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1. Let A =





2 1 1
8 4 8
6 7 9



. Use the Gaussian elimination with partial pivoting to compute

P,L, and U s.t. PA = LU where L is unit lower triangular, U upper triangular and P a
permutation. (Hint: U should be integers now!)

2. Let A ∈ C
m×n be full rank, m ≥ n and b ∈ C

m. Describe (the main steps, no implemen-
tation details needed) the following three ways to solve the Least Squares problem: find
x ∈ C

n s.t. the residual ‖b − Ax‖2 = minimum.

(a) Solving by normal equations,

(b) Solving by QR,

(c) Solving by SVD.

3. Let A ∈ C
m×m, λ1, . . . , λm its eigenvalues, and

ρ(A) := max
j=1,...,m

|λj| the spectral radius

α(A) := max
j=1,...,m

Re(λj) the spectral abscissa.

Prove, using Schur decomposition, that

(a) limn→∞ ‖An‖ = 0 if and only if ρ(A) < 1.

(b) limt→∞ ‖etA‖ = 0 if and only if α(A) < 0.

4. Let A be an invertible square matrix. Show that the singular matrix B which is closest to
A in 2-norm, fulfils

‖A − B‖2 =
1

‖A−1‖
.

Hint: SVD.

5. Describe

(a) what is the Arnoldi iteration, and

(b) how is it used in the GMRES iteration.


