Appendix on Axiom of Choice

It may be surprising, but the Zermelo-Fraenkel axiom system does not imply the following statement (nor its negation):

Axiom of Choice for Cartesian Products: The Cartesian product of non-empty sets is non-empty.

Nowadays there are hundreds of equivalent formulations for the Axiom of Choice. Next we present other famous variants: the classical Axiom of Choice, the Law of Trichotomy, the Well-Ordering Axiom, the Hausdorff Maximal Principle and Zorn's Lemma. Their equivalence is shown in [12].

Axiom of Choice: For every non-empty set J there is a function f: $\mathcal{P}(J) \to J$ such that $f(I) \in I$ when $I \neq \emptyset$.

Let A, B be sets. We write $A \sim B$ if there exists a bijection $f: A \to B$, and $A \leq B$ if there is a set $C \subset B$ such that $A \sim C$. Notion A < B means $A \leq B$ such that not $A \sim B$.

Law of Trichotomy: Let A, B be sets. Then A < B, $A \sim B$ or B < A.

A set X is partially ordered with an order relation $R \subset X \times X$ if R is reflexive $((x,x) \in R)$, antisymmetric $((x,y),(y,x) \in R \Rightarrow x = y)$ and transitive $((x,y),(y,z) \in R \Rightarrow (x,z) \in R)$. A subset $C \subset X$ is a chain if $(x,y) \in R$ or $(y,x) \in R$ for every $x,y \in C$. An element $x \in X$ is maximal if $(x,y) \in R$ implies y = x.

Well-Ordering Axiom: Every set is a chain for some order relation.

Hausdorff Maximal Principle: Any chain is contained in a maximal chain.

Zorn's Lemma: A non-empty partially ordered set where every chain has an upper bound has a maximal element.