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1. INTRODUCTION

These lecture notes consider techniques that are used for large systems of linear
equations

(1.1) Az =b
and eigenvalue problems of large matrices
(1.2) Az =)z .

We will consider the following issues:

e sparsity: the number of nonzero entries in the matrix; how algorithms get
faster, when this is small

e linearity: these techniques make essential use of the linearity of the system

e complexity: the number of floating point operations needed to obtain the
solution

e round-off errors: how they affect the solution

e a priori / a posteriori error analysis

The methods can be divided in two classes which have the following characteristics:

Direct methods Krylov methods

matrix A is given only the operator v — Aw is available
manipulate the matrix work in the subspace span{b, Ab, ..., A*"'b}
work in C" or R” work in C", R", or Hilbert space

dimension n is visible dimension not visible

“exact” solution approximate solution

all eigenvalues only interesting eigenvalues

In applications large matrices are typically sparse so that multiplication of vectors
with them is computationally a cheap operation. The iterative methods for linear
equations and eigenvalue problems exploit this property. In these methods the
main computational units are matrix—vector products, inner products of vectors,
and formation of linear combinations of vectors. These are very different from
the techniques of “massaging the matrix” that classical direct methods for these
problems do (though iteratively for eigenvalue problems).

In these notes we first give a short review of direct techniques — LU—- and QR-
decompositions — for linear equations in chapters 2 and 4, respectively. Then in
chapter 5 the basic eigendecompositions are reviewed. Chapter 6 is devoted to sen-
sitivity issues of eigenvalues and the standard () R-iteration for computing them. In
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2 EIROLA AND NEVANLINNA

chapter 7 we consider the theoretical properties of eigenvalues of Hermitian matrices
and in chapter 8 some classical iterations to compute them.

Chapter 9 starts the main topic of these notes the Krylov subspace iterations. In
these methods approximations for (1.1) and (1.2) are searched in the increasing
sequence of subspaces spanned by vectors

(1.3) b, Ab, A’b, A%, ... .

First we study the Krylov subspace iterations for eigenvalue problems. Then in
chapter 10 we consider the classical iterations for linear systems. The powerful
conjugate gradient iteration for Hermitian systems is studied in chapter 11 and
finally starting in chapter 12 the modern Krylov subspace iterations for unsymmetric
linear problems are derived and analyzed.
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1.1. Notation and basic properties.

The entries of a matrix A € C™*™ are denoted by a;; = (A);; and if the vectors
a; € C" form the columns of A we have

ayy ... Qip
A=|: © | =ae] +aze;+ -+ aye;
Am1  --- Amn

where the standard basis vectors e; are the columns of the identity matrix I.
Matrix A defines a linear operator mapping v € C* to Av € C™.

(1) Matrix A € C™*" is a square matriz, if m =n.
(2) Matrix A on upper(lower)triangular, if a;; =0 for ¢ > j (i < j).
(3) A is a diagonal matriz, if it is both upper and lower triangular, i.e., if
a;; =0, for i #j.
(4) The product AB € C™*™ of matrices A € C™*? and B € CP*" is defined
by
(AB)y; = 374y i bij -

Matrix product is associative: A(BC) = (AB)C', but not commutative:
generally AB # BA.

(5) The determinant of a square matrix is denoted by det(A). The determinant
of a triangular matrix is the product of its diagonal elements and

det(AB) = det(A)det(B) .
(6) Identity matrix I satisfies AI = IA = A for all matrices A.

(7) A is called nonsingular, if det(A) # 0. Then it has an inverse A" . This
satisfies

AA'=A'A=T.

(8) The product of two lower triangular matrices is lower triangular. The inverse
of a nonsingular lower triangular matrix is lower triangular. Similarly for
upper triangular matrices.

(9) The transpose of A € C™*" is denoted by A" € C™ | Tt is defined by
(AT);; = (A);;. Matrix A* = A7 is called the adjoint of A.

(10) A € R™™ is symmetric, if A" = A.
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11) A € R™" is skew symmetric, if AT = —A.
12) A € C*" is Hermitian, if A" = A.

14

(11)

(12)

(13) A € R™™ is orthogonal, if AT = A™'.
(14) A € C*" is unitary, if A* = A",
(15)

15) The matrix product satisfies (AB)” = B” A" and for invertible matrices
(AB)"'=B'A™'.

(16) Let A € C™*" . The nullspace (or kernel) of A is
N(A)={xzecC"| Az =0},
and the range is

R(A)={Az e C" |z e C"}.

The following contains the main properties of invertible matrices

Theorem 1.1. Let A € C"". Then the following are equivalent

Al exists.

det(A) #0.

1
2
3) The system Ax = b has a unique solution for all b.
5
6
7

The rows of A are linearly independent.
N(A)={0}.

(1)
(2)
(3)
(4) The columns of A are linearly independent.
()
(6)
(7) R(A)=C".

The dimension of a space is the maximum number of linearly idependent vectors in
it. The fundamental theorem of linear algebra (the dimension theorem) says that
for every matrix A € C™*" holds

dim(R(A)) + dim(N(A)) =n .
Let V and W be subspaces of a finite dimensional vector space U. By V 4+ W we
mean the set {v +w ‘ veV, we W} . This is also a subspace and we have

dim(V + W) = dim(V) + dim(W) —dim(V NW) .
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We write U =V @ W if every vector w € U can be written in a unique way as
u=v+w, where v € V and w € W . This is equivalent to

V4+4W=U and VNW={0}.
In this case dim(U) = dim(V') + dim(W) .
The set of eigenvalues of A € C"*" is denoted by A(A). It is called the spectrum
of A and is defined by
={A e C|N(\I - A) #{0}} .

The p-norm of a vector & € C* (1 < p < c0) is defined by

1

lell, = (5 fesl”)”

and ||z||l = max;|z;| . The 2-norm is called Euclidean and is denoted |z| =
||z||, . For a matrix A € C"™*" we set

4l = mas, 4z,

|All, = [|A[l,, and [[A]| = [A][l, . Further, the Frobenius-norm is defined as

= [ZUJ‘(A)QF

o=

Al = (tr(A*A))> = (S0, 50 Jais )

and the trace—norm

Al ZUJ :

where 0;(A), j =1,...,n are the s1ngular values of A, i.e., the square roots of
the eigenvalues of the matrix A*A. We have: ||A||, =o01(A) (the largest singular
value).

The standard inner product of vectors x,y € C" is denoted by

Y) = ;7.
j

The following Hélder inequality is left as an exercise (consulting literature is allowed).

Lemma 1.2. If L+ 1 =1, then |(z,y)] < ||, |yl
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The special case p = ¢ = 2 of this is the Cauchy—Schwartz-Bunyakovsky inequality:
(2, y)| < [l] [ly]| -

For S € C* we denote by S+ the set of vectors orthogonal to all vectors of S':
SL:{'UE(C"‘(S,'v):OVsES} .
The geometric form of the fundamental theorem of linear algebra is that any matrix
A € C™*" satisfies
N(A) = R(A*)*: .
If V is a subspace of C*, then C* =V @ V*.

If (vy,v9,...) is a sequence of linearly independent vectors then the Gram—Schmidt

process constructs an orthonormal sequence (g, ¢, ...) in the following way:
q, = vi/|lvif| ,

(1.4) wg = vk'_'E:ﬁ;i <Ukan> q; ; } E=93
a = wi/||wi -

This sequence satisfies

a) (q4,9qy,--.) is orthonormal.

b) span(qy,...,q;) = span(vy,...,vy) forall £ >1.

By: |z| (respectively |A|) we mean the vector (matrix) formed from the absolute
values:

|551| |A1,1| |A1,2 |A1,n|
|552| |A2,1| |A2,2 |A2,n|
|$ﬂ |AmJ||Am2 |Amm

Notation £ <y means z; <y; forall j (A<B <= A;; <B;; Vi,j).

We use the Matlab-notation for parts of matrices:

Ai,k Ce Ai,l
A(i: g k)= : :
Ajip .. Ajy

The rounding operation of floating point numbers is denoted by fI. We assume con-
stantly that the computer performs the operation z = zoy, where o € {+,—, %, /}
such that first it computes the exact value, and then the result is rounded to the

closest floating point number. We idealise the floating point arithmetic further by
assuming that the exponential part of the floating point numbers is unbounded, i.e.,
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under— or overflows do not happen. Thus we have the following set of floating point
numbers in binary form with some fixed s € N :

F={+0.dy,d>...d,-2*|d; € {0,1}, k € Z} .

Then fl : R — F and we have: the result of a floating point operation on the
computer satisfies

Z=fl(roy)=xzo0oy+e where le| <plroyl|.
Here p = 27° is the machine constant, typically ~ 10716,

Problem 1.1. If A and B are nxn—floating point matrices, then which inequality
of the form |E| < 7 you get for the matrix product:

AB—=AB+ E 7

The elementary permutation matrix is denoted by II(j, k). Multiplication by this
changes the j:th and the k:th component: y = II(j,k)x has y, = z;, y;, =
Tg, Yi — Ty, Z#]ak
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2. LINEAR SYSTEM Az = b, ELIMINATION, LU -DECOMPOSITION.

Since the linear system Ly = b, where L is a lower triangular matrix, is easy
to solve with recursive substitution as well as a system with an upper triangular
matrix, the basic strategy for solving the linear system Ax = b starts with the
attempt to write A as a product A = LU of a lower triangular matrix L and an
upper triangular matrix U . Then our system is equivalent to two easy ones:

Ly=5»

Ar=b — LUx=b — {
Ux=1y

2.1. LU—-decomposition. This is obtained using elimination as follows:

Assume, that a;; # 0. Then

(}2 . 0 8 g ai,1 ar2 01,3 a1, ayy Qai2 a3 ain
- a1,1 a1 Gg22 023 a2.n 0
3,1
3 0 1 0| |asq asp asgs azn| = | 0 ~
1,1 El El 3 ) A ,
Qn, 1
_a;L—l 00 ... 1 Qn,1 Gnp2 Gng3 an,n 0

ie., M{A = A;, where the part below the diagonal of the first column of A; is
zero. If (the pivot element) a;; # 0, then we can continue:

1 0 0 ... 07
0 1 0 0 1,1 Q1.2 Q1n a1 Q12 Q13 a1n
o1 e 0 ai, a1,p—1 0 a1 12 a1,n—1
0 -z5 1.0 0 a asp—1 | =10 0 ~
: : A
0 —a%:% 0 ... 1 0 an_1, On—1m-1 0 0

ie., MyA; = M>s;MA = A,. If the resulting square matrix with decreasing
dimension never has zero pivot element (upper left corner) we get:

Mn_l...MleA:U,

where U is an upper triangular matrix. The matrices M are lower triangular, so
that their product is also such. In order to form the decomposition A = LU we
need to compute the product

L=M'M,"..M" .

OVersion: April 9, 2003
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Now each of the Gauss transforms M is of the form

0

0

— T — — |1
Mk—I—tkek s tk— T,erl s (S 0
i 0

Lemma 2.1. If vTu # 1 then I—uv? is invertible and (I —uv?) ! = I+ li‘gzu .

Proof.

uv’ Ty _ T 1 T 1 T, T _
(I + 171)Tu)(I uv ) - I uv + 17,UTuu/U livTu’U/U uv — I .

O

Since elt;, = 0, we now get (I —trej)™" = I + tye} . Generally: j < k =
ejty =0, so that

L=(I+te)(I+tel).. (I+t, el )

n—1
= (I+tie] +ted)(I+tzel)...(I+t,1el )
k

[ 1 0 0 .07

a1

arT ~1 0 0
= | a1 ai1

Gt Gii Gaaio g

| a1,1 ai,1 a1 |

In other words, L is formed easily by collecting the nonzero parts of the ¢;—vectors
of the Gauss transforms.

Problem 2.1. What is the complexity of the LU —decomposition, i.e., how many
floating point operations are needed? (Answer: & 2n3.)

Problem 2.2. Show, that det(Ag(1 : k,1: k)) = det(A(1 : k,1 : k)). In other
words the pivot elements never become zero, if and only if all the upper left deter-
minants of A are # 0.
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The following ”programmed” algorithm starts from fI(A), stores L (except the
ones on the diagonal) below the diagonal and U on the diagonal and above it:

for k=1:n—-14do
t:mA(/ﬂ—i—l:n,k)
Ak+1:nk+1:n)=Ak+1:nk+1:n)—t A(k,k+1:n)
Alk+1:n,k)=t

end

Theorem 2.2. Let A = fU(A). If the pivot elements are nonzero, then the computer

~ A~

produces i, U such that LU = A + H | where

|H| < 2(n— 1)p (|A] + |L||T]) + O(1?) .

Proof. By induction: n=1 : 6:21, L=1, H=0 = true.

Assume, that the theorem holds for all (n—1)x(n—1)-matrices. Let

=~ |a w”
v B

:| c Rxn ’ Bc R(nfl)x(nfl) )

At the first step of the algorithm:

t=fltv)=Lo+f , |fI= L],

~1

A =A,2:n2:n)=B-tw"'+F , |F|=22u(B|+ [t||w]") + 0.

1
After this the algorithm continues with the matrix A . By induction hypotheses
~ ~ ~1
the result is LiU, = A + H,, where

~1 ~ o~
|H\| < 2(n = 2)p(|A'| + | L ||UL]) + O(p?)

so that
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We get

A = (14 20)(IB] + [Hw]") + O(12)
Hy + F| < 2(n — 2)u(|B| + [Hljw|” + | L4 |[T4]) + 201 B] + [El|w|") + O(2?)
< 2(n — Vu(|B| + [Hllw|” + [L.]|T1]) + O(1?)
af| < ulo|

o ne (ol 5]+ (g ) 15 fBy)) e
= 2(n — Du(|A| + |L||U]) + O(1) ,

i.e., the theorem holds for nxn—matrices. U

2.2. Partial pivoting. If L or U above contain large elements, then the error H
is not necessarily small. A better result is received by partial pivoting: find the
element with largest absolute value of the first column of A. Let it be a; . Using
the permutation matrix IT; = IT(1, k) we change it to the place 1,1 and eliminate:

A1 Qg2 ... Qgn
Q21 Q22 ... QA2q ag,1 Qg2 ... GOgn
M\II,A=M 3 3 E ’
1441 = 1 = . A
a1 OG12 ... QA1g : A
0
_aml ap2 .. an’n_

Next we find the element with largest absolute value in the first column of E, etc.
We get

Mn—ll_-[n—l e M2H2M1H1A == U ;

where M, = I — tyel and |tz <[0...01...1]. Now j >k = €}TI; = e,
so that

Denote: Zk =11, ... II; 1t , J\Al/k =1 —Zkef. Then

L, ;... I My = ML, .. Tl



12 EIROLA AND NEVANLINNA

and
U:Mn_lﬂn_an_QHn_z...MlﬂlA:

= M, M, 510, 1L, 5 M, ... M T1 A =
:mmm...J/\Z/an,lnn,g...HQMll—IlA:

e~

:Mnfl...J/\Z/QJ/\Z/lanl...HQ]._IlA
We got: II A= LU, where I1 =1I,,_;...II,II; and as before

L=M, M, ..M,, =I+tiel+ - +t, e .
Now all the elements of L have absolute values at most one.

Problem 2.3. "Program” the algorithm solving the system A a = b using partial
pivoting.

Problem 2.4. Show: if det(A) # 0, then, using partial pivoting, in exact arith-
metic all pivots are nonzero.

Problem 2.5. Prove a version of Theorem 2.2 now for the LU-decomposition with
partial pivoting.

Problem 2.6. A is strictly diagonal dominant, if |a;;| > . ;|ai;| forall i =
1,...,n. Show: if AT is strictly diagonal dominant, then above IT = I |, i.e.,
pivoting is not needed.

Problem 2.7. Using partial pivoting we get ||L||« < m, but the worst case may
produce ||U||sx ~ 2"||A|| . Consider the following example:

1 ,when =75 or j=mn,
a;; =4 —1 , when ¢ > 7,
0 , else

2.3. Full pivoting. A reasonable growth rate can be guaranteed only for full pivot-
ing. There one finds in all of A the element a;; with largest absolute value. Then
this is brought to place 1,1 by multiplication with permutations from the left and
the right: IT; AQ, = II(1,5) ATI(1,k). Then eliminate: M;II; AQ, = A; and
continuing this way we get:

Mn—IHn—l---M2H2M1H1AQ1Q2"'Qn—1:Ua

from which, as before ITAQ = LU , where Il and @ are permutation matrices.
One can show the following

Theorem 2.3 (Wilkinson). With ezact arithmetic the full pivoting algorithm pro-
duces: o L
NUloo < Vn(2-32-43 .. .no-1)2||Al|o -
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Problem 2.8. What is the complexity of full pivoting if a comparison is as expensive
as a floating point operation?

2.4. The LDL*—decomposition and the Cholesky—decomposition.
Let A be a regular Hermitian matrix having a decomposition A = LU . Write

U=DL , where D is a diagonal matrix and L a lower triangular matrix, with
ones on the diagonal. Then

A=LDL =LDL* . ie, D(L'L*=L"LD.
The left hand side of the latter equation is an upper triangular matrix and on the
right there is a lower triangular matrix. This is possible only, if L™'LD is a diagonal

matrix, and then L 'L also has to be diagonal. Both L' and L have ones on the
diagonal (for L™ consider forming the inverse by determinants), so that

L'L=I ,ie, L=L and D=D.
We obtained the LD L*—-decomposition of a Hermitian matrix:
A=LDL".

Further, if A positive definite the diagonal of D is positive, so that it can be writ-
ten: D = (D%)2 = diag(v/dy, . ..,/d,)?. Then we get the Cholesky—decomposition
of A : L

A=LD>D>L" = GG",
where G = LD> is a lower triangular matrix with positive diagonal. This decom-
position can be computed directly (with ~ n3/3 fl-operations) as follows:

for k=1:ndo
A(k, k) =/ A(k, k)
Ak+1:nk)=Ak+1:n,k)/A(k, k)
for j=k+1:ndo
A(jin,d) = AG :n,j) — AG : m, k)AG, B)
end
end

Here we use only the lower triangular part of A . The upper part is not needed and
the result is stored in the place of the lower triangular part.

With Hermitian matrices we want to preserve Hermitianity in pivoting. This is
done using symmetric pivoting: ITAIT" . With such we get the diagonal element
with largest absolute value to the place 1,1.
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3. PROJECTIONS

A nonzero linear map P is a projection if P> = P. Then (assuming P # I)
I — P is also a projection:

I-P?=(I-P)-I-PP=I-P-P+P’=1-P.
If V € C"** has linearly independent columns, then there exists W € C*** such
that W*V = I. For example!, W = (V1)* = V(V*V)~! will do.
Lemma 3.1. If W*V =1 then P=VW?" is a projection.

Proof. PP=VW'VW*=VW*=P. O

A projection P is called orthogonal, if (I — P)x L R(P) for all x.

Lemma 3.2. If P s a projection, then
P is orthogonal <— P = P*.

Proof. Assume P is orthogonal. Then, for all x,y,
0=(z — Pz, Py) = (P"(I — P)z,y) .
Hence P*(I — P)=0,ie, P"=P*'P and P= (P'P)"=P'P =P".

If P= P*, then, for all x,y,
<£B—P£C,P’y>:<P*(I—P)a},y>:<(P—P2)$,y>:(],

ie, ¢ — Pz L R(P). O
Theorem 3.3. For a projection P the following are equivalent
(i) P is orthogonal
(i) [lz]” = (I - P)z|” + || Pz|’
(i) [|P[[, =1
(iv) R(P) L N(P).

Proof. (i) = (ii) : If P is orthogonal, then
|z|” = (I — P)x + Pz, (I — P)x + Px)
=(I—-P)z,(I-P)x)+(I— P)z, Px)+ (Pz,(I — P)x)+ (Px, Px)
= (I - Pz|” + || P/’

IFor given A € C™*" the matrix A’ = lim._,o(A*A + )~ A* is called the pseudoinverse
(see section 4.4) of A.If A has full column rank, then Af = (A*A)~! A*. In particular, if A is
invertible, then AT = A71.
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(ii) = (iii) is clear.
(iii) = (iv) : Assume ||P|,=1.If z € R(P) and y € N(P) are non-orthogonal
unit vectors, let u =« — (x,y) y. Then ||Pul|| = ||Pz|| = ||z|| =1, but
= (z,2) — (2,y) (y.2) — (&, y) (@,y) + (@ y) (y.y) =1~ [(e,y)[ <1,
ie., ||P|l, >1/|u| > 1, a contradiction. Hence R(P)_L N(P).
(iv) = (i) : Clear from R(I — P) C N(P). O

Example 3.1. If V € C*** has orthonormal columns, then V*V =1 and P =
V' V™ is Hermitian projection, in particular, orthogonal.

3.1. Oblique projections.

Problem 3.1. Show that for any projection
N(P)=R(I — P) and C'=N(P)@® R(P) .

For a subspace E denote by Pé the orthogonal projection onto E'.
Theorem 3.4. Let E andF' be subspaces such that

(3.1) |Ps— Py, <1.

Then dimE = dim F', and for any basis vq,...,vq of E there exists a basis
wq,...,wy of F such that

(32) ('vi,'w]) :5i,j s Z,jzl,,d .

Such basis are called biorthogonal.

