = 0} is an ideal of A, and
A/Ker(¢) = ¢(A).

Exercise*. Prove the previous Proposition.

13