Proof. First note that £ N F+ = {0} since if 0 £y € ENF* then Pry =0 and
we get the following contradiction:

Iyl = || Pry|| = | Pry — Pry| < | Pi— Pz, lyll < Iyl -

EnF*+ ={0} further implies

dimFE <n—dimF*=n—(n—dimF)=dimF .
Similarly we obtain dim F' < dim .
Let vy,...,vq beabasisof E.Set E; =span({v1,...,vq}\{v;}). Since dim E}- =
n—d+1 and dimF = d we have F'NE; # {0}. So, for each j we can take
0#y; € FN E]L If <'vj,yj> = 0 then y,; L E which is impossible. Hence, for
every j we can set w; =y;/ <'vj, yj> . Clearly these satisfy (3.2).
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If ijl ajw; = 0, then taking inner product with v; implies a; = 0. Thus w;’s
are linearly independent and there are d = dim F' of them, hence they form a basis
for F. ([

Problem 3.2. Let V, W € C**?¢ be such that W*V € R%*¢ is invertible. Show
that £ = R(V') and F = R(W) satisfy the assumption of the previous theorem.

Theorem 3.5. (3.1) is equivalent to ENF+ = FnNE+={0}.

Proof. 1t was already shown in the proof of the previous theorem that (3.1) implies
ENF+=FnE*=/{0}.

Assume now that (3.1) does not hold. We will show that there exists a nonzero vector
either in F N F+ orin FNE*. Let & be a unit vector such that ||lu — o], > 1,

_ pl _ pl
where u = Ppx, v=Przx.

Since (u,u —x) =0 and x =u+ (x — u) we get
20—z =(u+u -2, utu—2)=lul’ +|u-z| =" =1.

Hence Hu—%mH = % Similarly, va—%mH :%. Set a:u—%aj, b:%a:—'v.
Then

1=llal[ +[|b]] = [la+b]| = [[u—v| = 1.
Hence |la|| + ||b]| = ||a + b]| and consequently @ = ab with a > 0. Since a and
b have same length we get a =1, i.e. u—%m:%m—v.Thus u = —v and
v=x—-—u.But ucE,z—veEF' veF, z—uc E". Since both u and v
cannot be zero, either EN F* or F N E' is different from {0} . O

Problem 3.3. Let £ and H be subspaces of C* such that C* = F® H . Construct
a projection P such that R(P)=F and R(I — P)= H . Hint: set I = H", take
a basis vy,...,v4 of E, and use theorems 3.5 and 3.4.

Problem 3.4. Is P unique in the previous problem?
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4. LEAST SQUARES PROBLEMS, Q R—DECOMPOSITION

When the mxn—system Ax = b has more equations than unknowns (m > n), it
usually does not have a solution. A least squares solution means a vector x, for
which |[Ax — b, is smallest, i.e., we look for the orthogonal projection of b onto

R(A).

R(A)

In other words we look for @ such that Az —b € R(A)*. Since R(A)* = N(A%),
we see that @ has to solve A" (Ax —b) =0, i.e.,

(4.1) A*"Az = A'b.

The numerical solution of (4.1) is usually found by forming the QR-decomposition
of A, i.e., writing A = QR , where the matrix Q € C™*" has orthonormal columns
and R is an upper triangular matrix. Then Q*Q = I and if R is invertible (the
columns of A are linearly independent), then (4.1) becomes

RRx=RQDb, ie., Rx=Qb,
which is easy to solve with backward substitutions.

Problem 4.1. Show that R is invertible if and only if the columns of A are
linearly independent.

Q R—-decomposition can be computed by performing the Gram—Schmidt process on
the columns of A. A better (more stable) way is to apply certain simple unitary
transforms to A . The following result gives the justification for this:

Problem 4.2. If U € C™*" is unitary: U*U = I, then
Uz, = llzl, . UAl,=[Al, . |UAlz=Al; . [UA],=IA], .

When computing UA, where U € C"*" is unitary, one has in the computer
A=A+EFE and U =U + F, where usually ||E|, < C,ul|A|l, . [|[F|, < capt,
and ¢, < C, . In the computer the result then is:

UA=UA+H=(U+F)A+E)+H=UA+FA+UE+FE+H=UA+E,
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where the multiplication error satisfies |[H|, < ¢,u||All, + O(p?) and ¢, < C,, .
Then

|B| <17, 141, + 1B, + 1HI, + 0(2) < (Co+ e +) Al + O

Since the coefficient of || E||, is one, the errors accumulate only additively, they are
not amplified.

4.1. Householder transformation. Let v € C" \ {0} be arbitrary. Then the

matrix

vv*

H=1-2

v*U
is Hermitian and unitary: H* = H ,
vv* vovrv vt
H'H=H?’=1I-14 +4 =1T.
v*v (v*v)?

It is called a Householder transformation. Often we need a transformation H such
that a given vector « is turned, by the multiplication with H in the direction of
e; . Since

(z,v)
(v, v)
we have Hx € span(e;) =—> v € span(x,e;) (unless & € span(e;)). The trial
V= + ae; gives

Hyr =2 -2

’

(z,v) = (x,x) +a(x, e) and
(v,0) = (x, ) + a(x, e) + alz, e) + |a| |
so that
Hz—(1-2 (x,x) +a(x, e) e - (xz,v) e
(x,x) + a{x, e)+ alx, e)+ |af (v, v)
Choosing o = ‘E:ziil lzll, (a = |z|,, if (z,e;) = 0) we get: a(x,e) =
[(z, e1)]||z]|, , giving (x,v) = 5 (v,v) and Hz = —ae;.

In practice one never forms the matrix H , only the vector v is stored and for
example the multiplication H A is done as:

HA=A—- 2. vv'A,

(v,9)

i.e., a rank—one matrix is added to A.

QR—decomposition with Householder transformations. Assume A € C™*"
and let a; be the first column of A. Find a vector v, such that Hya; =71 €1,
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where Hy =1 —2 v*l k| . Then
vl: U,
1,1 T2 ...Tin
H A 0
LR A,

0

Let a; be the first column of A1 and let Hz =I1-2 N*Nz be such that Hz a, —
Vo V5 1 0
C* . Set 0 d Hy=1-2 = Th
rao €1 € et v =[0v;] an 2 . [O Hz] en
rtg Ti2 Ti13 .- Tin
0 oo T23 ... Ton
H2H1A - 0 0

: : A,

0 0
Continuing this way we get:

—7"1’1 g ... 7“1’"_

0 22 ... Ton
HnHQHIA: 0 0 oo Tnn :|:€E:| .
0 0 0
| 0 0 ... 0]

19

When solving a least squares problem min, ||Ax — b|| one does not need to form
Q or store the vectors vy if at each step also the right hand side is multiplied by

H, resultingin b= H, ... H,H b since by unitariness of the H's

Rz —b
|Az—b|l,=||H,.. . HH,(Az —b)|, = H[ v 1]

2

so that the best x is given by the solution of the system Rx = b ,

If we want to form the product

1* * *
Qn:H1H2...Hn:(I—2v1v )(1—2”2”2)...(1—2”””")

VU1 V5V2 viv,

it is better to make it in the form Q, =TI+ W,V , k=1,...,n as follows:
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set: le'wl:—v?—vlfvl, V1:’U1.Then Q1:H1:I+W1VT and

. vy, V),
Q.=Q_  Hy=T+W,_,V;_)I-2 vivk) =
LYk

:I+Wk_1Vz_1+wkvz:I+Wk z,

where Wy = —,U;;ka Qkflvk and Wk = [Wk—l wk], Vk = [Vk—l ’Uk] .

Notice that also here vy is multiplied by the unitary matrix Q,_,; and then scaled
so that the computation is stable. Also this representation of @, is very economic
when n < m.

Problem 4.3. Show how to use Householder transformations to form the decom-
position A = QL , where @ has orthonormal columns and L is a lower triangular
matrix?

Problem 4.4. Assume we need to solve the nxn system Az = b. Compute the
work load (n?*-terms) for decompositions A = QR and ITAIl = LU (with full
pivoting) assuming in the latter, that

work (comparison) = k- work(floating point operation).

For which value of £ the work loads are the same?

4.2. Givens rotations. Let {Z] e C*\ {0} and

Then U is unitary, det(U) =1 and U “

| ——|
S

1

} = [73] . In other words, U rotates
)

the vector {Z] in the direction of vector [
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From these we can build unitary transformations that zeroes suitable elements of a

vector/matrix: if a = Tog= = \/|z]* + |zx|*, then setting:
m m

J k
1 }
1 -
& B J
1
G‘]’k —
1
—p Q k
1
i 1]

we get a unitary transformation satisfying

(G]J‘? m)] =m, (G],k m)k =0 ; (Gj,k m)l =1, l 7£ j7 k.

Naturally, in practice multiplication of a vector v with G, is done as w = v
followed by

Similarly, B = G, ;A is obtained by copying the other rows to B and computing
the j:th and £ :th elements of each column as above.
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(Q R—decomposition using Givens rotations can be done as follows:

(# # # #] [# # # #]
0 # # # 0 # # #
A2 = |# # # # AV = 0 # # #
GLQA: # # # # G1’3A1’2: # # # #
4 # # . #] 4 # # ... #]
[# # # #] [(# # # #]
0 # # # 0 # # #
Al = 0 # # # A% = 0 0 # #
Gl,mAl,mflz 0 # # # G2,3A1’m: 0 # # #
0 # # ... 0 # # ... #
##HF o H] (# # # .. #]
0 # # # 0 # # 7
AP = 0 0 # # A = 0 0 # #
GQ,mAZm*l: 0 0 # # Gn,mAn,mflz 0 0 0 #
00 # ... ) 000 0 ... 0

where A™™ = Iﬂ . Again, if we are solving a least squares problem A x = b we

need not form @ or store the rotations if at each step we multiply also the right
hand side by G .

4.3. Uniqueness of QR. If A € C"*", rank(A) = n, then the @ R decompo-
sition of A, where the diagonal elements of R are pos1t1ve is unlque

If A= QR QR are two such decompositions, then U = Q Q = RR' is
upper triangular and we get

U'UR-QQQ QR-QQQ QR-QQR=-QQR=R,
so that UU = I, i.e., U is a unitary upper triangular matrix. This is possible
only if it is a diagonal matrix, and |u;;| = 1 Vj. Since R and R™' have positive
(yagonal elements so does U and we get u;; =1Vj. Hence U =1, R= R, and
Q=Q.
The use of Householder transformations does not produce positive diagonal for R
but setting D = diag ( R r"—”‘> we get unitary D and from A =Q R we

[l I

get A= QR where Q Q D and the matrix R=DR has positive diagonal.
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4.4. Pseudoinverse.
The (Moore—Penrose) pseudoinverse of a matrix A € C™*" is defined as

Al = lim (A*A+cI)7'A" .

e—0t

Problem 4.5. Show, that the limit above always exists. Hint: it suffices to show
that lim,_,o+(A*A + cI)"'A* v exists for every v € C*. Consider first the cases
v e N(A") and v € R(A).

Problem 4.6. If A has rank n, then the pseudoinverse becomes
Al =(A"A) A" .
This has the properties
ATA=1 and AA'z=2 forall zxcR(A).

In this full rank case the pseudoinverse is obtained easily from the Q@ R—decomposition
of A:

AT — (R*Q*QR)flR*Q* — Rle* )
Remark 4.1. In the general case the pseudoinverse can be computed from the

singular value decomposition of A (see section 7.3).

Remark 4.2. Another way to define A is to require

a) A'A and AA' are both Hermitian,
b) AATA= A,
c) ATAAT = AT,

4.5. Other unitary decompositions.

Problem 4.7. Let A € C"" . Show how using Householder transformations one
finds unitary U and V such that B = U"AV is a bidiagonal matrizx:

di fi
dy  fa
B=U"AV = - .
dnfl fnfl
dn

Problem 4.8. Using Householder transformations show, that arbitrary square ma-
trix A € C" is unitarily similar to a Hessenberg-matriz M (that is m;;, = 0
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24

for j > k+2),1ie.,

I3
SIS
SIS
SIS
o
HHo o

ST
= I
H o

o O
o O

o O
I

M

U"AU
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5. EIGENDECOMPOSITIONS

The eigenvalues of a square matrix A € C"*" are the complex numbers A for which
there exists a nonzero vector & such that Ax = Ax. Clearly, such a )\ satisfies
det(AI — A) = 0 and also the latter is sufficient for the existence of a nonzero
solution for Ax — Ax = 0. Hence the eigenvalues are the roots Ay,..., A\, of the
characteristic polynomaial:

det(21 — A) = 2" —tr(A) 2" '+ - -+ (=1)"det(A) = (z — A1) ... (2 — M)
from which one finds
MA+X++ N, =tr(A) =a11+ags+ -+ an,
and AMAg. . A, =det(A) .

Assume A and B are similar, denoted by A ~ B, in other words there exists a
regular S such that B = SAS™'. Then

det(2I — B) = det(S(2I — A)S ') = det(S) det(2I — A) det(S)™" = det(zI — A) ,

so that A and B have the same characteristic polynomials and tr and det are
similarity invariants:

tr(B) = tr(A) , det(B) = det(A) .
The corresponding eigenvectors satisfy:
Ax = \x — SAS 'Sxr=)Sr < BSzxz = )\Sx.

Problem 5.1. Denote by A’F the matrix that is left when the j:th row and the
k :th column are deleted from A. Set: F(A) =", det(A’’). Show: F(SAS™)
F(A).

If B=SAS!, then B¥ = SAS 'SAS™'...SAS™! = SA*S~! and for any
polynomial p(z) = a,2™ + a, 12" + - -+ a1z + ap holds

p(B) = a,B" + a,_1B" '+ -+ a;B+agl =Sp(A)S".

The same holds for converging power series of matrices. For example:

eB:Z%Bk:SeAS’*I.
k=0

The set of eigenvalues A(A) = {A € C|det(A — A) =0} is called the spectrum of
A.

OVersion: April 9, 2003
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Problem 5.2. Let A be a block upper triangular matrix: A = [Aé’l im] , Ay €
2,2

CPXP | Ay, € C=P)X(=p)  Show: A(A) = A(A;;) UA(Agy).

5.1. Schur decomposition. Every matrix is unitarily similar to a triangular ma-
trix. This is the content of the Schur decomposition theorem, which is an important
analytic and numerical tool.

Let us show first a general lemma.

Lemma 5.1. Assume the matrix X € C"*P has linearly independent columns and
AX =XB, AcCv", BecC*. Then R(X) is A —invariant (x € R(X) =
Ax € R(X)) and A(B) C A(A). Further, there ezists an invertible S and a
unitary Q such that

S-1AS — {B %11,2} T, T1,2}

d TAQ =
0 AQ’Q an Q Q |: 0 T2,2

where T4y ~ B . In particular, A(T1,) = A(B).

Proof. Let Y € C"*("=?) be such that § = [X Y] is invertible. Then AS =
[AX AY} = [XB AY} , so that

I

S As= [ {0

]B SlAY} - [B Z‘} .

0 Ay
Take Householder matrices Hy,..., H, such that H,... HoH X = [103] where
R is an upper triangular matrix. Then Q = H H,.. . H, = [Ql QQ} is unitary
and Q, = XR ', @;X = Q;Q,R=0. Hence the matrix T = Q*AQ satisfies:
T, = Q;AQ, = QJAXR™' = Qi XBR' = RBR™'
Ty, =Q;AQ, = Q:XBR '=0.
O

Theorem 5.2 (Schur decomposition). For every A € C*™™ there exists a unitary
Q such that T = Q*AQ is upper triangular. Here the diagonal elements of T
(the eigenvalues of A ) can be in any order.

Proof. By induction: the case n =1 is clear. Let A\ be an eigenvalue of the matrix

A € C" and x # 0 a correspoding eigenvector. By the previous lemma there
exists a unitary U such that

. A w?

vau =) ]
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By the induction hypotheses there exists a unitary U such that U CU is an upper
1
triangular matrix. Set: Q =U [ 6_} . Then

* T~
T=Q AQ = F ﬁ] U*AU [1 ﬁ} = [3 é"c%]

is an upper triangular matrix. O

Problem 5.3. Let pa(z) = det(zI — A) = 2" + ¢p_12" '+ -+« + 12+ ¢o be the

characteristic polynomial of matrix A . Prove the Cayley—Hamilton theorem:
pa(A) = A" +¢, JA" '+ 4 A+ I =0.

Hint: For a triangular A =[3%] use pa(A) = (A — M) pg(A) and induction.

Problem 5.4 (Real Schur decomposition). Show, that for every A € R™*" there

exists an orthogonal matrix V' € R**" (orthogonal: V'V = I') such that T =

VTAV is a block upper triangular matrix, where the diagonal blocks of T are

either scalars corresponding to the real eigenvalues of A, or 2 x 2—matrices, which
have a pair of complex eigenvalues. Hint: if A\ = a4+ i is a complex eigenvalue

of A then there exist vectors u,v € R" such that A [u 'v] = [u 'v] [_045 g] )
Orthonormalise (Gram-Schmidt): [u ] [8 IC)] = [a1 @,] = Q,, form an orthog-
onal Q = [Ql QQ] and multiply: QTAQ.

Definition 5.1. Matrix A is normal, if A*A = AA"  ie., if [A, A" =0, where
the commutator is defined as [A, Bl = AB — BA.

Theorem 5.3. A is normal, if and only if it is unitarily similar to a diagonal
matriz.

Proof. If D is a diagonal matrix and @ unitary such that A = QDQ", then
A"A=QDQ'QDQ"=QDDQ" = QDQ'QDQ" = AA™.

On the other hand, if A is normal, then let @ be unitary such that T = Q" AQ

is upper triangular. Then

so that T is normal. We claim that, that a normal upper triangular matrix is

diagonal. By induction: the case n =1 is clear. Let T € C"*" be a normal upper
triangular matrix. Then

(T*"T)y1 = |751,1|2 =(TT");1 = |751,1|2 + |751,2|2 +---+ |t1,n|2 )
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t 0 ~
so that t19 = --- = t;,, = 0. Hence T = [Bl T] , where T is a (n—1)x(n—1)
normal upper triangular matrix. By the induction hypotheses T and hence also T
is a diagonal matrix. O

Problem 5.5. Show that A € C*™*" is normal if and only if || A3 = > i I\

Theorem 5.4. For given A € C"*" there exist vectors uj,v; € C", j=1,....,n,
such that
(5.1) I-2A=(T-zu,v))...(I —zusv3)(I — zuyv) ,

z € C. Further, the numbers (u;,v;) are the eigenvalues of A.

Proof. Take the Schur decomposition A = QT Q™ and write the upper triangular
matrix as
1
2
T = . :elt’{—kegt;—l——l—ent:

tn

Since the first j —1 components of ¢; are zero, we have tje; , =0, j >2, k>1.
Hence

I-:T=1-z(e;t;+et;+---+e,t))
=TI —-ze,t))(I—ze,1t,_)...(I —zeit])
and
I-2A=QI —z2T)Q"
=QI—-2e,t)Q"Q(I —ze,—1t;,_)Q"...Q(I —ze1 t])Q"

=(I—-2Qe, tQ")...(I —2Qe 1 Q") .

Setting u; = Qe;, v; = Qt; we get (5.1). Since the numbers
viu; = T;‘TQ*er =tie;

are the diagonal elements of T, they are the eigenvalues of A. ([

Corollary 5.5. From (5.1) we can further write
T-2zA)"'=T+—2—wv;)... [+ 2 u,v})

1—zvju 1—zviun,

whenever zviu; # 1 for all j.

Proof. Use lemma 2.1. O
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5.2. The Sylvester equation. Consider the Sylvester equation: for given A €
Crnr, BeC™™ and C € C™ find an X € C"™ such that

(5.2) AX -XB=C.

The following theorem gives the sovability condition for (5.2).

Theorem 5.6. The linear transformation ¢ : C**™ — C**™
#(X)=AX - XB

is invertible if and only if A(A)NA(B)=10.

Proof. Let Q, and Q, be unitary such that L* = Q1A*Q, and R = Q;BQ, are
upper triangular matrices. Then

AX - XB=0 =
QIAQ QI XQ, ~Q1XQ,Q,BQ, =0
LY -YR=0,

where Y = Q1XQ,. Now A(L)NA(R) =0, so that 1, ; # ry Vj, k and equation
¢(X) =0 implies

11,1 0 cee 0 'y1,1 Yi,2 .- yl,m-
12,1 12,2 .0 Y21 Y22 --- Yom
ln,l ln,2 ce ln,n _yn,l yn,2 e yn,m_
(Y11 Y2 oo Yim| [T11 T2 o0 Tim
Y21 Y22 -+ Yom 0 22 ... Tom
. . . . . =0,
[ Yn1 Yn2 - Ynm 0 0 ... Tmm

which recursively gives

(hp—r)mi=01 = y11=0 = (L1 —7r22)h2=012 = 112=0

U . 3 (ll,l — rm,m)yl,m = Ol,m = Y1m = 0
(o2 = 1m11)y21 =021 = 921 =0 = (a2 —122)1p2 =022 = Y22=0
U . = (12,2 — rm,m)y2,m = 02,m = Yom = 0

(ln,n - 7“1,1)?/n,1 - On,l — Yn1 = 0 = (ln,n - r2,2)yn,2 = On,2 — Ung2 — 0
— (ln,n - rm,m)yn,m = On,m == Ynm = 0
ie, Y =0 and X = Q,YQ5 = 0. Hence the kernel of ¢ is {0}, so that ¢ is

invertible.
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For necessity, see problem 5.7. ]

Remark 5.1. The proof above shows how one can (and usually should) solve the
Sylvester equation: obtain the Schur decompositions of the coefficient matrices and
on the right hand side set Q7CQ, . We get the matrix Y by the recursion above and
then X we get by multiplication. This is much cheaper than solving an nm x nm
system of linear equations.

Problem 5.6. A more elegant proof (but no algorithm) for the previous theorem
can be obtained as follows. Show: AX = XB = A*X = XB"* and p(A) X =
X p(B) for every polynomial p. Take p to be the characteristic polynomial of A.
Show, that pa(B) is invertible.

Problem 5.7. Show, that the eigenvalues of ¢ are:
)‘i_uja )\1€A(A), ,U,JEA(B)

Problem 5.8. Assume AX = XM and A'Y =Y N, where A(M)NA(N") =
(). Show that Y*X = 0. In particular, if Az = Az, A*y = py, and g # X, then
y 1l x.

By the Schur decomposition we know that every matrix is unitarily similar to a
triangular matrix. Now we want to make further similarity tranformations to get
every matrix in a more simple form. We will need the following.

T1,1 T1,2 p
Lemma 5.7. Let T=| 0 Tys| ¢q be such that A(T11) N A(T22) =0. Then
P q

there exists Z € CP*Y such that
I Z]7' [Ty, T, [T 2] [T, O
0 I 0 T272 0 I B 0 T2,2

-1
Proof. Since [I Z] = [I —Z

0 I 0 I ] , the matrix product on the left hand side above

is
T, T\ Z—-ZT5+T>
0 T, ’

so that a suitable Z is found as the solution of equation T2 — ZTy9 = —T 5,
which exists by the previous theorem. ]
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Let A € C™" be a given matrix with spectrum A(A) = {\;,...,\,}. Take the
Schur decomposition

T171 T1’2 e Tl,p
0 T ... T
T _ Q*AQ _ 2,2 ‘ ?,p ’
0 0 T,,

where the diagonal of each Tj; consists of );’s. By the previous lemma we get:

Corollary 5.8. Fvery A € C**™ is similar to a block diagonal matrizx
diag(Tl’l, TQ’Q, . Tp,p) ,

where the upper triangular matrices T';; have constant diagonals.

If A e C"" has n distinct eigenvalues, this form is a diagonal matrix. Note that
transforming a matrix to this form is a stable process if the eigenvalues are well
separated (see problem 5.7).

Problem 5.9. Assume that an eigenvalue \; is a multiple root of the characteristic
polynomial and that the number of linearly independent eigenvectors corresponding
to A; equals to its multiplicity. Show that the corresponding T';; is diagonal.

5.3. Jordan form.

If \; is a multiple root of the characteristic polynomial, then the number of linearly
independent eigenvectors may be less than the multiplicity of A;. Here we discuss,
to how simple form the triangular block T';; can be transformed in this case.

A Jordan block is a matrix of the form

Al
A1

Al
A

Block diagonal matrices consisting of such diagonal blocks
J = dlag(Jkl ()‘1)7 sz()‘Q)a s ka ()\m))
are called Jordan matrices. Here the A;’s need not be different.

Theorem 5.9 (Jordan form). For every matriz A € C**" there exists an invertible
matriz § € C**™ such that S~'AS is a Jordan matriz.
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Proof. Let V' be an invertible matrix that transforms A to the block diagonal form

of the previous corollary. Write the diagonal blocks in the form T';; = \;I + N,

when NN, is a strictly upper triangular matrix (the diagonal is also zero). By

Proposition 5.10 below, for each IN; there exists an §; such that J; = Sj_leSj
is a Jordan matrix, so that A gets the Jordan form:

[V diag(Sy,...,S,)] ' AV diag(S,,...,S,) = diag(MI + Jq,..., NI+ J,) .

O

Problem 5.10. Show: J(0)* =0, Jr(0)TJ(0) = [8 I,? } ;
—1

Ji(0)ej=ej1, j=2,....k, [I = Je(0)"J(0)]z = (z"er) e .

Definition 5.2. Matrix NN is said to be nilpotent if N? =0 for some p > 1. For
example, strictly upper triangular matrices are nilpotent.

Problem 5.11. Assume N” = 0. Show that (I-N) ' = I+N+N*+.. .+ N* ',

Proposition 5.10. Let N € C"*" be nilpotent. Then there exists an invertible
SecC™ and ny >no>...ny > 1, Zjnj =n, such that

ST'NS = diag(J,,(0),...,J,,(0) .

Proof. By induction: for N = 0 there is nothing to prove so the case n =1 is
clear. For 0 £ N € C™ let p€ N, u € C* be such that N? =0, N? 'u #0.
Also take w such that <N”’1u,w> # 0. Set

FE = {:c‘(NJ:n,w> =0,V ZO} .

Clearly NE C E. The set W = {w, N*w,...,(IN*)’"'w} is linearly independent
since if yw+ RN w+...7,(N*)?"'w =0 then multiplication by (IN*)P~! gives
v1 = 0 after which multiplication by (N*)?"2 gives 7, = 0 and so on. Hence,
E =W+ and it has dimension n — p.

Set U = [N? 'u,..., Nu,u] and let the columns of V € C™*("P) span E. To
show that [U V] is nonsingular assume [U V][] =0.If a =0 then also 8 =0,
solet j € {1,...,p} be largest such that a; # 0. We have Uax = -V 3 € E
so that multiplying Zf;:l arN?*y € E by N/7' and using NE C E we get
Oszp_lu € F,ie., N7 'y L w, a contradiction.

Now we have NU = UJ,(0) and NV = VM for some M € C"~P)*("=P) Hence

N[U V|=[U V] [Jpéo) J\O/I} :

ie., N ~ [JPO(O) o] - By the induction hypotheses, M is similar to some Jordan

matrix Jjps and hence N ~ [JPU(O) J(I)\J:| . Clearly, the largest Jordan block of Jps
has size <p U
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Remark 5.2. The previous proof shows, that, if IN is a real nilpotent matrix, then
it can be put to a Jordan form with a real similarity transform.

Problem 5.12. The minimal polynomial m4 of a square matrix A is defined
to be the monic (the coefficient of the highest degree term is one) polynomial of
lowest degree that annihilates A | i.e., satisfies p(A) = 0. Show that this is unique.
For each eigenvalue A;, j=1,...,m of A let k; be the dimension of the largest
Jordan block correspoding to A;. Show:

ma(z) = (2 =AM (2= X)" (2 = Ap)fm .

Problem 5.13. Show, that a matrix is diagonalisable (similar to a diagonal matrix)
if and only if the roots of the minimal polynomial are simple.

Problem 5.14. Show, that every square matrix A satisfies A ~ AT . Hint: show
that

Ll.-' 1} Jr(\) Ll.-' 1} = J\T.

Problem 5.15. The Schur decomposition can be computed as stably as one com-
putes eigenvectors since these are used to form the Householder transformations,
which operate stably. Jordan form is much more difficult to compute. Generally the
numerical computation of a Jordan form is an ill-posed task unless the eigenvalues
are simple. This is because the Jordan form is not a continuous function of the
matrix. Think and give examples of which steps in the derivation of the Jordan
form are not continuous, in particular, in Lemma 5.7 and proposition 5.10.
Problem 5.16. Show: (Jx(\)?);,, = (") X', when 0 < I < min(p,k — j),
otherwise (Jx(A)P);;,, =0.

Problem 5.17. Show: if all eigenvalues of A satisfy |A| < 1, then limy AF=0.

Problem 5.18. Show that ||Jx(M)||, < |A]+1 and if A # 0, then

k
T, = I
j=1
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6. NUMERICAL COMPUTATION OF EIGENVALUES

6.1. Sensitivity of eigenvalues.
Consider the changes of eigenvalues when the matrix is slightly perturbed.

Theorem 6.1. The eigenvalues depend continuously on the matriz.

Proof. The coefficients of the characteristic polynomial det(AI — A) are sums of
subdeterminants of A. Hence they depend continuously on the elements of the
matrix. On the other hand, the roots of a polynomial are continuous functions of
the coefficients, which proves the claim. ]

However, the eigenvalues are not necessarily differentiable at points where the matrix
has multiple eigenvalues. When approaching such points the derivative may go to
infinity, as the following example shows:

1 PG 1, i) when ¢ > 0
A(t) = ;o AA®) = M+ 4)
t V2

{1,i,—1,—i} , whent<O0.

The simplest theorem concerning the location of eigenvalues is the following:

Theorem 6.2 (Gershgorin discs). For any A € C**™ we have

A(A) C G(A) = ODi ,

i=1
where D; C C is a disc of radius r; = Z#i la; ;| and centered at a;,; .
Proof. If A € A(A), then A\I— A issingular. Let & # 0 be such that (A\[—A)x =
0 and |z;| = max; |z;| . Then
()\ — am) T, = Zam T, from which |)\ — ai,i| S Z |ai’j| s i.e., AE Dz .

J#i J#i
]

Problem 6.1. Show: A(A) = ﬂ G(X'AX).

det(X)£0

OVersion: April 9, 2003
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Problem 6.2. Using Gershgorin discs of matrices D™'AD, D diagonal, try to
find a small set containing A(A) in the case

[5 2 1}
A=111 0

[O 2 —QJ
Consider also D™'ATD.

Problem 6.3. Show that any Gershgorin disc that does not intersect others contains
an eigenvalue of A. Hint: Consider the Gershgorin discs of A, = D +t(A — D),
t € [0,1], where D is the diagonal of A. Use continuity of eigenvalues.

).

A norm ||-]|, , defined for matrices is called a matriz norm, if ||I||, = 1 and it
satisfies the inequality ||[AB]||, < [|A]], ||B]|, for all square matrices A, B of
the same size. For example, the norms, which are induced by vector norms in the
standard way, satisfy this.

Problem 6.4. Show: |det(A)| < H (Z | ;
=1 j=1

Problem 6.5. Show that for any matrix norm holds:

1/k

« .

4] > p(4) = max | = lim [ 4|

AeA( k—o0

Hence for a diagonal matrix we have ||D||, > max; |d; ;]| .

The following result is often needed

Lemma 6.3. Assume ||A||, <1 for some matriz norm. Then I — A is invertible.

Proof. We will show that (I — A)~! =322 AF. Set
S,=T+A+A*+...+ A" .
Then for m >n :
1Sm — Sull, = |[A"T + A™2 4.+ A"
<A @+ (Al + -+ AT

i1 N e AT
< [|A[[} ZHA”* = T |A[
k=0 *
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Hence, ||S,, — S,||, <& for m and n large enough so that {S,}, -, is a Cauchy—
sequence, i.e., it converges'. Further,

(I_A)Sn:Sn_Sn+l+I:I_An+l s
so that taking the limits, we get (I — A)So =1. O
Remark 6.1. A shorter, but nonconstructive proof goes as follows: If I — A is
not invertible, then there exists a nonzero matrix X such that (I — A)X = 0.

By scaling, we can assume || X||, = 1 so that ||A]|, = ||A4], [|X]l, > |1AX]], =
| X||, =1. Hence ||A|,>1.

Denote the distance of a point = from a set S by d(x,S) = infycq |l —y|| , the
distance of a set R from S by (R, S) = supgcrd(z,S) and the distance between
sets R and S by d(R,S)=max{d(R,S5),0(S,R)}.

If a diagonalizable matrix is perturbed, then the sensitivity of eigenvalues depends
on how well linearly independent the eigenvectors are:

Theorem 6.4 (Bauer Fike). If X 'AX = A = diag(\1,...,\,), then
I(A(A+ E),AN(A)) < rmp(X) [ B,

where K, (X) = [ X]], HX_1HP is the condition number of the matriz X in the
p-norm.

Proof. Let p be an eigenvalue of matrix A+FE . The case p € A(A) needs nothing
to prove. Hence assume p € A(A+ E)\ A(A), so that uI — A is regular and
ul — A — E is singular, as well as the matrix

(Wl —A)'X (I —-A-E)X =I—-(ul-A)'X'EX .
According to the previous lemma the distance of this from I is at least one, so that
1< (uI - M) X B, < [~ 87, |1 X, 1B, 1),

Since pI — A is diagonal, we get
1

B 1 o I W e
GaF = A)7H], = max o = Al = S =

from which the claim follows. O

In particular, for a normal matrix A we get (an exercise):

I(A(A+ E),ANA)) <[E, -

If the matrix is not diagonalizable, then the Schur decomposition gives:

IThe set of matrices is finite dimensional, hence it is complete with any norm.
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Theorem 6.5. Let Q*AQ = A+ N be the Schur decomposition of A, where N
18 a strictly upper triangular matriz, hence |N|]c =0 for some k <n. Then

S(A(A + B), A(4)) < max(0,6"/%) .
k—1
where 6§ = || E||, Z ||]V||]2c :

=0
Proof. If p is an eigenvalue of matrix A + E and d = 6(u,A(A)) > 0, then as
above uI — A is invertible and I — (uI — A)"'E is singular, so that

1< |[(uI = AT E|, < ||[(nI = A) |, BN, = ||(oT = A = N)TH, I El|, -

Since D = (uI —A)! is diagonal, DN is strictly upper triangular and (IN.D)* =
0, so that

(D™'-N)(I+DN + (DN)*+---+ (DN)*)D =
=(D"'-N+N-NDN +NDN —---+ N(DN)*?> - N(DN)*""\D =

—I - (ND)"=1I.
Since || D||, = %, this implies
. - e (N
it = &=y = 07 - < 3 ()

Now, if d > 1, then 1 < |[(ul — A — N)7'||,[|E|l, <%, so that d < 6.
On the other hand, if d < 1, then 1 < |(uI —A— N)7'[,||E|, < &, and
d < @'k, O

Finally, we will look how both eigenvalues and eigenvectors change when we perturb
a matrix that has simple eigenvalues. For this we need the following.

Theorem 6.6. Assume \i,..., Ay are distinct eigenvalues of A € C**" . Then the
corresponding eigenvectors xi,...,x are linearly independent.

Proof. Let aq &1+ asxs+ - - -+ ap x,, = 0. Multiplication of this by \qI — A gives
(e%] ()\12131 —A$1)+Oé2 ()\1132—A$2)+"'+Oék (Alazk—Amk) =0 s

ie.,
ag()\l—)\2)$2+"'+ak()\1—)\k)mk:0,
Similarly, after multiplication with \oI — A, ... , \;,_1I — A, we have

Q. ()\1 — )\k) ()\2 — )\k) ...()\k,1 — )\k) L = 0 s



38 EIROLA AND NEVANLINNA

i.e., a = 0. Going backwards the intermediate equations we recursively get a; 1 =
0,..., a0 =0, ay =0. U

Now we show that simple eigenvalues are smooth functions.

Theorem 6.7. Let A have simple eigenvalues. Then the eigenvalues of A+ z E
are analytic functions of z near 0 € C, and the eigenvectors can also be taken to
be analytic.

Proof. Denote the eigenvalues by Aq,..., ), and corresponding unit eigenvectors by
Ti,...,@y. Set Xg =[xy ... T,], Ag = M RN ] . Then X, is inverible. For
X(z2), A(z) € C™  where A isdiagonal, consider equation F'(z, X (z),A(z)) =0,
where?

F(z X A) = [(A—FZE)X—XA}

diag(X;X — I)

Clearly F' is analyticin z, X, A. We will use the implicit function theorem. For this
we need to show that the derivative of F' with respect to (X, A) at (0, X, Ag) is
invertible. Since it is a linear mapping from C"+D*" into itself, it suffices to show
that it is an injection. So, assume Y, D € C"*", D diagonal, are such that

_ |AY - YA - X D|
Then, since A = X,A¢ X", we have
AX;'Y —X;'YA-D=0.

Denote W = X ;'Y . Since the diagonal of A¢W — W A, is zero, we necessarily
have D = 0. Then A()W — WA() =0 implies )\iwm — wi,j)\j = 0, i.e., Wi,; = 0
for 7 # 7. Finally,

diag(XY) = diag(X; X W) = [[|z1]* w1y - ||Znl|* wan] =0,

i.e., W =0 and, consequently, Y =0.
So, Dx.a)F (0, X, Ag) isinvertible and the equation F(z, X(z), A(z)) = 0 defines
X and A as analytic functions of z near zero. ([

Let us compute the derivatives of X and A . Differentiation gives:
AX'(0)+ EXy— X'(0)Ag — X,A'(0) =0
Denoting Z = X ;' X'(0) we get as in the proof above:
AZ — ZAy+ X;'EXy— AN(0)=0.

2Here dlag(M) = [ml’l, ma2,... ,mnm] .
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Hence,
(A'(0))is = (X5 ' EX )i
and
Zij=(\—X) (X, EX)

AR

Z;;= ﬁ Z (xj, @) Zj; -
J#i
From these, X'(0) = X(Z .

So: sensitivity of the eigenvalues is ~ [ X7 11X]]

1

mini,j |)\1 — )\j| ’

sensitivity of the eigenvectorsis ~ || X' | X7

Almost eigenvectors.

Let A € C"*" be diagonalizable: A = XAX '.Let \; be an eigenvalue, X close
to it, and 2 a unit vector such that » = A\Z — A Z is small. We want to estimate
how close Z is to the eigenspace corresponding to A .

We may assume that A = {)\(I)I ‘/8 } , where A; is not an eigenvalue of Ay . Divide,
2
correspondingly,
Y*
-1

The orthogonal projection onto R(X;) — the eigenspace corresponding to A\; —
is given by
P=XX=X,(X:X,)"'Xx*

and the length of the orthogonal component is sinf.

[|I=sin 6

R(X)

Lemma 6.8. I — P=Y,Y} .
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Proof. I— P is the orthogonal projection onto R(X )+ and [ 5}‘] (X, X, =1,
2
so that R(Y,) = R(X;)*. Hence, I — P =Y,Y}. O

Recall that 5(/)\\, A(Ay)) is the distance from X to the spectrum of A, .

Y
Theorem 6.9. sinf < M |7, , where ka(Y3) = || Yol |[Yh]2 > 1.
Proof.

i -

Yilrox'01r-a)z= V"MW 0
Y, 0 M — A,

Hence Y, o = (XI — Ay)7'Y5r and, by the previous lemma,

(I = P)&|l, = [Y2(Y3Y2) " (A = As) 7' Y57
<Y (Y5Y3) of|(AL = Ag) M2 [[Y5 (Il

which gives the result, since ||(AI — As)~1|| = 1/6(X, A(As)) and for any matrix
[M], = [|M7], - m

Remark 6.2. If Y, has orthonormal columns, then Y} = (Y3Y,) 'Y} = Y3
and ||Y,|| = | Y3 =1, so that ky(Y,) = 1. This is the case when A is normal.

Remark 6.3. If A is not diagonalizable but only the Jordan blocks corresponding

to A; are diagonal, then one gets a similar result, but 5(X, A(Ay)) is to be replaced
by

max{ (AL = J(\) 2| A € A(A)\ {M}},

where J()) is the the largest Jordan block corresponding to A. To get an estimate
for this, see problem 5.18.

6.2. Computation of eigenvalues, QQ R—iteration. Numerically it is not advis-
able to compute eigenvalues as the zeros of the characteristic polynomial since the
roots of a polynomial are extremely sensitive functions of the coefficients®>. The
methods of practice are iterative.

3In fact, usually computation of the characteristic polynomial is done numerically via first
computing the eigenvalues.
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The simplest iteration for eigenvalues is the so called power method: pick an arbitrary
g, and iterate

for £k =1,2,...
zr = Aqy_4
ar = 2/ ||zl
e = (Aqy, qy)
end

If X is a simple eigenvalue of A such that others are less in absolute value, then
A has the Jordan form:

Ceiaw [0
Ja=X AX_[O 7l

where " €A J) ( )\{)\} — |u| < |A|. Clearly: g, = ayA*q,, where
o = HZ1H TRl If v* = X"'q,, then
'Uk = Oék)\k [ 1 :|
X
Since limy_,o0(5 J)* = 0, we see that, if (v%); # 0, then
A XJ 40", Xob) = (vF) X" X (A O 1w
< Qk7Qk _< A’U ’U> < ’U + 0 J = I )

0 0

k_
0 J—)\I] v" =0, so that

where limy_, [
lim (Agy, q,) = lim A [ X!, = A

In practice the power method “converges”? to the eigenvector corresponding to the
eigenvalue A\ of largest absolute value. This happens with the speed n*, where

N = max,exanin 1]/ |A] -

After the eigenvalue of largest absolute value has been found together with the
corresponding eigenvectors of A and AT | we can start looking for the next one by
using the following.

Problem 6.6 (Deflation). Let A # 0 be an eigenvalue of A, x # 0 a corresponding
eigenvector, and w an eigenvector of AT corresponding to A scaled such that
uTxz = ). What is the connection between the eigenvalues and eigenvectors of

matrices A and A = A — zu” ? Hint: see problem 5.8.

4The vector does not really converge unless ) is real and nonnegative: it will tend to cycle
(A |AD* q, where q is an eigenvector.
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Often we want to compute an eigenpair (A, x,) of A such that A, is close to a
given \. Then we can use the power method with the matrix (A — AI)~'. The

eigenvalues of this matrix equal to 1/(A\; — ), j =1,...,n, and the eigenvectors
are the same. Thus we want that
A=A < |N=A,  i=1..,ni#p.

In practice the approximation \ is also corrected at each step. This results to the
following inverse iteration, which is quite powerful.

e Given XO, Ug .
e Solve the system (A — /):kI) Wiy = Uy -
o Set: Upi1 = Wii1/ || Wil Ae1 = (AUpi1, Upt1) -

Orthogonal iteration. The power method can be generalized to the following
higher dimensional iteration. Let Q, € C"*? be such that Q;Q, = I . Iterate:

for £k =1,2,...

Zy = AQkfl

Q.R. = Z, (QR-decomposition of Z )
end

Let the eigenvalues of A be ordered such that |A;| > [A| > --- > |\,;| and let
U'AU =T = diag(\,...,\y) + N and VA"V =T = diag(\y,..., \y) + N
be the Schur decompositions of A and A*. Then (Golub & van Loan, Theorem
7.3.1), if |Ap] > [Apsa] and ||VFQ,QyV — P,||, < 1, where P, = [IOP 8] , then
for every & > 0 there exists a C. > 0 such that

|)‘p+1| +5>k

U WU — Pl < C-
|| Qka P||2 ( |)‘p| — ¢

i.e., the columns of Q) span increasingly well the same subspace as the first p
columns of the matrix U . Moreover, a similar estimate holds for the distance

S(A(RE) { s, A )

Q R—-iteration. Consider more closely the case |A\j| > [Ag] > -+ > |\,
[g%,....qk] € C™™ . Then, assuming that |[V*[g?,...,¢%[q}.....q
1,forall p=1,...,n, we get

span(q”, .. .,q’;) T span(uy, ..., upy) for all p=1,...,n,
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so that T, = Q;AQ), converges to an upper triangular matrix. Noticing that

Ty = QZ—IAQkfl = (QZ—le)Rk
Ty = QAQ,_,Q; ,Q, = Q.Q,R.Q; Q) = R.(Q; ,Q))

and denoting Q, = Q% ,Q, we get:
if Ty_1=Q.R;, then T,=R,Q,.

in other words we get the iteration directly for matrices T, where we form a Q R~
decomposition of the previous one and the next we get, when these are multiplied
in reverse order. This is called the @ R-iteration.

Problem 6.7. Consider the following LU —iteration:

e Set L()U() =A.
o Iterate: Ly Uy = ULy, (new LU —decomposition), £ =0,1,...

Think what it means, if the matrices Sy = UL, converge to an upper triangular
matrix. When does this happen? Hint: consider L, = LoL,...L; and show that
LU,= ALy .

QQ R—iteration in the Hessenberg form.

Comparing the orthogonal iteration and the QR-iteration above, it seems that
both require the same amount of floating point operations per step: one QR-
decomposition and one matrix multiplication, although in the @ R-iteration the
multiplication includes a triangular matrix, so that it is slightly cheaper. QR-
iteration becomes much more economical, when the matrixes T are of the Hessen-
berg form:

1° Choose Q, such that Hy = Q;AQ, is a Hessenberg matrix (Problem 4.8).



44 EIROLA AND NEVANLINNA

2° For k=1,2,..., we get the QR-decomposition of the Hessenberg matrix
H, | easily using the Givens rotations:

Ghoin...Go3GioH)_y

[ # # # . #H#F A

ik EEE

=Gt Gog | 004 # 3 2
00 0. ##%#

| 0 0 0 ... 0 # # |

[ # # # .. #H#H#T

00k h Y

=Gt Gag | 004 442
00 0. #%#%#

[ 0 0 0 ... 0 # # |

[ # # # .. #H#H#T

0 # # .. #4 #

0 0 # ... #4H#

=Gy 000 - ###
000 .. 0#%#

| 0 0 0 ... 0 # # |

[ # # # . #HH#F A

0 ## .. ## #

0 0 ... #4#

=|ooon#aw) =R,
000 .. 0#%#
| 0 ..0 0 # |

ie, Hy.1=G},...G, |, R. This has the flop count ~ 3n”.

3° We get Hy = R, Gy, ... G, _,, by applying the same Givens rotations now
from the right. The result is again a Hessenberg matrix and work is also

~ 3n?. Repeat from 2°.
The flop count of Hessenberg Q R—algorithm is only 6n? per iteration.

Shifted QQ R—iteration.

If we replace the matrix A with A — uI, in the QR-iteration (in Hessenberg
form), then the p:th subdiagonal element of the matrixes Hj converges to zero
approximately with speed

k
|)‘p+1 — i
Ap — :u|k

The shifted Q R-iteration tries to find a suitable p and updates matrices Hy , that
are kept similar to A (and not to A — pI ). The basic strategy is to use the
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Hessenberg QQ R-algorithm and choose p to be the current element h,,,, :

H,=Q;AQ, into the Hessenberg form
for k= 1,2,...
n= (kal)n,n
Q.R.=H;_—ul (the Q R—decomposition of H_; using Givens)

end

The following shows the convergence speed of this. If

R, X I 0
G opni-.. G1,2(Hk71_,U/I) = 0 a b |, then G, 1, = 0 a p|,
e 0 -0 «

where o = a/m, B =¢/m, m = /|al’ + ||°. Hence the lower-right 2x2 corner of
H, becomes

a Blfa b Ja =B8] Jala)*+baB+caf  ba*—aaf —ep?

-8 alle 0] |8 @] |[—aaB—-b32+ea® alB|® —baB —ecaf]
The nn-1 element of Hj, is then

be?
jal” + le[*

If |e| < |a| , then the corresponding element of H, is already a very small number
and if (Hg)pn-1 ~ 0, then (Hy),, is very close to an eigenvalue of A. The

next ones we find by continuing similarly with the (n—1)x(n-1) Hessenberg matrix
H,(1:n—1,1:n—-1).

Problem 6.8. Test the Hessenberg Q R-iteration with MATLAB:

(Hp)pn 1 = (—a’c — be? +ca®)/m* =

H=hess(A), m=something;
for k=1:m, [Q,R]=qr(H); H=R*Q; end

(if H is not in the real Schur form, then iterate more). Test also the shifted QR :

H=hess(A) ; nh=n;
for 1=1:n-1
while abs(H(nh,nh-1))>0.000001, mu=H(nh,nh);
[Q,R]=qr (H-mux*eye(nh)) ;
H=R*Q+mu*eye(nh); iter=[1,H(nh,nh)], end
H, nh=nh-1; H=H(1:nh,1:nh);
end
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Try first the following matrices:

A=randn(4)+ix*randn(4); A=randn(7); B=randn(7); A=B’%*B;
A=[0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;1,0,0,0,0];

Think what causes the difficulty in the last case and how to “wake up” the conver-
gence.

If also the eigenvectors are desired, one can compute those first for the resulting
upper triangular matrix, and from them for A, but then we should keep track of the
similarity transformation that, that brings A to H} . This increases considerably
the work load of the iteration. A better way is to first compute (using shifted QR)

only the approximations /):1, ..., Ay of the eigenvalues and then apply the inverse
iteration to improve the eigenvalues and compute the eigenvectors.

Correction with inverse iteration.

After the approximations 3\\1, e ,/)\\n of the eigenvalues of A have been found, their
accuracy can be improved and the eigenvectors found by the following iteration:

for j=1,...,n
/LUZ)\]': q, 1 {wla"'amjfl}
for k= 1,2,...
(A—pp 1 I)zp = qp_4
a;. = 2/ |2kl
e = (q;)" Agy,
end
Tj=qp, \j =
end

L
= A = Al . An interesting phenomenon in
50+ AA)\ PF
the inverse iteration is that when p =~ A;, then A—\;I is close to a singular matrix
and numerical solution of the system (A — uI)zy = q,_, produces large errors. It
turns out, however, that these errors ’E\end to be in the direction of the eigenvector
corresponding to the eigenvalue \; — \;, so that even the errors improve z* as an

approximative eigenvector.

For each j this converges as

Problem 6.9. Continue problem 6.8 by computing some of the eigenvectors using
inverse iteration. Check your computations with the Matlab command eig.
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7. EIGENVALUES OF A HERMITIAN MATRIX, SINGULAR VALUE DECOMPOSITION

7.1. Eigenvalues of a Hermitian matrix. If A is Hermitian: A* = A, then it
is normal and hence unitarily similar to a diagonal matrix

Q" AQ = diag(A\,..., \,) -
Then: B B
diag(A1, ..., \) = QA'Q = Q"AQ = diag(\y, ..., \)
so that 5\]- =Aj, j=1,...,n,ie., the eigenvalues are real. We assume, that they
are numbered in the nondecreasing order: A\ < --- < \,.

The next theorem gives the largest and smallest eigenvalues of a Hermitian matrix
as solutions to extremal problems.

Theorem 7.1 (Rayleigh-Ritz). Let A € C"*". Then the extremal values of the
Rayleigh—Ritz quotient:
*A *A
1 = min Re T and 1y = max Re T
x#0 T*ae T#£0 T

are the smallest and largest eigenvalues of the matrizx %(A + AY).

Proof. Matrix (A + A*) is Hermitian, so that there exists a unitary U such that
U*3(A+ A")U = D = diag(dy, ..., d,), where d;y < --- <d, . We get:

Tt Ax

(1 = min Re = min Rez*Az = min z*;(A+ A"z
@0 T ll2l,=1 ll],=1
= min 'U'L(A+ A" ) Uz = min 2Dz =d, .
Uz|,=1 ll2lly=1
Similarly, u, =d, . ([

In particular, when A is Hermitian, then p; and pu, are the smallest and largest
eigenvalues of A .

Corollary 7.2. If A is Hermitian, 0 # x € C* and a = m;f;””, then A has an
ergenvalue < a and an eigenvalue > a.

Remark 7.1. Let (A, x) be an eigenvalue-eigenvector pair of Hermitian matrix A.
Then
(x +v)*A(x +v)  Az*z+ 'z + A\x'v +v*Av

(x +v)*(x+v)  x'xt+ovctav+ov
(A — M1
A ATy o))
2 + ]|

OVersion: April 9, 2003
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This means that if a vector is € -close to an eigenvector, then the Rayleigh-Ritz
quotient gives the eigenvalue with accuracy O(g?).

On the other hand, if for some u # 0 we have % = a+ O(|jv|[*), then

for every v L u we get
(u+v)" A(u +v) = allul” +O(|lv]) ,
e, (Au,v) + (v, Au) = 0. Take v = Au — 24" ’;>u which clearly is orthogonal
to w. Then

<Au,Au—% > <Au f"’;uAu>:0,

ie., 2||Aul®||lul® = 2 (Au,u)” . Hence the Cauchy inequality for Au and u is
an equality, which is possible only if Au = Au for some .

We have shown that the eigenvectors and eigenvalues of a Hermitian matrix A are,
respectively, the critical points and the critical values of the real valued function

r—Z ‘;"’ (i.e., points where the derivative vanishes and the values at these points).

Matrix A € C"*" is positive definite, if £*Ax > 0 for all 0 # x € C* and positive
semidefinite if €*Ax > 0 for all & € C". By Theorem 7.1 Hermitian A € C"*" is
positive definite if and only if all its eigenvalues are positive.

Theorem 7.1 gives the smallest and largest eigenvalues of a Hermitian matrix as
the extremal values of the Rayleigh-Ritz quotient and the remark shows that all
eigenvalues are the critical values of it. Next we give an extremal property of all the
eigenvalues.

Let U, be the set of nxr matrices that have orthonormal columns.

Theorem 7.3 (Courant—Fisher min max theorem). Let \y < .- <\, be the
eigenvalues of a Hermitian matrix A € C**" . Then for all k=1,...,n
) v*U*AUv
A, = min max _
Uel, i 0£veCk v*v
. v*U"AUv
= max min .
Uclp 41 0£veCr—k+1 v*v
Proof. Let

Q AQ = A = diag(M, ..., \y) -
Now U e U, < QU € U, so that

) v*U"AUv
min max ——— = min max v'U'QAQ*Uv = min max v'U'AUwv.
Ueun,k O;ﬁ’UE(Ck ’U*’U Ueu'n k H’UH2—1 Ueun k H’UH2—1
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If U € Uy, then dimR(U) = k and, since dim {y ‘ yr=-=yp1=0} =
n —k+ 1, there exists v € C*, |jv], = 1 such that vector y = Uv satisfies:
U1 ==k 1 = 0. Further, ||g|| ="U"Uv = 1. Hence

max VU'AUv > 5 U AUD =5 AG =D _ N [51° > My
vl|,=1

2 ]:k

We obtained: for all U € U, ; holds Max||y||,=1 v*U'AUv > )\, . On the other
hand, if in the place of U we take the matrix U, = [Ik] , we get UyAUy =

0
diag(A1, ..., k), so that

max v'UjgAUgv = )\ .

l[vlly=1
This proves the first equation.

The second is obtained by noticing that that A\;(A) = —\,_+1(—A). Then by the
first equation

) —v*U*AUv
A = — min max -
UcUp n_kt1 0£veCr—k+1 v*
. v*U " AUv
= max min R
UcUp n—p+1 0FveCr—k+1 v*U

O
Problem 7.1. Show, that the Courant—Fisher theorem can be rewritten in the form:

. ¥ Az . xT*Az
A, = min max = max min
dim(V)=k 0£zcV I*x dim(V)=n—k+1 0#xcV x*T

Here the first minimization (resp. maximization) is with respect to all subspaces of
dimension k (resp. n — k + 1).

The following theorem gives good bounds for the eigenvalues of a Hermitian pertur-
bation of a Hermitian matrix.

Theorem 7.4 (Weyl). If A, B € C"" are Hermitian, then for all k=1,...,n
holds:

Me(A) + M (B) < M(A+ B) < M(A) + M\(B) .



50 EIROLA AND NEVANLINNA
Proof. If |||, =1, then \{(B) < &*Bx < \,(B). Since U € U, = ||[Uv||, =
o]l , we get

M (A+B) = min max v'U'(A+ B)Uv

Uel s |vll,=1

> min max (’U*U*AU’U + )\1(3)) = )\k(A) + )\1(B)

T Uelhy i |vlly=1

< min max (vV'U"AUv + \,(B)) = \:(A) + N\ (B) -

T Uelly i |v]],=1

In the case of rank—one perturbation of A we get a sharper result.

Theorem 7.5. Let A € C**" be Hermitian, a € C" and A= A+aa*. Then

M (A) < M(A) < Aa(A) < Aa(A) < .. A (A) < A(A)
Proof. Since v*U*aa*Uv = |a*Uv|* , we get:

A(A) = min max v'U'(A+aa”)Uv > min max v'U"AUv = \((A) .

Ucu, i H’UH2:1 - Ucly, i H’UH2:1

In the other direction we use the form 7.1 of the Courant—Fisher theorem:

. T'Az . x*Ax
Me+1(A) = max min > max min
dim(V)=n—k 0#meV IT*x dim(Vi=n—k 0ZzcV  T*T
. x(A+aa’)x . (A4 aa*)x
= max min > max min
dim(V)=n—k+1 0#z€V T*x dim(V)=n—k+1 0£z€eV b e i
= \:(A). O

Another application of the Courant—Fisher theorem gives inequalities between eigen-
values of a Hermitian matrix and its submatrix:

A b

Theorem 7.6. If A= [b* c] e CntUx(+1) s Hermitian, then

M(A) < M (A) < M(A) <. M (A) < M (A)
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Proof.

~ U*A
M(A) = min  max v'U AUv

Uclny1,x 0#£veCk v*U

* “A U
‘ v* [U O] A {0} v
< min max
Uclly, , 0£veCk v*U

) v*U"AUwv
= min max —————— = )\ (A)
Uely, 1 0#£veCk v*

Aes1(A) = max min v'U AU

Uclpiin—k+1 0AvECP—h+1 v*U

v [U° 0] 4 m v

>  max min
Ueun,n7k+1 Uyéve(C"—k'H ’U*’U

. v*U*AUv
= max min —— = M\(A)
Ucly k41 0£veCr—k+1 v*U

O

Problem 7.2 (Poincaré separation theorem). Let A € C*" be Hermitian,
UeclU,m,and B=U"AU . Show that for every £k =1,...,m holds

A(A) < A(B) £ Megn-m(A) .

Hint: consider first the case U™ = [I 0] and use the previous theorem. Then take
U = [I O] Q.

Finally let us mention the following without a proof:

Theorem 7.7 (Hoffman-Wielandt). If A and E are Hermitian, then

> (N(A+E) - (A)* < |El7 .

i=1

7.2. Inertia. The inertia of a Hermitian matrix A is defined as:
i(A) = (i-(A),io(A),1+(A)) ,

where i_(A)/i;(A) is the number of negative/positive eigenvalues (with multiplic-
ities) and ip(A) =n —i (A) —i;(A) is the multiplicity of eigenvalue 0.

Matrix B is congruent with matrix A, if there exists a regular matrix S such that
B =S"AS.
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Theorem 7.8 (Sylvester’s law of inertia). Congruent Hermitian matrices have the
same inertia.

Proof. Let S be regular, B = S*AS, \(A) < -+ < A\(A) < 0 the negative
eigenvalues of A, qy,...,q, the correspoding eigenvectors, and Q = [ql qp} .
Set Vo = R(S'Q). Then

*S*AS
Ap(B)= min  max u
dim(V)=p 0£zeV ||;,,3||2
< x*S"AST Y'Q AQy
< max ————— = max ————— .
0£xEV) ||;1;||2 0#£ycCr HS—IQyH

2

Since Q*AQ = diag(\(A),..., A\, (A) and

15~ Qull, < |[s [l IQyll, =[S I, llyll, -
we get ,
P
Ap(B) < max i=1 )\](2A) |y2]| < A 3
S o 7 A [
Hence i_(B) > i_(A) = p. Similarly, i_(B) < i_(A), iy(B) < i4(A), and
i (B) >iy(A), so that also ig(B) = ip(A). O

7.3. Singular value decomposition.

The following theorem is an important tool of analysis. Further it gives means to
solve illconditioned systems of equations.

Theorem 7.9. For every A € C™*" there exist unitary U € C™™ and V €
C" such that A =UXV™ | where ¥ = diag(oy,...,0,) € R™"  p=min(m,n)
and o1 > 09 > --- 2> 0p.

Proof. Let oy = ||A]|, ,  be such that |[z|l, =1, |[Az|, =o01. Set y = U%Aa:,

so that |[y|l, =1.Let U; = [y U,] and V, = [& V] be unitary (we get them
by completing y and @ to orthonormal basis of C™ and C", respectively). Then

UAV, = [(QJ] [Az AV,] = [(61 "jl] ~B.
1

2 2
Now B [Ul] = [01 * ”wHQ] . so that
w Aw

ot + |lwll; > >
1Bll, 2 ——== /i +[[wll; 2 o1 = [|A[l, = [ B, ,

ot + [lwll;
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which implies ||w|, = 0. Continue similarly with matrix A . O

Numbers o; are called the singular values of A and the columns of matrices U

and V are, respectively the left and right singular vectors of A. From equation
A*A=VIT'zv* ja AA=UXXTU*

we see, that A*A and AA* are unitarily similar to diagonal matrices 73 and

S¥7 | respectively, and that the columns of U and V are eigenvectors of matrices
AA* and A"A, respectively.

Remark 7.2. If A above is a real matrix, then the matrices U and V can be
chosen to be real orthogonal matrices.

Remark 7.3. The singular value decomposition can also be written in the form:
P
A=UZV* =) ojuv},
7j=1

where the vectors u; and v; are the first p columns of U and V.

Problem 7.3 (Polar decomposition). Show, that for every A € C™*™ there exists
a Hermitian positive semidefinite P and U € C™*", with U*U = I such that
A = PU . Furthermore then: P*= AA*.

When A € C**™ is invertible, then A™' = VE~'U* and the singular values of
A" are 1/0;, j=mn,...,1. In particular,

A, =o' and  m(A) = Al AT, = o1 /on
Problem 7.4. Show: [[/_,0; =|det A|, A€ C™".

7=1
Problem 7.5. Let 0y > 09 > --- > 0, > 0,41 = --- = 0, = 0 be the singular
values of matrix A € C™*" . Show that r = rank(A), R(A) = span(uq,...,u,),
and N(A) = span(v,11,...,v,).Show also that the pseudoinverse of A is obtained
as:

-1
0y

Al = lim (A*A+:I)'A* =V U

e—0t o

Problem 7.6. Show: every A € C™*" satisfies:

T

|A|7 =tr(A*A) =) oF.

J=1

Hint: tr is invariant under similarity transforms.
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Problem 7.7. Show: if A is invertible, then the singular matrix B closest to A
satisfies: ||[A — B||, =0, .

The following more general result is also left as an exercise.

Theorem 7.10. Define A; = Zf;:l opugvy, j=1,...,r, (r =rank(A) ) so that
A, =A. Then rank(A;) =j and

A—- Al =o0,4,,= inf ||A-DB]|, .

| ill, =054 ran;{lB):j | P

Sensitivity of solution of a linear system Let A be invertible and Ax = b.
Consider the problems:

(A+cE)x(e)=b+cf,
so that Ex(c) + (A +cE)x(¢) = f, from which &(0) = A *(f — Ez(0)) and

122l < a1+ 11 i ol + 0
<lapfa G Tab v oe.

In other words:
. . . . . . 2
relative change in & S Ii(A) (relatlve change in b —+ relative change in A) + 0(8 ) .

When the norm is Euclidean, then xo(A) = ||A], HA_1H2 =o01/0,.

Problem 7.8. Show, that the k:th singular value of matrix A € C™*" is given
by:

_ . lAUv],
O = max min .
Uely ; 0£veCk o]l

Let A =UXV™ be the singular value decomposition of matrix A € C™*" , m > n
where U = [U1 UQ] , Uy € C™*™ and

o1 '|
UlAV =
-

Then

v \ %4 0
= e (mtn)x(m+n)
Q 2 |:U1 U, \/§U2}



NUMERICAL LINEAR ALGEBRA; ITERATIVE METHODS 55

is unitary and

o oA . 1Y Yl rau, —au, vaau,
Qla 0]9=3|V Yillav av 0
0 V2U3
= diag(oy,..., 00, —01,...,—0p,0,...,0) .

Problem 7.9. Use the Weyl theorem 7.4 to matrices
0 A" 0 A"+ E*
[A 0 ] and [A +E 0 ]
and show, that for all £k =1,....,n holds
|0k(A+ E) — ox(A)| < | E], .
Problem 7.10. Similarly, using the Hoffman-Wielandt theorem 7.7 show:

> |ow(A+ E) - or(A) < | B[} .
k=1
Problem 7.11. Let A € C™"  m >n and A = [A a] € C™("D | Show:

o1(A) > 01(A) > 02(A) > 02(A) > ...0,(A) > 5011 (A) .
Hint: Theorem 7.6 for matrix A A.
Problem 7.12. Let A, B € R™*" . Find the connection between the singular values
A —B]

and singular vectors of matrices A +iB and [B A
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8. COMPUTATION OF EIGENVALUES OF A HERMITIAN MATRIX

8.1. Hermitian QR iteration. When we apply the Hessenberg QR algorithm to
a Hermitian matrix, we notice:

1) Hy=UjAU, is Hermitian and Hessenberg form, in partcular it is a tridi-
agonal matrix

hi o
g1 h2 gs

Gn—2 hnfl On-1
gnfl hn

2) Hermitianity and tridiagonality are preserved in the QR iteration.
3) Only real shifts are needed.

We get the Hermitian Q R iteration:

Ty =Q,AQ, tridiagonal form
for k=1,2,...
choose a real p
Q.R. =T 1 — I (The QR decomposition of Ty 1 — pI)

T, = RQ + pd
end

Problem 8.1. Count the floating point operations of this algorithm taking into
account that A is Hermitian and T ’s are tridiagonal matrices.

Problem 8.2. Experiment this algorithm with different Hermitian matrices A
using shift strategies

a’) p = hy
hn—l gn—1:|

b) = the smaller eigenvalue of matrix [
9n—1 hn

Problem 8.3. The Rayleigh quotient iteration is based on the following heuristics:
if & is an approximate eigenvector of A, then u = "’m‘?f is close to an eigenvalue
of A, so that the solution of the system (A — uI)z = x should be a better

approximation of the eigenvector.

OVersion: April 9, 2003
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Experiment the following algorithm for several Hermitian A
[[oll, = 1
for k= 0,1,...
pr = Ty Axy
solve (A — ul)z, = xy,
@1 = 2/ ||zl
end
First the work load of this seems big, since at every step we need to solve a system

of equations, but in many cases the matrix A is sparse and approximate solution
of the system is cheap.

8.2. Jacobi iteration. The idea of Jacobi iteration is based on systematic decreas-
ing of the off-diagonal elements of a Hermitian matrix. This is done with Givens
rotations, which in this context are also called the Jacobi rotations.

Schematically the algorithm goes as:

Let A Hermitian. Set
off (A) =) " ajul” .
J#k

Pick an a,, # 0 and take unitary [_aﬁ

Q ﬁ_ Qpp Qpg| | —B by O
—0 al |agy agq| |8 a | | 0 by,

Then the correspoding rotation J,, gives a unitary similarity transformation B =
JpqAd, . Since the Frobenius norm does not change under unitary transformations
and since

B } such that
«

2

b

2 2 2 2
|ap,p| +2|ap,q| +|aq,q :|bp,p| +|bq,q

we get:

off(B) = | Bl = > 1bual” = Al = D lax
k=1 k=1

2

2 2
—2 |ap,q| = off (A) — 2 |ap,q

In this method the zeros don’t stay zeros, but off decreases at each step. Typically
the a,, with largest absolute value is chosen.

Problem 8.4. Experiment the Jacobi iteration with some Hermitian matrices.

Jacobi iteration is not very effective, but there exists versions of it that are easily
parallelizable.
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8.3. Divide and conquer method. If the aim is to exploit parallel computation,
then the following approach is very natural. Consider computation of eigenvalues of
a tridiagonal Hermitian matrix. Let us write it in the form: a block diagonal matrix
plus a rank—one correction:

hy g1

o L I
‘ ‘ gn—1 0 T2

gn—l hn

]+vv*,

where T'y € C™™ and v = e, + 0e,,+1 . Then in the center we have:

R B A S MR P

so that we have to take 6 = g, .

In the divide and conquer method the eigendecompositions T'; = QijQ;f of ma-

trices T'; and Ty are computed in parallel. Then setting U = {%1 QO] we
2
get
* _ Dl 0 *
UTU—[0 D2}+zz ,

where z = U*v. Hence we get the diagonalization of T from the eigendecom-
positions of the blocks, provided that we can easily compute the eigenvalues and
eigenvectors of a matrix of the form: diagonal plus a rank—one matrix.

Eigenvalues and vectors of matrix D + zz* . Let us start with the case where
the eigenvalues of D are simple and all the components of z are different from
zero. Assume further, that the diagonal elements of D are in the increasing order
(which is easily obtained by permutations).

Theorem 8.1. Let D = diag(dy,...,d,) e R*™*"  dy <dy <---<d, and z € C",
z; #0VYj. Then A(D+ zz*) N A(D) = 0 and the eigenvalues \y < --- < A, of
the matriz D + zz* and correspoding eigenvectors vq,...,v, satisfy:

a) v;j=a;(D—-\I)""z
b) A(D+ zz*) = {\|f(\) =0} , where f(A\)=1+2"(D—\I) 'z.
c) di <M <dy <A <...dy<)\,.

Proof. Let A € A(D + zz*) and v # 0 be such that

(8.1) (D+zz")v=J\v.



NUMERICAL LINEAR ALGEBRA; ITERATIVE METHODS 59
We have A & A(D), since if A =d;, then
0= eJT((D —d; v+ zz"v) = z;z"v

from which 2z*v = 0 and Dv = d;v, so that v = pe; and z*v = pz; # 0, a
contradiction. Hence A(D + zz*)NA(D) =10.

From equation (8.1) we also see, that z*v; # 0 for all j, and that (D — \;jI)v; =
—z*v;z, which imply a).

c) is given directly by theorem 7.5, since we don’t have equalities.
Multiplication of (8.1) by 2z*(D — M\, I)™" gives:
z'v;(1+2*(D-NI)'2)=0,

so that the eigenvalues are the zeros of f. Other zeros do not exist since

FN) =1+ i dLZi'Z and  f/()) = i (djzi%'i)z >0,
Jj=1 j=1
so that f is strictly increasing on each interval
(—o0,dy), (d1,ds), ..., (dn 1,dp), (dy,o0)
and limyec f(A) =1, i.e., f has exactly n zeros. O

Problem 8.5. Show, that the general case D = diag(dy,...,d,) € R¥”", z e C"
can be brought by unitary transformation to the form

D, +2z* 0
U*(D + 22")U = =l
( #2") [ 0 DJ

where D, + zz* satisfies the conditions of the previous theorem. Hint: if d; =
dj , then take a rotation G, such that (G,;z); = 0. This does not change D':
G;DGj; = D . Do this to all multiple eigenvalues and finally apply a permutation.

Problem 8.6. Estimate the flop count of the divide and conquer method, when
n = 2¥ and all problems are divided into two of half the size until we have one-
dimensional problems. Assuming we have n processors that can be run in parallel
what is the computing time?

8.4. Computation of the singular value decomposition. In principle one can
compute the singular values for example by applying the Hermitian QR iteration to
the matrix A*A. The following approach, however, turns out to be more efficient.
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Problem 8.7. Given A € C™*™, m > n, show, how to find unitary Uy and V|
such that

[0, ¢

USAVO = |:B:| = bn—l Cn—1 c RmMxn ’

i.e., B is a real bidiagonal matriz.

After this the problem is to find the singular value decomposition of the bidiagonal
matrix B. This can be done using the following Golub-Kahan iteration, which
essentially does the same as the Hermitian QR iteration for the matrix BT B, but
transforms only the matrix B'.

1) Choose a shift j, for example, the smaller eigenvalue of the lower right 2 x 2

2 2
corner b1+ Cus b;—lcg—l of the matrix B B..
bn_lcn_l bn + Ch1

a f
2) Take G5 = {50 Q ﬂ such that [_0‘5 g] [b%bl_clu] — [781 , l.e., as

the first rotation for B' B,
3) Update the matrix BG’lT’2 with rotations in turn from the left and from the

right such that the result is again a bidiagonal matrix:

## T H o #
#o#HH 0 # # i
BG, - O AT (A L
# o # # #
I #. i #
# # 0 T # o # 0 T
0 # # 0 # # #
# ## U,[] 0 # # [Vy
— —
# # # #
I # I #
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SES
FH Ik o

0

# 0

ST,

0 # #
"

Un_4>[']

4) Set B = B and return to 1).

| 7 # 0

0 # #
0 #

0
# 0

0. #.
0

One iteration step is cheap: only O(n) flops. The result is:

B B=U,.,..U,BG,V!. VI YU,,. UBG,V!

=Vno1...V2G12B"BGT,V] .. V] _, .

It turns out, that this is the same result that we would have got by a shifted QR
iteration step for the matrix B” B (see: Golub & Van Loan: Matrix Computations).

Problem 8.8. Compute the number of flops in the previous iteration.

FH ¥ o

61

T
N

If some c¢; above becomes zero during the iteration, then the problem becomes block
diagonal, i.e., divides into two smaller problems.

Similarly if some b; becomes zero, we can divide the problem into two in the fol-

lowing way:

‘B,
i
*
7*
i -
GLJ-;FQ

- _
0 #
Gj,j-l-l # ﬁ #
4 4
_ _ "
_ -
0O 0 O
4 #
Gy # #
4 #
4 _
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9. KRYLOV SUBSPACE ITERATIONS FOR EIGENVALUE PROBLEMS

From now on we mostly consider methods that do not assume that when solving
an eigenvalue problem we would have the matrix in the memory and we could
manipulate it. We think having only a linear operator: A : C* — C". Such
situations we encounter for example, when A is a subroutine which for given vector
x € C" returns the vector Ax € C". Often n is also so large, that storing an nxn
matrix in the memory is not reasonable.

A subspace of the form
K;(A,b) = span(b, Ab, A®b,..., A’ 'b)
is called a Krylov subspace. The corresponding matrix
K;j(Ab=[b Ab ... A7'b]
is called a Krylov matriz.

One connection of such a matrix with the eigenvalues of A is seen in the following:
Assume, that X = K ,(A,b) isregular. Then X = [a:l a:n} gives a similarity
transformation to an interesting form:

X 'Ax =x"1 [332 r3 ... X, Aa:n] =X 'X [2 —a}
1 —
= 1 —ay | =B,
1 —Qp1

where o = —X ' A"b. This is called the companion matriz of A . It satisfies:

z Q)

-1 =z aq _Zl ™

z (67
det(zI — B) = -1 = Qi =z o . + o =
-1 z4+ o, -1 ztong

=zdet(zI — B1) +ag = 2"+ ap_12" P+ oz Fag .

in other words —a = K, (A,b) ' A"b gives the coefficients of the characteristic
polynomial of B and hence also of A . Looking for the eigenvectors of B from the

OVersion: April 9, 2003
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system of equations

A (o))
—1 A (&3]
-1 )\+6Yn_1

we see, that if v, = 0, then v = 0 and on the other hand, if v, = 1, then other
components are uniquely defined. Hence geometric multiplicity of each eigenvalue
is one.

The following works also for nonregular K,(A,b). Let p(z) = 2™ +a; 2™ 1+ +
Gm_1%2 + ap, be the minimal polynomial of A|Kn(A’b), i.e., the monic polynomial
of lowest degree such that p(A)b = 0. Set ¢y = b and ¢; = Acj_1 + aj_1b,
j=1,...,m. Then

Cy =

Cc, = Ab + alb

Cy = Azb + CllAb + agb

e, =A"b+a, A" b+--+a, 1 Ab+a,b=0

and Ac; = ¢jp1 —ajp1¢0. Set C =cy ... €p_1]. Then

AC=[AcyAc ... Ac, 4]

=ler—acy ey —asey ... Cp— anq)

—a; —ay Ce. =Gy,
1
=lepecier ... Cpl 1
1
=CH .

Since C' has linearly independent columns (why?) we get by lemma 5.1 that
A(H) C A(A), ie., we obtain m eigenvalues of A by computing the roots of

p.

Another motivation for the use of Krylov subspaces we get from the following. Let A
be real and symmetric. Then the largest and smallest eigenvalue of A are obtained
T Ax

from the extremal values of the function r : R* \ {0} = R : r(z) = —
'z
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Let qy,q,... be orthonormal, Q; = [ql qj} and B; = QJTAQj. Then the
largest and smallest eigenvalue of B; satisfy:

m; =X\ (B;) = min vTQ;FAij > min Az = )\, (A)

[v]ly=1 z[[,=1

M; =)\;(B,) = Hnﬁax UTQJTAij < Hnﬁax ' Az = )\, (A) .
v 2:1 T 2:1
How should we choose gq;., such that m;,; and M;,;; would be clearly better
approximations for the smallest and largest eigenvalue of A7 Since
2A TA 2
Vr(x) = T T AT (Ax —r(x)z) ,

xTx (xTx)? Tz

and if w;, ,v; € span(q,,...q;) are such that 7(u;) = m; and r(v;) = M;, then
we would like to have: Vr(u;), Vr(v;) € span(qy,...q;,,). This is possible, if
Aspan(g,,. ;) C span(ay, - @y41)

This we have, if gq;,...,q; is an orthonormal base of some Krylov subspace:
span(q,, ...q;) = span(b, Ab,.. ., A’ 'b) |
span(qy, - -.q,,,) = span(b, Ab, ..., A'b) .

This real symmetric case' was just for the motivation for the use of the Krylov
subspaces. Now we continue with a general Hermitian matrix A € C"*" .

9.1. Lanczos iteration for a Hermitian operator. We can obtain an orthonor-
mal basis from the Gram—Schmidt process, i.e., from the QR decomposition. So,
let

Ki(Ab=[b Ab ... A '0|=Q,R;.
Then

AQ,R, = AK;(A.b) = [Ab A% ... A'b] = [QjRj m Ajb} ,

which gives

* 0 * ) -1 -1
where H; is a Hessenberg matrix. A product of such and an upper triangular

matrix is again a Hessenberg matrix, so that T'; = Q;AQ]. is a Hermitian matrix
and of the Hessenberg form, i.e., a tridiagonal matrix.

Problem 9.1. (“ A is of degree m at b.”) Let m = dim(KC,(A, b)) . Show:

IThe complex case can be done similarly, but since z — Z is not differentiable, this would have
caused extra confusing details.
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a) AKn(A,b) C Kn(A,b) and Kn(A,b) = K.(A,b)
b) There exists a monic® polynomial p of degree m such that p(A)b=0.
c) AQ,,=Q,, T, .

The Lanczos idea is to compute the vectors gq; and the matrix

_C}1 P
Bi oy [
Tm = 62 .

O_‘mfl 5m71
Bmfl Om i

directly. Comparing the columns of the equation AQ,, = Q,, T, we get:
Aq, = anq; + BIQ2
Aq, = B1q, + a2qy + $2q;

Aq; = Bj1q;1 + a9, + qujurl
Orthonormality implies: a; = g;Agq; and g;,; has to be a unit vector in the
direction of
r; = ACIj - 53‘—1‘1];1 - ajq; .
B; can be chosen to be real: 8; = |r;||," . Continue this way until 7; = 0.

Problem 9.2. Show: 7; # 0, when j <m and r, =0.

We get the Lanczos iteration:
Bogy =0, g, = b/ ||bl],

for j=1,2,...
aj =q;Aq,
r; = qu - 5]'—1(1];1 — 54,
Bi = lIr;ll,
if B; =0 stop

else g, =7;/B;
end

In the end of the iteration (5 = m) we have AQ,, = Q,, T, so that A(T,,) C
A(A) . To obtain the Schur decomposition of the real tridiagonal matrix T, we can
use the symmetric QR iteration or the divide and conquer method.

2Monic: the coefficient of the highest power is one.
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The main advantage of the Lanczos iteration is that the eigenvalues of T'; are
good approximations of the eigenvalues of A (especially of the largest and the
smallest) often already for j < m. The next result shows that if §; is small, then

Proposition 9.1. Above we have: AQ; = Q;T;+ rje]T.

Proof.
K;(Ab)=[b AK;(Ab)] =[b AQ;R;| =Q;, Rji1,
R, w,
where Q= [Q; @;11] . Rjs1 = [0] ijl} . We get:

B _ Pj+1
AQ; = Q;H R, L ijque;FRj = Q;T; + Jp qj+1e? '
j

Comparing the last columns of this to the equation

qu = 53’—1(13‘—1 +a;q; + ﬁjq]'-q-l

Pi+1
Pj

we see:

q;+1 = £jq;41 = 7j, which shows the claim. O

From this we further get the error of the eigenvalue equation:
Proposition 9.2. If T; = S;diag(ju1, ..., 1;)S; is the Schur decomposition of T},
and 'Y = [yl yj} =Q;S;, then

Ay = yilly = lIrslly [s58] -

Proof.
AYj = Yj diag(,ul, ceey /Lj) + rje]TSj ,

in particular, Ay, = juy,, + r;e] Sjey . O
Problem 9.3. Show, that above we get: 0 (u, A(A)) < Bj |8kl -

The convergence theorems of the Lanczos iteration are collected under the title
Kaniel-Paige theory. The following is a sample of them. It tells that the convergence
of the extremal eigenvalues is fast.

Theorem 9.3. Let v, be the unit eigenvector of A correspoding to Ay and ¢ =
arccos(|qiv1|) . Then for the iteration above we have:

(A — A1) t3L11(<151)2
0< - M < ,
=TS T T 1+ 0))2
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where 01 = Qﬁ and t;_y is the Tshebyshev polynomial ® of degree j-1.

Proof.

y'T;y . Y'QIAQy : w*Aw . w*Aw

J1 = min = min ———— min > min =)\ .
y#0  Yy*y v#0 (Q;Y)* QY  0#wekj(Ab) wrw 04w w*w

Every w € K;(A,b) is of the form p(A)b, where p(A) is a polynomial of A of

degree at most j — 1 (denote: p € P;_; ), so that

B b'p(A)*Ap(A)b
j1 = min :
o£peP; 1 b p(A)*p(A)b
If b=>",_, cxvy, where vy,...,v, are the orthonormal eigenvectors of A, then

p(A)g, = Z ckp(Ar) Vi
k=1

so that for arbitrary p € P;_; \ {0} we get
gip(A) Ap(A)g;, _ i leap()l* My
qip(A)*p(A)q, Sor leep(e)

e A+ A Sy e

1 <

oy SOl

=M+ (A
[expO) [ + D25 lerp () i lexp(Ae) [
Now, choosing p(z) = 1(2/\’\1:%/\‘”2 — 1), we have |p(\g)| <1, k=2,...,n, and
1— ey A — A1) tan(¢)?
< M+ (A — M) & 2:)‘1+( ¢ (i)+6()fl)
el 1 @3558 = 1) T
Here we used: |¢;] = cos(¢y) . O

Similarly we can show that

(An — A1) tan(o,,)?

0< Ay —py < ,
- i = ti—1(1+ 6,)2

where ¢, = arccos(|qiv,|) and 6, = 2%

Problem 9.4. Compute how fast the numbers ¢;(1 + ) grow with j. Answer:

~ 2 (146 + 25+ 6%)7 . Hint: t;14(x) = 2xtj(z) — t;1(x).

3Tsebyshev polynomials are defined by ¢;(x) = cos(karccos(z)), (when |z| < 1). More about
these later.



68 EIROLA AND NEVANLINNA

So, the Lanczos iteration seems to be an ideal method. The bad news then is that
this is true only for exact arithmetic. Including the round-off errors changes the
situation essentially. It is not difficult to show that for the computed vectors aj,

7 and for the tridiagonal T'j the error in the equation
AQ, =Q,T;+7e] + E;
usually is moderate: | E|, ~ p||A|, . The problem is that due to the round-off

errors, the computed Q; loose the orthogonality of the columns quickly. This is
because of the equation r;

r; = qu - Qiq; — ﬁj—lq]'_l ;

where in the computation the round-off errors are of the size u HquH , - When

B; = ||frj||2 itself is small, then, for example,
s i]Ag
§d, =a,7,/0~ 120

B

This loss of orthogonality seems to happen hand in hand with the convergence.

As a remedy for this a reorthogonalization strategy is proposed, i.e., make sure that
the computed g@;,, is orthogonal to the previous ones by subtracting from it the
components in their directions. The algorithm obtained this way is equivalent to
the Arnoldi iteration (introduced later), that works also for non—Hermitian matrices.
But now we would loose the advantages brought by Hermitianity.

A more detailed analysis shows, that the errors in the vectors g; are mainly in
the direction of the already converged A eigenvectors. Then it suffices to remove
these components, i.e.,ortogonalize only against all the converged eigenvectors. This
carries the name selective reorthogonalization in the literature.

Problem 9.5. Test the Lanczos iteration for a real symmetric matrix starting with
an almost eigenvector. Does the reorthogonalization help?

9.2. Bi-orthogonal Lanczos. The Lanczos iteration for a Hermitian matrix started
with the attempt to compute a unitary similar transformation to a Hermitian tridi-
agonal form: Q*AQ =T . Let A now be a general square matrix and let us try to
compute a similarity transformation to a tridiagonal form:

831 51
M ooy [
V9IAV =T = P

Opn—q ﬁnfl
TYn—1 079
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Denote V = ['vl 'vn] , vli= [wl wn}* , so that 'w; v, = 0; - Rewrite
the equations

AV =VT and AW =WT"
columnwise:
Avy = a1v1 + 7102
Afw, = dyw; + fLw,
Avy = (11 + @03 + Y23

A*wy = yw; + Gyws + Pows

Avj = fj 151 + Qv+ 041
A'w; =y w1 + ajw; + Bjw;
Multiplying the Awv; —equation by w} gives a; = wjAwv;. Denote
r; = Av; — a;v; — B 1,1
s; = A'w; — a;w; — Y wj-y
so that
Vist =T/% . Wi =5;/B; .

For v; and B; we get the condition:

1= ’w;Jrl’UjJrl = S;Tj .
B
This does not determine 7; and f; uniquely. The usual choice is v; = |3;rj|1/2’
which causes [3; to have the same absolute value 3; = %

The iteration can be continued until | sjr; = 0| Then, if r; =0, we are in a good

situation, since then holds: AV; = V,;T;, where V; = ['vl 'vj} and T; is
the upper left jx; corner of T and A(T;) C A(A). Further, from the eigenvectors

y, of T'; we get eigenvectors V;y, of A. Similarly for A", if s; =0.

The situation becomes more complicated if sjr; = 0 without either of them being
nullvector. Then the strategy is to try a bigger step. Release the requirement that
T should be a tridiagonal and let it be “thicker” at some places. This strategy is
called the Look ahead Lanczos iteration and it is a subject of active current research.

The loss of orthogonality ( wivg = 0jk ) caused by the round-off errors is also here
a problem and this is again tried to be remedied by (selective) reorthogonalization.
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9.3. Arnoldi iteration. The most reliable Krylov subspace iteration is based on
the computation of an orthonormal basis for IC;(A,b), similarly to the Lanczos
iteration for Hermitian matrices.

Think again that we would perform the QR decompositions to the Krylov matrices

K;(Ab)=[b Ab ... A7'b|=Q,R;.

Then
K;1(Ab)=[b AK;(Ab)]=[b AQ,R;| = Qi1 Rj1,
where
R, w; 0 H;

Qin=1Q 4], Riu= {0‘7 pj-il:| =l ijj-(-l

We get:
AQ,R; = Q;H; + pj1q;, €] .

ie.,

AQ; = Q;HR;" + pjia;ii€j/pj = QHj + hji1q5..e5

where H; = ﬁjR;1 is a Hessenberg matrix and h;y1; = pji1/pj. As in the
problem 9.1 we get again: if m = dim(K,(A, b)), then

a) AK,,(A,b) C K,,(A,b) and K,,(A,b) = K,(A,b)

b) If A is invertible, then there exists a polynomial p of degree m such that
p(0) =1 and p(A)b=0.

c) AQ,,=Q, H,,.

In the Arnoldi iteration the vectors q; and the Hessenberg matrix

hl,l h1,2 h1,3 v hl,m

h2,1 h2,2 h2,3 v h2,m

Hm — 0 h3’2 h3’3 e hg’m
0 0 0 ... hym

are computed directly, without performing the QR decomposition of K,(A,b).
From equation Aq; = Q;w; + hji1,;q,,, we see, that w; = Q}Aq; .



NUMERICAL LINEAR ALGEBRA; ITERATIVE METHODS 71
We get the Arnoldi iteration (with modified Gram-Schmidt):

q, =b/|bl, ., Q, = [ql]
for =12 ...

r; = Aq;

for k=1,.,5, hyj=qr;, rj=1;—hy;q, end

hjvrg = llr;ll;

if hjj;=0stop else g =7i/hjr1;, Qi =[Q; @jui]

end
In the end of the iteration (j=m) we have AQ,, = Q,,H, , so that A(H,,) C A(A).

Modified Gram-Schmidt means that the operation r; = (I — QjQ;)qu is com-
puted such that the components of r? = Ag; in the directions of each g are
removed one at a time. This way the non-orthogonality that already exists in the
vectors gy, ..., q; causes less errors.

Arnoldi iteration is commonly used in situations where we are not interested in
all the eigenvalues of A but only the “outer” ones hoping that the eigenvalues of
H ; would approximate these well already for small values of j like in the Lanczos
iteration in the Hermitian case. If

Hyd =y, vl =1,
()

then the numbers p;” are called the Ritz values and the vectors ug) = ijg) the
Ritz vectors. These are approximate eigenvalues and eigenvectors of A . Equation

AQ; =Q,H;+ hj1,q, €
gives now
()
and the Bauer-Fike theorem 6.4 gives an error bound for the Ritz values:

Theorem 9.4. If A is diagonalizable : V"' AV = D, then

51, MA)) < 5V Iyl | (0]

HAU/(f) — Dy

= |Pjg]

In the sequel denote by P; = Q;Q; the orthogonal projection onto K;i(A,b).

For every Ay € A(A) define:

g](j) = 1min max [p(A)] .
PEP; 1 AcA(A)\{Ar}
p(Ag)=1
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So, 5](; ) measures, how small a polynomial of degree j—1 can become on the rest of
the spectrum of A when at )\, it has the value one.

Lemma 9.5. Let A be diagonalizable : Avy — Mo, ||vi], =1, k=1,...,n,
det(vy,...,v,) #0. Let g =Y ,_, cxvi. Then

(4j) n
&

ok = Pjogll, < 2> el
|ck] 4=

itk

Proof.
(T = Pj)evell, = min [levwr = p(A)a |,

j—1

n
= min CrUL — E czp()\z)'vz
pEP; 1 i1 2
n n
< min E cip(N\i)v; §5§€]) E |ci|
PEP;_1 - 2 5
e =

Each eigenvector w, is approximately in

K;(A,b) if the correspoding £ is small. For

example, if A(A)\ {1} is in the disc of radius A
p and centered at ¢ and if A; outside the disc

then using the polynomial

p(z) = (z =) /(A = ¢}
we get .
59“) < L .
A1 —cff
Denote: A; = PjA|ij(A,b) .

Lemma 9.6. pe P, ; = p(A)

=p(A;j) b
and peP; = P,p(A)b=p(A,)b.

Proof. 1f 0 <i < j, then A'd € K;(A,b), so that P;A'b = A'b. We get recur-
sively:

Finally: Alb= P;A’b. O
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The following theorem tells something about, where the Ritz values tend to be.

Theorem 9.7. The characteristic polynomial p; of H; solves the minimization
problem

Ip;(A)Bll, = min [lp(A)bl], -
p monic
' J
Moreover, this minimal value is ||(I — QjQ;)AJsz = |pj11| =16l H |kt 1k] -

k=1
Proof. Since
A = PiAg o = AP, =Q;Q;4Q,Q; | =QH,Q
and because Q; = <Q;|Kj(A,b)>1’ the matrices A; and H; are similar. By the

Cayley-Hamilton theorem we have: p;(A;) = 0. Hence for every y € IC;(A,b) we
get using the lemma above:

0= (y,p;(4;)b) = (y, P;p;(A)b) = (P;jy,p;(A)b) = (y,p;(A)b) .
In other words p;(A)b L K;(A,b). If p is monic and of degree j, then p —p; €
P;_y,and (p—p;)(A)be K;(A,b), so that by the Pythagorean theorem:

Ip(A)bll5 = 11;(A)b + (p — 5;)(A)bll; = IIp; (A)blo+ (0 — 5;) (A)BI; > [|p;(A)b]|; -
Hence p; solves the minimization problem.

Since p;j(A)b = A’b — 7, 1(A)b L K;(A,b), where 7j-1(A)b € K;(A,b), we
notice, that 7;_1(A)b is the orthogonal projection of A’b onto K;(A,b). In other
words 75 1(A)b = Q;Q;A’b. Further, A’b=Q; ,R;,1€;,1, so that

_ . R
||pj(A)b||2 = ‘ (I - Qij) [Q] qj+1] [ 0 = |pjs1 -
2
On the other hand A’b = AQ,;R;je; = (Q,H; + hj;1;4,,,e])R;e;, from which
(I - Q;Q)Ab||, = [hj1,]lp;] -

. w .
7 J
e .
. Jj+1
PJ+1]

This gives:
1p;(A)bll, = |pjrr| = |hjsrllpil = [hirsl 11l 1ol

J
= |hjgl gl haallor] = 1Bl [T kil -
k=1

Problem 9.6. How p; is seen in the matrix K;(A,b)!AK;(A,b)?
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Using the theorem above we finally get the result showing the speed of approximation
of the eigenvalues of A . Here the main role is played by the geometric mean of the
subdiagonal entries of the Hessenberg matrix H ;.

Theorem 9.8. If A is diagonalizable : V'AV =D, V = ['vl, . ..,'vn] , and
b=> " civ;, then
) 1/j

Proof. Set & = 6(Ap, A(H,)). Now p;(2) = [T_,(z — i), so that |p;(Ax)| > &
From the previous theorem we get:

V—l 1/] Vfl b J
s ) < (Ve ) (I del®ll g,
x| ekl

oyl =B AN, = [VV Y e
i=1

1
D e e
V™=l

i=1

2

n o~ 2 el iR el €
ie1 lcil” P (i > - > -
(Z 1| | | ]( )| ) ||V 1||2 ||V 1||2

O

In the following figures the eigenvalues of A are denoted by plus and the eigenvalues
of H; by dots with darkness increasing with the iteration index. On the left there
are ten iterations, on the right 7 = 20. These show clearly, how the outer eigenvalues
are found soon.
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Problem 9.7. Let A = IO (1] € C"" and b = e;. Compute the Ritz values.
n—1

This is a bad case for the Arnoldi iteration.
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10. CLASSICAL ITERATIONS FOR LINEAR SYSTEMS

In the rest of these notes we consider iterative solution of an nxn system of linear
equations Ax =b.

Assume A is regular, so that the equation has a unique solution . Many iterations
are based on an invertible approximation M of A, such that the system My = ¢
is easy to solve. Such M is called a preconditioner. Then the equation is written
in the form Mx = Na + b, where M — N = A. Starting with an initial guess
xro we iterate

(10.1) Mxp.1= Nz, +0b, k=0,1,2,...

Taking the limits of both sides, we see that if this converges, then the limit is a

solution. Iteration 10.1 is economical if it converges fast and if flop counts of the

operations: multiplication by NN and solving the system My = ¢ are small. This

is often the case especially when A is sparse, i.e., when most of its elements are

Zero.

Denote the equation error, i.e., the residual by r, = b — Axj. Then

Pry1 =b— AM '(Nz,+b)=b— AM 'b— AM (M — A)x;
=(I-AM Yo —(A- AM 'A)x, = (I - AM™")(b— Azx,) = NM 'r; |

so that r, = (N M ')¥rq. The error in the solution e, = z*—x;, = A 'r} satisfies,

respectively,

eri1=A'r =A"' I - AM )r,=(I - M 'A)e, = M 'Ne,
and e, = (M 'N)Fe,.

The spectral radius is defined: p(A) = maxycp(a)|A| - By problem 5.17 we get:
Lemma 10.1. [teration 10.1 converges for all o, if and only if p(M *N) < 1.

The spectral radius can be characterized also by:

Lemma 10.2. p(A) = lim HA’“H% .

k—o0

Here the norm can be any matrix norm. In the proof we need the following result.

Problem 10.1. Let ||-|| and [|-||, be two matrix norms in C™*" . Show that there
exist positive constants ¢, C' such that

cllM|| < |[M]|, < C|M]|
for all M € C™*" . This means that the norms are equivalent.

OVersion: April 9, 2003
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Proof. By the previous problem we have positive ¢,C such that for every matrix
M holds

cl|Ml, < [|[M| <C[M], ,
from which
1 ol k el 1 ol k
ot || A} < [|Af[]F < CF [[Af]]
Since c%, C k—> 1, it suffices to prove the claim for the 2-norm. Let J = X 'AX
—0oQ
be the Jordan form of A. Then A* = XJ*X ™! so that

1.1 1 1 1
UX 11X DI < (AR5 < Xl | X1 |7

1

3
2 Y
1
so that showing p(J) = limg_, HJkHQ’“ is enough. Since HJ’“H2 = max; HJ()\]-,rj)kH2 ,
where the matrices J(\;,r;) are the Jordan blocks of J and for these problem 5.16
ol
gives':

k
A< IO < V7 () <V max(, )

0<iI<r
The claim follows then from lim (kr)% — lim 5 108(K) — 1 O
k—o0 k—o0

Lemma 10.3. For every A € C*" and ¢ > 0 there exists a vector norm |||,
such that for the corresponding matriz norm we get

|A]l, < p(A) +¢ .

Proof. Set B = p(A—l)JrEA and ||z, = SUDg>g HBka;H . Since limy_, o HAkHI/k —

p(A) there exists m such that [|A™| < (p(A)+ e)™. Hence ||x||, is finite for
every x. Then we get:

) fzll.=0 = [z[|=0 = = =0

2) ||a:+y||5 = SUPg>g “Bk(m+y)“ < Supy>g HBka + Sup;> HBkyH = ||€13||5 +
Ylle

3) llaw||, = supysg |[|eB z|| = |af ||z, -

L.e., we really got a norm. Finally,
|Az||, = sup || B*Az| = (p(A) + &) sup | B"z||
k>0 k>1

< (p(A) +2)sup | B2 = (o(4) +2) .

lusing also: A € C™*" = ||Al|, < /n max; | |a; ;]|
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Remark 10.1. We have the following inequalities
] <2l <l ,
where C' = max;> HB’“H .

Problem 10.2. Using a suitable norm for M "N give another proof for lemma
10.1.

Problem 10.3. Assume you want to solve & = Cx +c. If p(C) > 1 the iteration
xzF*t! = Cz* + ¢ does not converge. Consider iterating
e =((1-wI+wC) 2z +uwe

for w # 0. Show that if it converges, then the limit is a solution. Discuss the
choice of w. This technique is called relazation. (Underrelaxation for w < 1 and
overrelaxation in case w > 1.)

10.1. Jacobi and Gauss—Seidel iterations. Write A = D + L + U, where
D = diag(ai,.-.,ann,), L consists of the subdiagonal elements of A and U is
the part above the diagonal.

In the Jacobi iteration we choose M ; = D, so that the iteration becomes:
Lpy1 = Dil(b — (L + U)a:k) .

Now the convergence depends on the spectral radius of the matrix E; = —D™' (L+
U) . Typically it converges the better the more diagonally dominant A is.

Lemma 10.4. Let A be strictly diagonally dominant, i.e., for all j holds
> > pzjlajkl - Then the Jacobi iteration converges.

|aj

Proof. Let A € A(E;), and let = be the corresponding eigenvector and x; the

component of & with the largest absolute value. From equation (L+U)xz = —\D=x
we then get
Mgl =D aipme| <D lajel |l
oy Py
from which |A] < 9zl x| <1. O

= lajsl ]

In the Gauss—Seidel iteration we take Mg = D + L. Then in each step we
need to solve a lower triangular system (with forward substitutions): (D+L)xy,; =
b — Ux; and the iteration becomes:

L1 — (D + L)il(b — U:nk) .

The convergence of this is determined by the spectral radius of the matrix Egg =
—(D+L)'U.
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Example 10.1. For A = [
Gauss-Seidel:

B - |

_21 _21} we get the iteration matrices for Jacobi and
1
i
4

—1
2 0 0 1 0
R ER N
Hence p(E,) = %, p(Egs) = i-

Problem 10.4. Show: if A is strictly diagonally dominant, then the Gauss—Seidel
iteration converges.

= O
O

For this we further have

Theorem 10.5. If A is Hermitian and positive definite, then the Gauss—Seidel
iteration converges.

Proof. If A is Hermitian, then U = L* and we have to show that
p((D+L)"'L*) < 1.

Now the entries of D are positive so that it has a positive square root D? and
(D + L)™'L* is similar to matrix

D:(D+L)"'I’'D :=(I+D :LD ) "'D :L*D z = (I + L)"'L*

where Ly = D™*LD> . If (I+ Ly) 'Lz = Ax, where |lz||, =1, then L}z =
Ax+ ALz, so that A =a/(1+ «a), where a = *L;x . Since

D :AD :=I+L +L

o=

is positive definite, we get 1+ a+ a > 0, from which

_ 2
YL L .
l+al+a 1+a+a+|a

10.2. SOR iteration (overrelaxation). The Gauss—Seidel iteration can be writ-
ten as:
Tpy1 = D_l(b — Uka - L$k+1) ’

where the components of x;,; are already computed when they are needed. The
Successive Over Relaxation method starts from the idea that if this is a good step,
then why not take it a little longer

(10.2) Ty = +w[D (b—Uxy — Lxypy) — x4 ,
where w > 1 (usually). Writing SOR in the standard form with M and N we get:
(tD+ L)z =[(1 —1)D-Ulx,+b,
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ie., M, xr,1 = N,x + b, where
M,=1(D+wL), N,=2(1l-w)D-wU).

With the value w = 1 SOR is just the Gauss—Seidel iteration. The convergence of
SOR is determined by the spectral radius of the matrix E, = M 'N,, . First result
concerning this is

Lemma 10.6. p(E,) > |w—1]|.
Hence it is necessary for the convergence that w € (0,2).

Proof. Since the determinant is the product of the eigenvalues and the determinant
of a triangular matrix is the product of the diagonal elements we get:

H 1Aj| = |det(M'N)| = |det((D + wL) (1 — w)D — wU))|

= |det(D + wL) " det((1 —w)D —wU)| = |1 —w|" .
Hence at least one of the eigenvalues has absolute value > |1 — w| . O

Theorem 10.7. If A is Hermitian and positive definite, then SOR converges for
all w e (0,2).

Proof. Fix w € (0,2). We have A =D+ L+ L* and M, = 2D + L. Now the
matrix

M,+M,-A=2D+L+L" -D-L-L"=(2-1)D

is positive definite. Set Q :== A™'(2 M, — A).If A,z is an eigenpair of Q then
2M,—A)z=)Az and

T 2M,—A)x =) xz"Ax

QM — A)x=\z*Ax ,
ie, &*(M,+ M —A)x =Re x*Ax. Since M ,+ M, — A and A are positive
definite, we get Re A > 0. Now

Q-DNQ+I)"'=02QA'M,-20)M_'A=E, .

Hence the eigenvalues of E, are of the form i—jr}, A€ AQ) and for A = a+
18, a>0 we have

A—1] [ —a)+p2
‘ ‘_ Arayt+p L

A1



NUMERICAL LINEAR ALGEBRA; ITERATIVE METHODS 81

If SOR converges for some w then, since spectral radius is a continuous function of
the matrix, it has a minimum < 1 on the interval (0,2). This minimum point wep
is called the optimal relaxation parameter. Generally it is a difficult task to find it,
but there are many cases, where it is well known. In particular, in some cases of
discretized partial differential equations. There a thumb rule is that if the Jacobi
iteration converges, then Gauss-Seidel converges twice that fast and the optimal
SOR much faster.

Definition 10.1 (R. Varga). Matrix A = L+ D + U is said to be consistently
ordered, if the spectrum of

B,=aD 'L+ 1D'U
is independent of v € C\ {0} .

An important set in this class is the following. We say that the matrix A has
property AT | if it can be similarity transformed with a permutation IT to the form:

D, U, 0 ... 0 ]
L, D, U, :
(10.3) NATT"=| o 1, D, . 0 |
Lo e U,
(0 ... 0 L, D,

where matrices D; are invertible and diagonal.

Problem 10.5. Let B € R™*" be a tridiagonal matrix, whose diagonal is constant
—4 and other elements are ones. Find a permutation that takes the nmxnm matrix

(B I 0 ... 0]
I B I
A=1l0 I B - 0
Do T
0 ... 0 I B]

into the form above. This A comes from the uniform discretization of the Laplace
operator Au = Uy, + u,, in a rectangle of the plane.

Theorem 10.8. Assume A has property AT . Then it is consistently ordered.

Proof. Let A =TIAII" = D+L+U be of the form of (10.3). Since a permutation
similarity transformation maps the diagonal elements onto the diagonal and others
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outside it we have: D = 0DI” and L+ U = I(L + U)II". Now E; =
—D (L+0U) is similar to E,:
E,=-TID"'II"TI(L + U)IT" = IE, 11" ,
so that A(E;) = A(E,).Set B, =aD 'L+ a 'D™'U. Then

I ~ -1

- - - - - I
NB.I" =D (aL+a 'U)= { ol ] D (L+U) { o'l ] :
aT‘—lI alf'rI

so that BaN—EJN—EJ for all o € C. O

The following result reveals a connection between the convergence speeds of the
Jacobi iteration and SOR for consistently ordered matrices

Theorem 10.9. Assume A is consistently ordered. Then

a) pn€ AME;) = —peA(E,).
b) If w#0, then for any p € A(E;) there exists N € A(E,) such that
A +w—1) = ?p?

and for any N € AN(E,), X # 0 there exists p € A(E,) such that the
equation above holds.

Proof. a) By =—E; and B_; = E;.
b) Write:

E,=iD+L)y'i(1-w)D-U)=I+wD 'Ly (1-w)I-wD™'U).
Since det(I +wD 'L) =1, we get

det(AM — E,) = det(I + wD 'L)det(\ — E,)
=det(M + AwD™ 'L — (1 —w)I +wD™'U)
=det(A+w—- DI+ XwD 'L+wD 'U) .

Suppose p € A(E;) and )\ satisfies (A +w —1)? = Aw?p?. By a) we can assume
Aw—1=—dwpu.

Now, if A =0, then w =1 and det(E,) = det(—(D+L)'U) =0, since det(U) =
0. Hence X € A(E;).
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If A#0, then

det(M — B,) = det((A+w — )T +wVA(VAD 'L+ J= D 'U)

_ n Adw—1 —1 1 -1
= (WA det(MeL T+ (VAD 'L+ 5 D'U) .

But /\I\QEI =—pn€NE;)=AVAD 'L+ \/LX D7'U). Hence det(A\I — E,) =0.

For the reverse, read the proof above backwards. O

Problem 10.6. Show: if A is consistently ordered then the Gauss—Seidel iteration
converges if and only if the Jacobi iteration converges and p(Egs) = p(E;)?.

Problem 10.7. Show: if A is Hermitian and is consistently ordered, then the
Jacobi iteration converges.

Further, if the eigenvalues of the Jacobi iteration are real, then the following gives
the optimal value of the relaxation parameter.

Theorem 10.10. Let A be consistently ordered and A(E;) C (—1,1). Then

2
1+ /11— p(E,)?

Wopt =

and
1T ()

E, .)=wept —1= .
ABuwy) = toon == =R

Proof. Let p=p(E;) < 1. Then p € A(E;) and the corresponding eigenvalue A
of SOR satisfies

N-21l-w+iv’pP)A+(w-1)*=0,

and a short computation gives

2
(10.4) A= (%pw +T—w+ p2w2/4) .

Let wy € (0,2) be the zero of the discriminant:

1 —wy+pwi/4=0, ie., Wy = ———F—— .
o+ pwy/ 0 1+ /1=
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When w < wy, the function f(w) = Lpw+ /1 —w+ p?w?/4 is decreasing:

—1 + Lwp?
/w:l +l 2
fw)=gr 21— w+ p2w?/4
1
:2\/1—w+p2w2/4(p\/l_w+p2w2/4_1+%w’)2)
1

< ( 1—w22—1+lw):0.
2y/1—w+ p?w?/4 (1=wf2) ?

On the other hand, when 2 > w > wq, we get:

2
Al =|3pw +iv/w—1— p2w2/4‘
=p*W A +tw—1-p?fd=w—1,

so that |A| is increasing. Hence wy gives the minimum for |A|. Still we need
to check the other eigenvalues of SOR. If X' € A(E,,), then we get it from some
eigenvalue p € [0, p] of E; like the formula (10.4), where now 1—wq+ p’w?/4 <0,

so that
2

:wo—l.

|| = |3 pwo + i\/wo —1— p2uwg/4

Hence the optimal relaxation parameter shifts all the eigenvalues of the iteration
matrix to the circle of radius wy — 1. O

Example 10.2. Let A nxn be a tridiagonal matrix with diagonal constant 2 and
ones on both sides of it so that it is already in the form (10.3):

191
A= 12 -
Lo
12

sin((k — 1)a) + 2sin(ka) + sin((k + 1)a) = 2(cos(a) + 1) sin(ka) ,

we see, that v = (sin(a), sin(2«), . ..,sin(n«a)) is an eigenvector of A provided that

Since

sin((n +1)a) =0 Jlelif a=jr/(n+1), j=1,....n.

Hence A has eigenvalues and eigenvectors:

Aj = Q(COS(J—L) +1), v = (sin(#—g),sin(Qrf%L), .. .,sin(n%)) )

j=1,...,n.Now, since E; = 3(A—2I), we get p(E;) = cos(r/(n+1)).

If n =20, we get p(E;) = 0.988831 and the optimal relaxation parameter is
Wopt = 1.74058 which gives the spectral radius p(E,,,,) = 0.74058 for SOR. In the
following p, = p(E,). On the right eigenvalues of the Jacobi iteration are drawn
grey, those of Gauss—Seidel are small black and of SOR larger black points.
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p 0.8
W
1 L] L4 [
L4 0.6
: °
°
0.8
0.4 °
°
0.6 0.2
°
0.4 —! -6.5 O.g !
°
-0.2
0.2 Y
W 0.4 °
d °
0 0.5 1 1.5 2 -0.6
0)) o °
opt ® |0
-0.8

Problem 10.8. In the problem 10.5 compute the optimal w for SOR iteration.
Hint: Look for the eigenvectors of A as “Cartesian products” of the eigenvectors
of Example 10.2.

10.3. SSOR (Symmetric SOR). In the next section we will consider Tsebyshev—
acceleration of an iteration. It can become very effective when the spectrum of the
iteration matrix is real. Even if A is Hermitian, the iteration matrix

E,=(D+wL)'((1-w)D-wU)
of the SOR iteration
ID+wh)zp =2[(1-w)D—-wU]z,+b

is usually not Hermitian, and it does not have real spectrum. The idea of symmetric
SOR (SSOR) is to change the roles of L and U after every step, i.e., every second
iteration is performed using matrices

M,=1(D+wU) and N,=1[(1-w)D-wlL].
Usually SSOR is written in the form:

(D +wL)w,, =[(1-w)D—wU]w,+wb
(D+wU)zp1 =[(1 —w)D —wL]z, 1 +wb.

Then, if A is Hermitian, we have U = L*, M, = M?*, N, = N* and the
iteration matrix becomes

E5" = (M) 'N,M_'N,, .
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Neither this is usually Hermitian, but since?
D 'N:M_,'D=D '((1-w)D-wL)(D+wL)™"' D
(1 -w) I —wD'L)(I+wD™'L)™*
(I +wD'L)™" (1 —w)I —wD 'L)
(DI+wD L)' D((1-w)I-wD 'L)=M_'N} ,

we get
EJ°" = (M})'DM,'N,D"'N,, .
Now, if D has positive diagonal elements, then N> D 'N, = K*K , where K =
D :N,, and
KE"K '=KM,D 'M!)"'K*
is Hermitian and hence the iteration matrix E’°" has real eigenvalues.
We will not consider the selection of the relaxation parameter for symmetric SOR.

Let us mention only that the w of SOR is usually good also for SSOR and that
SSOR is not very sensitive with respect to the parameter.

Problem 10.9. Experiment Jacobi, Gauss—Seidel, SOR and SSOR for the problem
10.5 with b a random vector and m ~ n =~ 20. Take the w from problem 10.8.

Theorem 10.11. Assume A = A" is positive definite. Then SSOR converges for
every w € (0,2),

Proof. Write
B = (L (D +wU)) H(1-w)D — L) (D +wL) " X((1 ~w)D - wl)

=(D+L)' (42D -L)(LD+ L) (1*D - L)
=D 'L+ K ) (22T -K) LI+ K) ' (241 - K*) D?

N

where K = D 2LD 2. Hence EZ*°" is similar to

So=GI+K) (FI-K) ((I+K) (B 1-K7),
which further is similar to
(GI+K)S. (GI+K) ' =(GI+K)" (I -K) (I - K') (JI+K)™,
i.e., a positive semidefinite matrix. Hence the spectrum of ES°°% is nonnegative.
Set B=D Y?AD Y2 = K + 1+ K*. Clearly B is positive definite. Since
(LI+K*)' (221-K) = (LI+K*) ' (JI+K'-K*-1-K)=1-(1+K")"'B,

2Here we use the following result: if A € C**" p and ¢ are polynomials, det(g(A)) # 0, then
p(A)g(A) = q(A)p(A) and p(A)g(A)~" = q(A) 'p(A).
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we get
S,=[I-(CI+K")'B]I-(iI+K)'B].
Hence S, is similar to
BY/2§B-1/2 — - Bl/z(%I+ K*)’lBl/Q] I - Bl/z(%I+ K)’IBI/Q]
=I-B"ir1+K)*'+(I+K)'-(LI+K")'B(l1+ K) B’
=I-BVlI+K)'MI+K+1lI+K -I-K-K*|(XI+K)'B'/?
=1 (- )BVI+ KT (U + K)T B
Here a positive definite matrix is subtracted from I. Thus the eigenvalues of S,
are less than one. O

10.4. Tshebyshev—iteration. Assume that for the problem Ax = b we have
obtained some splitting A = M — N and the corresponding iteration:

Mz, =Nz, +b , E=M"'N.

Let us try to accelerate the iteration in the form

k
Y = E :Vk,j L
j=0

trying to choose the coefficients <, ; such that y, would be a better approximation
to the solution. If x, already happened to be the solution then x, = x for all £,
so that naturally we then want also y, = @ . This we get by requiring Z?:o Vi, = 1
for all k. Then, since x; — x = E’(xy — x) = E’ey, we obtain that the error of
Y, satisfies

k k
(10.5) Y= =) Yy (Xi—x) = 7, Eley=pu(E)ey
=0

j=0

where pg is a polynomial of degree k such that pg(1) = 1. Naturally we would
like to have pj such that |[py(E)||, is small. Consider here only the case where
E is Hermitian and assume further that p(E) < 1, i.e., that the basic iteration
converges, and that we know some bounds for the spectrum of E':

—“I<as< A <--- <)\, <fB<1.

Then FE is unitarily similar to a diagonal matrix: E = QAQ", so that p,(E) =
Qpr(A)Q* . We obtain:

E)|. = )| < M| .
& (E) ||, max |k ( ”—fél[i,’é] [P (A)]
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Problem 10.10. Corresponding to this what do you get for the case of SSOR when
A is Hermitian. Then FE is not symmetric, but it is diagonalizable and has real
eigenvalues.

Now our task is to find a polynomial p, such that py(1) =1 and maxyeja,g |Pk(N)]
is the smallest possible. The solution is found from the Tshebyshev polynomials:

tr (1) = cos(k arccos(T)) .

Lemma 10.12. If ¢ is a polynomial of degree at most k and satisfies |qx(7)| < 1
for all T € [-1,1], then

ar(s) < tr(s) for all s>1.

Proof. Assume the contrary: let ¢, satisfy the assumptions but for some s > 1
holds gx(s) > tx(s). Let p <1 be such that ugg(s) > tx(s). Now

te(r;) = (=1)7, where 1; =cos(jr/k), j=0,...,k
Since |pgg(T)] < p for all 7 €
[—1,1], setting Le
(1) = par(7) — ti(7) ~ ; ~

we get a polynomial of degree k N \tk \ u%\
which changes its sign on each in- \°

terval (7;41,7;). Hence r has k ) L -
zeros on the interval [—1,1] and /w( /o ] / \/

r(1) < 0. Moreover, r(s) >0, so
U

that r has k+ 1 zeros, which is i
impossible.

By mapping the interval [a, ] linearly onto the interval [—1,1] and scaling gives
us the best possible polynomials:

wir) =t (35 7= 520) i (5 5) = o =),

where p:ﬁ, a:%

Formulas

cos((k + 1)0) = cos ) cos kO — sin 0 sin k6
cos((k — 1)0) =cos b cos k6 + sin 0 sin k6
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imply
cos((k + 1)0) + cos((k — 1)0) = 2 cosf cos kb ,

and substitution # = arccos7 gives the following recursion for the Tshebyshev
polynomials:

b1 (7) = 27 tg(7) — te1(7) to(r) =1, ti(r)=r1.

Using this we get the iteration directly for the y, vectors without computing the
basic iteration. From equation (10.5) we get

yp=pi(BE)egtx=_ti(pE—ol)eg+x

and from this t,(p E —ol)ey = cx(y, — ). This and the recursion for the Tsheby-
shev polynomials give

Yit1 ck+1tk+1(,0E —ol)ey+ x

=L (2(ppE—-ol) ty(pE—0oI)—ty_1(pE —ol)) e+ x

T ckt

=_1 (2(pE—U) Ck(yk—a?)_ckfl(yk 1_"3))+""

Ck+1

_ 2cp E Ck—1 ( 20¢y, Ck— 1) 2pcy
-0 1 — LR

Ck+1 (P ) yk Ck+1 yk 1 + + Ck+1 + Ck+1 Ck+1

Equations Ex = M 'Nx =M '(M — A)x =2z — M~'b and

Cr+1 + 20¢, + cp—1 — 2pc = k41 + Cp—1 — 2pcg =0

imply
2 1 20c Ch_
Y1 = s (By+ M7b) = 20y — o=y -
Denote
zp=M'(b- Ay,)= M 'b+ Ey, -y, ,
2 c
v = p_LU = 57a3 and W = 2,ucki1 )
Then
Ck—1 __ 2WCk—Cky1 __ .
Cht1 Ck+1 = “k 1

and the algorithm can be written:
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Tshebyshev iteration:
p=02-—a-p)/B-a), v=2/2-a-p)

Yo =To, Y1 =71
for k=1,2,...
wi = 2 () /tea (1)

Y1 = Wk (Yp — Yp_1 + 7 28) + Ypy
end

Problem 10.11. In fact we don’t need the Tshebyshev polynomials here (except
as a theoretical tool): show, that the numberswy satisfy:
1

=9 | — d < .
Wo ) Wk+1 1— wk/(4,u2) an Wi+1 < W

In the following picture we have solved the problem of example 10.2 in the case
n = 50 with Jacobi, Gauss—Seidel, SOR, SSOR, and with Tshebyshev accelerations
of Jacobi (TshJacobi) and SSOR (TshSSOR). It is clear from the picture which is
the fastest. The dashed line shows the speed of the conjugate gradient method,
which here in the unpreconditioned form does not reveal its power yet.

The picture is not completely fair, since workwise the Jacobi and TshJacobi are
clearly the cheapest per step, Gauss—Seidel and SOR have about the same work per
step, while the work of SSOR and TshSSOR is about twice that much.

toguo(lI7ell,) 0 -~ 7 Gass
~ >3 _
n TshJacobi
-2l \
\
|
-3l |
|
-4t -
|
|
-5} |
|
. . . - L K
0 10 20 30 40 50

Problem 10.12. The symmetric SOR is not directly in the form Ma;,1 = Nx)+
b, so that Tshebyshev iteration cannot be immediately written in the form above.



NUMERICAL LINEAR ALGEBRA; ITERATIVE METHODS 91

How to modify it to become suitable? (A couple of rows in the place of Mz, =
b— Ay, )

Problem 10.13. Experiment the Tshebyshev acceleration of the Jacobi iteration
and the symmetric SOR for problem 10.9.
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11. THE CONJUGATE GRADIENT METHOD

In this section we consider iterative solution of an nxn linear system Ax = b in
the case where A is Hermitian and positive definite. This presentation derives the
conjugate gradient method from the Lanczos algorithm, so that the properties of
the latter become available immediately. The classical way of deriving the conjugate
gradient method is outlined in a sequence of problems.

Consider the minimization of the function f : C* - R

(11.1) flx)=x"Ax —z"b—b"x .

Calculation

f(A'b+d)=(A'b+d)*A(A'b+d)— (A 'b+d)'b—b" (A 'b+d)

=b*A7'(b+ Ad) + d*(b+ Ad) —2b°A7'b— d*b — b*d
=d*'Ad - b"A'b

shows that , = A 'b is a strict minimum of f and the substitution d = —A’l(b—

Azx) gives

(11.2) flx)=(b— Az)*A'(b— Az) —b*A"'D .

11.1. Minimization in the Krylov subspace. Let us start searching the min-
imum of f in the Krylov subspace K; = V(b, Ab,..., A’"'b). Recall that the

columns of the matrix
Qi=[aq .. q]=[b Ab ... A77'B|R"’
form an orthonormal basis of K; and that
AQj = QjTj + ?je? ,

where T'; is the Hermitian tridiagonal matrix produced by the Lanczos algorithm.
We added the tilde: 7; here, since r will be needed for other purposes.

So, the task is to minimize
f(Qv) = v'QjAQ v —v'Qjb —b"Q;v

with respect to v. This has the solution: wv; = (Q;AQj)_lQ;‘-b = Tj_lQ;b,
T; = QjTj’lQ;fb and the corresponding residual satisfies:

r;=b—Az; =b— AQ,T;'Qb= (I - Q,Q))b— 7€l T;'Qib = —n;b¥, ,

OVersion: April 9, 2003
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where n; = QjTj_lej. In particular, the residuals are orthogonal. Since in the
Lanczos f; = ||7;| , we get
—1 _ sl

qj1 = r;/B; = 5 nb and B =
I

The vectors n; satisfy:
so that these are A-orthogonal: k < j =
n,An; = e; T, Qk[Q] + eTT e]ﬁjqﬁl] 0.

Since

Q; 1y
Tj1Qjiy (@1 — ) = ]+1Q]+1Qj+1T]+le+1b Tjn [q*,jl Qjleij
j

. T. o “1o*p
= Qi b— [5]'63? 6]83} [T] OQJ }

Qj+1

Q;b Q;b . .
- [q}‘fjlb gymib| = (Gab = Omblesa =t

and since ;1 —x; € R(Q,,,), we get
(11.3) Tjp1 =5+ VMg
Let us derive a recursion for the vectors n; : if Tjw; = e;, then

T; piej| |=Bjw;| _ 0 — de.
Bi€ej 1 ajy — Bre] w; AR

so that w, 1 = [ Biw; } , where d; = a;41 — fiel w; . We get:
.]

1 —Biw,; B, 1
Njt1 = Qj+1wj+1 = d_ [QJ q]'+1] [ i ‘7} = d—]m + qu-l—l :
j j j
Since g, = b/ ||b|| , we also see that
n;’fb = e;-FTj_lQ;‘-b = ||b|| wTel
n51b = [b]| wj, e; = — [|b]] —w e d—?njb :
j
We can write a recursion in nicer form for the vectors
p; :=d; nj.bn;y, = d; B ;b [ 7 "73 Y dBnh d,f:m T
iP5 T
(11.4) 9

j—1

J
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Then (11.3) implies:
(115) Tjy1 = Ty + PiD; and Tip1 =75 — ijpj .

Since n; ; € R(Q;) and r;_,Q; ; =0, we obtain

r* ')7:—1 r* q; = _”rj_lHQ
Ny TN diBiamy b
from which
4 2
2o 7l Il
J-1 = N < b 2 7, 2
|Bj—1 75_1m; M5B rioim;|
and the coefficients entering the p; we get
2 2 2
(11 6) - ﬁJQ _ HTJ” "’“;_1"73“ _ ||'I“]||
: Ky = 2 20 2112 2
i1 el |ngb) |71l

This is because An; € V(q,,q,,;) implies
niri-1=n;(b— AQ;_vj—1) =n;b.

The coefficient p; of equation (11.5) can be computed directly from the condition
that f(x; + pp;) is minimized when p is p;, so that

x 2
_piri _ lnl
© PiAp;  piAp;
Collecting the equations (11.4) — (11.7) we get

(11.7)

Conjugate Gradient method :

zg=0,7r1=7r90=b,p ;=0
for 53=0,1,2,...
2 2
p = Nlrsll™ /el
P; = WP T T
2 *
pi = llrill” /pj Ap;
Tjy1 = Tj+ PiP;
Tj1 =T1; — p;Ap;

end

Usually the conjugate gradient method is derived in the following way:
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Problem 11.1. The gradient method for minimizing the function f : R* — R is
the iteration:

Tj1 =z — V() , where f(®j1) = gl>1101f(333 —aVf(z))) .

Here we go in the direction opposite to the gradient and minimize a function of
one real variable. Which iteration this gives for minimizing the function f(x) =
sl Az — 2Tb?

In the following picture the steps of the gradient method are in black, those of the
conjugate gradients in grey.

Problem 11.2. Let ;1 = z;+p;p; be some iteration for minimizing the function

f(x) = 2" Ax—x"b, where p; minimizes f(x;+pp;). Assume, that the directions
p; are A-orthogonal: p{ Ap; =0 for all k # j. Show that
Ti) = min To+v).
f(@j41) peviiin fmo +v)

Problem 11.3. Let p, = vy above and p; = r;+pu;p;_;, where p; is chosen such
that pJT_lApj = 0. Show, that the resulting algorithm is the same as the conjugate
gradient method .

The use of the Lanczos process for deriving the conjugate gradient method gives
now the following theorem free, otherwise it would require a lengthy proof.

Theorem 11.1. The conjugate gradient method satisfies:

a) the residuals are orthogonal: vir; =0 for all k # j
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b) wvectors p; t are A—orthogonal: pprj =0 forall k+#)
¢) z; minimizes (b— Ax)*A~'(b— Az) in the subspace K;
d) the iteretion takes at most n steps: r; =0, i.e.,x; = for some j <n.

11.2. Convergence of the conjugate gradient method. denote: |jz|, =
Va* Az . Measuring in this “energy”— norm we get at least the following speed:

)

Theorem 11.2. |z —x;]| 4, <2z 4 (

where kK = A\, /A1 is the condition number of A.

Proof. Since x; = p;j_1(A)b € K;, where p,; ; is polynomial of degree at most
7 — 1, we get:

l — 25l = (A"'6 = p;1(A)b)" A(A™'b — p;_1(A)b)
(b— Ap;1(A)b)" A7 (b — Ap;_.(A)b)
= (b— Az;)*A"'(b— Ax;) = f(z;) —b"A"'b.

Hence x; minimizes also || — «;||, in the subspace K;, so that

. . -1
e —=jll, = min [lz —p(A)b]4 = min [z - Ap(4)A~b],
ain [|lz — Ap(A)z| , i Ip(A)z] o
p(0)=1

Let U perform the unitary transformation of A into a diagonal matrix A =
U*AU . Then

Ip(A)z|y = z*p(A)Ap(A)z = = Up(A)Ap(A)U*z
= )P A ([T )| < max PO D N |(U )|

_ A2 2 2 2
max () flelfa < | max  p(A)" |2l

Again the best polynomial , i.e., the solution of the problem

i A
min max [p(Y)
p(0)=L

is found using the Tshebyshev polynomials with change of variables that maps the
interval [A;, A,] onto [—1,1] (reversing the direction, so that zero is mapped to a
number bigger than one)

An+A 2
tj(/\n—)\i MM 7)

() =
pi{7) t5(3225L)
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Hence the minimum value is:

. o (AntM -1 g (sl
%}]} )\EI[I;\?KM (N[ = tj(/\:—)\l) - tﬂ(ﬁ—l) ’
p(0)=1

where k= \,/A;. By the next problem 7 >1 —

tj(1) > 3(7 + V72— 1)7 . Since
m+1+\/<n+1>2_1_m+1+2\/%_ (WVE+1)?  VE+1

k-1 k-1 k-1 (WE+1)(Ve=1) -1
we get ‘
1 -1y’
(L g (VE ,
k—1 VE+1
which implies the claim. O

Problem 11.4. Show 7> 1 = t,;(7) =

Hint: the t; recursion.

[(T+ V=1 4+ (r—Vr2=1)].

N | —

Problem 11.5. Show, that if A has p distinct eigenvalues, then the conjugate
gradient method stops latest at step p. Hint: the previous proof. Since the full
method is a continuous function of A this implies also, that the method is fast if
the eigenvalues are in small “clusters”.

11.3. Preconditioned conjugate gradients. Let M be Hermitian and positive
definite — some approximation of A — such that the systems My = ¢ are easy to
solve. Then M has a Hermitian and positive definite square root S : M = §? =
S*S . Think of solving by the conjugate gradient method the following equation
that is equivalent to Az = b

Zlizg, where E:S_lAS_l, z=Szandb=S""b.
The iteration for this is:
=0, ,=7ro=b, p_, =0
wi = 7507 /17 Dj = [tjPj 1 + T
pi = 75| /p; Ap, Tjy =T+ p; P,
Ti1 =T;=pj Zﬁj
Now, set z; = S~ 'z;, p, = S”lfoj. Then
r;=b— Az, = Sb— SASxz; =S(b— Az,) = ST,
B = T;S’er/r;_lS’er_l P, = ,5'727“3‘ + Bip; 1
p; =1;87r;/p; Ap; Tj1 =+ p;p;



98

EIROLA AND NEVANLINNA

. a2 . o
Denoting z; = 8™ °r;, i.e., Mz; =r;, we get

Preconditioned conjugate gradient method :

zg=0,7r1=7r90=b,p_ ;=0

for

end

7=0,1,2,...

MZj = ’l"j

Jj = 1525 /T5 1251
D; = KiPj 1 + z;
pi =73%/p, Ap,
Tjr1 = Tj+ pPiP;

Tiy1 =71 — p;ADp;

Problem 11.6. Derive the preconditioned conjugate gradient method for the case,
where M~!'A is Hermitian and positive definite.

Problem 11.7. Prove a version of theorem 11.2 for these preconditioned methods.

In the following picture the Jacobi iteration and SSOR are accelerated by the Tshe-
byshev iteration and by the conjugate gradient method (i.e., the Jacobi and SSOR
matrices M are used as preconditioners). The system is that of example 10.2

matrix.

logio(llxll,) 0

TshJacobi
- 1 L
-2l
- 3 L
-4l CGJacobi
~
-5l
0 10 20 30 40 50 k

For Jacobi both accelerators are about as good, while for SSOR the preconditioned
conjugate gradient is here clearly better. Explain the reason of this from the spectra
of the corresponding iteration matrices in the following figure.
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Jacobi
SSOR
71 + ®

When compared with the Tshebyshev iteration the conjugate gradient method has
the advantage that no parameters are needed.
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12. KRYLOV SUBSPACE ITERATIONS FOR NONSYMMETRIC SYSTEMS

In this section we consider approximation of the solution of the general system of
equations Ax = b by vectors in the Krylov subspace: x; € K;(A,b).

In section 11 the conjugate gradient method was derived from the Lanczos iteration
of a Hermitian matrix. Similarly here we get from the Arnoldi iteration the so called
generalized minimal residual method (GMRes), from the nonsymmetric (biorthog-
onal) Lanczos the biconjugate gradient method (BiCG) and from that, further, the
biconjugate gradient squared method (BiCGS) and from the look ahead Lanczos the
quasiminimal residual method (QMR). Hence the iterations for eigenvalues and for
systems of equations have much in common:

Lanczos ~ Conjugate gradient method (CG)

Arnoldi ~ Generalized minimal residual method (GMRes)
Biorthogonal Lanczos ~ Biconjugate gradient method (BiCG, BiCGS)
Look ahead Lanczos ~ Quasiminimum residual method (QMR)

12.1. Generalized minimal residual method (GMRes). The GMRes method
finds a vector x; € xy + K;(A, rg), that minimizes the norm of the residual r; =
b — Az, . This is obtained using the orthonormal basis of the Krylov subspace
KC;(A,ry) produced by the Arnoldi process.

Let ay be an initial approximation for the problem Axz = b. Set up the Arnoldi
iteration (see section 9.3) with starting vector g, = ro/||ro||, = 70/F, where ro =
b— Axy. Then we get:

= H

AQj = QjHj + hj+1,jq]‘+1e? = Qj+1/H\j ,  where Hj = |: J :| S C(j+1)><j .

0.0 hjy1,;

Since the columns of the matrix Qj = [ql . ..qj} form an orthonormal basis of
K;(A, 7o) we look for the vector @; € @o+K;(A, 7o) in the form z; = xo+ Q,§; .
The solution that minimizes the norm of the residual is obtained from:

[b— A(zo + Q)] = min [b— Az +Q;€)|, = min||ro — Q. Hj¢

= HQjJrl(ﬁ er— Hg)

‘ 2

:minHﬁel—/I-}jg ,
2 £ 2

since Q;;; has orthonormal columns. This is a standard least squares problem
that can be solved using the QR decomposition. So, let H; = S,;U;, where the

OVersion: April 9, 2003
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columns of the matrix §; € CUtD*J are orthonormal and U; € ¢*/ is an upper
triangular matrix. Then by the Pythagorean theorem:

2
=185 (S; Ber—UsE) + BT - 5;8)e;
= || Siper Ul + (I = S;Senll,

Hﬁ ey — ﬁjﬁ

from which &; = fU;'Sje; and the residual r; = b— A(zy + Q;€;) satisfies:

l7illy = B|[(I =838} e, -

In the GMRes method we need not form the intermediate vectors &;, ; and ;.
It suffices to run the Arnoldi process, perform the Q R decompositions of the matri-

ces ﬁj, and monitor when ||(I — SjS;f)61H2 becomes sufficiently small, and then
compute the corresponding iterate.

We get the QR decompositions of the /ﬁj matrices inexpensively using the following
recursion. If H; ; is brought by Givens rotations to the upper triangular form:

- U,_
Gj—l,j- . .GLQHj_l — |: J 1:| ,

0...0

then for the the following we first get:

J-1 ,
Hj,1 w; :| _ w;

0...0 hjt+1,j

Gj—l,j e Gl,Zﬁj == G]’_Lj e Gl,g [

Now the next rotation is chosen such that
o wi | |y

Uj uj] . In each step we need to apply the rotations only

and we set: U; = [ oo

to the new vector [hwj } .

J+1,5

Define the vectors f; as follows fo =03, f;, = G; ;1 [f%]_l] € ¢+ Then €, can

finally be computed directly from the triangular system U;§; = [I 0] f,.
The monitoring of the convergence is simple when the following result is used:

Problem 12.1. Show that  |(f;);1| =8 ||(I — 5,5})e], -
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Hence we get®:
GMRes algorithm:

ry = b—AZL'(), ﬁ = ||Ir0|| , 41 = TO//Ba Ql = [ql]

fo=0e, Uy=]], ready = false, j=1
while not ready
p; = Ag;

for k=1,.,7, hk,j = q};pj y Dj=D; — hk,jqk end
ij2

if hjp1,; #0then g, =p;/hjy1;, Qi = [Q; )41
’lYJj = ijl,j PP G’ngj

YUl oo | W _ Ui,
|:O:| - GJ"H_I |:h]‘+1,j:| ’ UJ - [ 0...0 uj:|
.fj = Gj,j+1fj—1
if (f;)j+1 =0 then ready =true else j=j+1

wj = hyjj, hjoy =]

end
x; =)+ Q, Uj—1 [10] f,

Remark. If hj;; =0 above, then Gj;1; =1 and (f;);;1=0.

A preconditioned GMRes is obtained from this by simply replacing the multiplication
Ag; by M_lqu .

The work load of the Arnoldi iteration increases for each step: at step j in addition
to the matrix-vector multiplication Agq; (or M ’lqu ) we have to compute j
inner products qyp; of length n and j vector updates p;, = p;, — hx;q,. The
inner products and updates require approximately 4jn floating point operations,
i.e., in m steps this work is ~ 2m?n . The flops required for the QR decompositions
are neglible compared to this. Since the work/iteration grows easily too big, the
common way is to stop after a fixed number m of steps, form the vector «,, and
restart the iteration with this initial approximation. This is called the GMRes(m)
algorithm.

On the other hand, since GMRes minimizes the norm of 7;, no other Krylov sub-
space iteration can be faster, when measured in the dimension of the subspace, than
the (full) GMRes. The other methods that we study next try to perform as well as
GMRes, but using much less arithmetic operations.

'The r; vector of the Arnoldi iteration is here D; -
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12.2. Biconjugate gradient method. The biorthogonal Lanczos is much less ex-
pensive than the Arnoldi iteration. If we start the process with vector ry = b— Az,
it proceeds as (see section 9.2):

vi =71/ |Irolly , wi=v1.8=7%=0
aj = w; Av;

r; = Av; — a;v; — Bi1v,1

s; = A'w; — aw; — 7w,

1/2

vi=|sir| 7T, B = siri/y

Vi =715/7, wis =8;/5; .

Writing V; = [vl .. .vj} , W, = [wl .. .wj] and

ar B 1
Mooy B T
T, = o . e ,  T;= [o...o@j} € CUtles
Qi1 ﬁj—l
i Yi-1 @y
we get:
AV, =V, T;, WiV,=1I.

Since the basis v1,...,v; of the Krylov subspace IC;(A,r() is not orthogonal, the
true minimization of the residual can not be done easily here. The biconjugate
gradient method chooses the vector x; € xo+/K;(A, o) such that W7(b— Ax;) =
0. Writing x; = o + V;§; we get:

0=W;(b— A(zo+ V;§;)) = roll,er — WiV, Ti€; = |lroll, €1 — T5€; -

From this we solve &; = [|ro||,T;'e; and get ;. Similarly to the derivation of
the conjugate gradient method from the Lanczos iteration (i.e., a long computation)
also here we get a recursion directly for residuals r; and the change directions p; .
The result is:
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Biconjugate gradient method (BiCG):
ro=b—Azy, 7o =70, V.1 =Ty, P, =D ;=0
for j=0,1,2,...
vi =T1, = v/vio
P; =7t 1Py, P; =T+ [P
p; = v;/P; Ap;
Tjy1 = T+ pPiP;
Tjt1 =T — pjAP;, Tjy1 =7, — p;A'D;
end

Above 7 can be any vector satisfying 7yrq # 0 (like the vector w; in the biorthog-
onal Lanczos).

The biconjugate gradient method inherits the problems of the biorthogonal Lanczos.
First the norms of the residuals behave usually very irregularly. Below is a typical
case:

1og,o([I7xll,)

\
0 20 40 60 80 100 120 k

Here A is a random 100z100 matrix. The dashed line depicts the GMRes iteration.
From the picture we also see that BiCG does not find the solution in n = 100 steps
although theoretically it should. This is due to the loss of biorthogonality caused
by round-off errors.

Second, there may occur divisions by small numbers (zeros) that lead to instabilities.
This can happen in two places:

either p;Ap; =0 or  7r;=0 with r; 0.
Problem 12.2. Show that f);Apj = 0 means that T'; is not invertible.

12.3. Quasiminimal residual method (QMR). The first possible division by
zero in the biconjugate gradient method p;Ap, =0 ( T'; is not invertible) can be
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fixed as follows. Instead of the requirement W7 (b — Ax;) = 0 notice that:
b—Az; =V ;u(|rll,en — Ts§;)

and choose &; to be such that it minimizes the norm of ||ro||,e; — ’_T‘jgj. This
quasiminimization can be done as in the GMRes method: using the QR decompo-
sition, now even more simply, since T'; is a tridiagonal matrix, so that in its QR

decomposition T'; = S,;U; the upper triangular matrix U; has only three diag-
onals different from zero (why?). Direct application of this leads to the following
preliminary version of the quasiminimal residual method

QMR version 0?%:

Ty = b— Amo, V1 =W = T()/ ||T0|| s GUJ =171
o = wjAv,

ry = A’U1 — V1, 81 = A*w1 — 1wy

m=Isiri|, B =siri/m

Vo = "“1/71, Wo = 31/51

[%1] = G1,2 [2] ) f1 = G1,2 [”%0”]

T =Ty + vy U1_1(f1)1
for 7=2,3,...
a; :'w;’fA'vj

r; = Av; — a;v; — B 101, 8j = A'w; — w; — Y 1w; 1

0
w; =Gj1,;Gj 251 |PBj
@
P * . P * . .
Vi = ‘sjr]‘ , By = Sj""J/’YJ

u; w; U._ -
{(]]:| = Gj,j—l—l |:’Yj“7:| , Uj = [ 0:7“01 uj} ) fj = Gj,j+1 {f%) 1:|
x; = oo+ ['vl...'vj] Uj_1 [1 0] I

Vi =15/7, Wiy = 8;/5;
end

In this version we need to store all the vectors wi,...,v;, so that x; could be
computed.

’Remark: here r; is as in the Lanczos algorithm and generally r; # b — Az .
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Problem 12.3. Denote: [pl .. .pj] = ['vl .. .'vj] Uj_1 . Derive a recursion for the

p; vectors. Show that from these we get: x; = z;_1 + (f;); p; .

Using this we get the following:
Myopic QMR.

ro=b— Azy, vi=w, =710/ |0l , P_1 =Py =V =wo =0
Bo=7%=0, Goig=Go1 =1, f,=|r¢

for j=1,2,...
;= 'ij'vJ, r; = Av; — a;v; — B 101, 8j = A"w; — w; — Y 1wj 1
0
w; =Gj1;Gj2;-1 | B
Qj

-0 ] 1-ou 5
P, = [v; — (u;)1 pPj 11— (wj)j1 Pjﬂ]/(uj)j y T =Tj1+ (fj)j b

vi=Isirils Bi=s5rilv. v =71/, wiv = 85/B;

end

Here the memory requirement is more reasonable. In step 7 we need to access only
seven vectors from the previous steps v, 1, v;, w;1, w;, p;_y, p; and z; ;.
From vector f; it suffices to remember only the last component.

This quasiminimization strategy of the residual also fixes the nervous behavior of
the norm of the residual. In the following picture we have added (to the previous
picture) the results (in black) of this QMR version:

logyo([I7xll,)
0

\
0 20 40 60 80 100 120 k

Notice that the slowing down of the convergence due to the loss of orthogonality is
a problem also in this algorithm.



NUMERICAL LINEAR ALGEBRA; ITERATIVE METHODS 107

The other division—by-zero problem of the biconjugate gradient method:
/’I\"/;’I“j =0 with r; # 0

is the basic problem of the biorthogonal Lanczos and it can be fixed only if we base
the method on the look ahead Lanczos. This leads to the genuine QMR method,
but we won’t present it here.

12.4. Biconjugate gradient squared. Return to the biconjugate gradient method.
Let us figure out for what the "dual vectors” 7; and p; are needed: only to compute
the numbers

vi=r;r; and  p;=v;/p;Ap;,
i.e., in two inner products. It is easy to see, that the vectors of this method satisfy
b, = %(A)To ) ﬁj = %‘(A)*?o )
T =¢i(A)re, T =0¢;(A)'T,
where 1; and ¢; are polynomials of degree j. In particular, we get p; and p;

(respectively r; and 7;) using the same polynomial. Let us define an (indefinite)
inner product for polynomials

(9.4) =7Toh(A)"p(A)ro
and the polynomials x(¢) =¢, 1(¢) = 1. Then the biconjugate gradient method for
the polynomials can be written as

Polynomial biconjugate gradient method:
QZSO = 1a v = <(l_507¢0> ) ,QZ)—I =0
for j7=0,1,2,...

vi =05, %) » Hj = V;/vj-1
b = @5+ 1y i
pi = vi/ (¥, x¥;)
Pj+1 = b5 — pj X Vj
end

The biconjugate gradient squared method (BiCGS) starts by noticing (notice) that
the required inner products can be computed also as follows:

vj=(6;,0;) =(L.¢;)  and (¥, x¥) = (1, xv5) -
Let us form the iteration for the polynomials

n; = d)g ) Cj = 77/)]2 3 é-]' = qu,lvbj—l Vi d)jd)j :
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Problem 12.4 (Polynomial BiCGS). Show that for these we get the iteration:

m=1,v=(Lmn), &&=¢1=0
for j=0,1,2,...

vi =(L,m5) , 1 =v;/vja

V=& G & G

pi = v/ (1, x )

i1 =7 —Pi XG5 Mir1 =05 — pi X (Vi + &)
end

Returning back to the iteration of vectors we get an interesting method , where
the transpose of A is not needed and which satisfies: if 77'°C = ¢;(A)ro, then

7799 = ¢;(A)? 1o . In particular, if BiCG converges nicely, then $;(A) has small

norm and BiCGS converges almost twice that fast. Denote:

T = ¢j(A)2"“o =n;(A)ro , p; = Vj(A)rg = ((A)r
d;(A)hi(A)re = 7;(A)ro

|
-
.
>
<
u
T
>
ﬁ
o

Il
72>Y
-~
>
<
o
I
o

I

Problem 12.5. Show that then we get the following

Biconjugate gradient squared method (BiCGS):

ro=b— Axy, T =19, l/71=’l“37°0; P1=¢q,=0
for 57=0,1,2,.
Vi =ToTi, [ = Vj/vj

Uj =T+ [ G5, Pj=Uj+ [ qj*'“?pj*l

V; :Apj: Pj :I/j/?sv]‘

Qi1 == pjVj, Tip=7;—p; A(u;+q;,)

Tj1 =T+ pj(u; +g;4)
end

In comparison with the BiCG method here the multiplication with A* has been
replaced by another multiplication with A. The example of the previous pictures
looks now as follows. Here the dashed line corresponds to GMRes, the grey to BiCG,
and the black to BiCGS.
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logio(lIrlla) 2

\
0 20 40 60 80 100 120 k

Let us take another 100z100 problem, where BiCG works fine. Then BiCGS is even
better:

logio([I7ell,) 2

12.5. On convergence. This was supposed to fill an entire chapter, but let us just
state the following

Theorem 12.1. Let A be diagonalizable : A = XAX ™. Then the GMRes resid-
uals satisfy:

M < ko(X) min  max [p(\)| .
Irall o 2
ol

Problem 12.6. Proof. ... U

And mention that:_
Factum: If A = A+ FE, where the matrix E has rank k, then the corresponding
GMRes iterates satisfy:

7l < 75l
This is good to keep in mind when looking for preconditioners: if a small change in
rank gives a system that is easily solvable then this is sure to give a good precondi-
tioner.
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13. PRECONDITIONING

In the previous chapter we saw that preconditioning may have a drastic effect on the
convergence speed of an iterative solver. In this chapter we look at general strategies
and ideas to build preconditioners.

General preconditioning. Assume we are solving the system of equations
(13.1) Az =0b

and let K and M be matrices somehow close to A and such that the systems
Ky =c and Mz =d are easy to solve. Replace (13.1) by the equation

(13.2) M 'AK 'y=M"b.
Then M is called a left and K a right preconditioner. Form the iteration for the
partition AK'=M - N :

My,.,=Ny,+b=(M—-AK "y, +b,
i.e.,

Y1 =Yy + M (b— AK'y,) .

This converges, if the spectral radius of the matrix I — M 'AK ! is less than
one. Notice, that the matrices K and M are not needed only some routines that
perform the operations v — K~ 'v and v — M 'v. The iteration can then be
accelerated with the Tshebyshev iteration, in the Hermitian case with the precondi-

tioned conjugate gradient method, or in the general case with methods like GMRes,
QMR, CGS, etc.

Generally, the analysis of these iterations show that they are fast in cases where the
iteration matrix is of the form

I-M'AK '=R+F,

where the norm of R is small and the rank of F' is small.

In the sequel we restrict ourselves to consider only left preconditioning, i.e., we
assume, that K = 1.

The general preconditioning strategies can be devided in the following types:

1) Classical preconditioners: M is chosen as in the Jacobi, Gauss Seidel, SOR,
or SSOR iterations.
2) ILU preconditioners (incomplete LU factorization): here M = LU , where

L and U are (sparse) lower and upper triangular matrices such that LU =
A.

OVersion: April 9, 2003
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3) Polynomial preconditioners: here a direct approximation for the inverese of
A is looked for in the polynomial form: H = M~' =p(A) ~ A™".

4) Direct sparse approximation for the inverse: look for H = M ™" from some
nice class such that for example ||I — HA|| is as small as possible.

5) The multigrid idea: an approximate inverse H is constructed from a solver
of a smaller, but similar problem.

6) Other approaches (not considered here) we get, when we look for matrices
somehow close to A and that have certain structure so that the correspond-
ing systems can be easily solved with e.g. circulant or Toeplitz solvers or
using fast Fourier transform.

If the preconditioner is directly a matrix H = M ' we talk about explicit precon-
ditioning, otherwise implicit (i.e., when we solve systems Mz = d).

13.1. ILU preconditioners. Incomplete LU factorizations. Consider first the
LU factorization of a band matriz A having the width u of upper band and [ of
the lower band, in other words, a;; = 0, for j >4 +wu and 7 > j+ 1. The LU
factorization of such a matrix is also banded (check):

A=LU =
—— !
~ =
[ # # - # l 1 A
#AHH# - H# # 1 S TI")
l{ A H l{ HEE | H# o
#E . . . .t _ #E" . e e
# # | = oo ot
#o #H A #o 1 7
L # o A #

The work needed to form this factorization is &~ 2nlu. It is a branch of art, how to
get small [+ u by permutations. This we however won’t study here.

In many sparse cases A has nonzero elements only on some diagonals:
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then, unfortunately, the LU factorization of A is not that sparse but all the grey
areas of the following figure generally become nonzero

/

The idea of the incomplete LU factorization (ILU) is to fix some sparsity structure
for L and U and require, that the equation A = LU holds for the correspond-
ing elements. Usually the structure is chosen to be the same as that of A or
somewhat more dense. So, we choose a set J C {1,...,n}? of index pairs such
that {(i,j) ‘ a;; # 0} C J. Denote M; = {M e Ccrn ‘m” =0, (i,7) ¢ J} and
search for L, U € M (lower and upper triangular matrix, respectively) such that

(LU)Z'J = Q44 for all (’L,]) cJ.

A typical choice in the case of the figure above is

/

The computation of the incomplete LU factorization is done in principle similarly
to that of the full factorization but considering only the index set .J. The existence
of the factorization (pivot elements are nonzero) is generally difficult to guarantee.
Also pivoting techniques become complicated. Some theorems exist for the so called
M-matrices'

Often e.g. due to the lack of pivoting the computation of the ILU factorization can
become very unstable. As a remedy, some modifications have been designed (MILU
= modified ILU) for example such that we add a scalars on the diagonal of U such
that the row sums of LU and A become the same. Another way to try to stabilize
the computation is to perform the ILU for the matrix A+ D , where D is a positive
diagonal matrix.

LA is an M-matrix, if a;; <0 for all i # j and (A ');; >0 forall i,5.
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When A is Hermitian and positive definite, then the ILU is searched in the form
U =L". Then LL" is the incomplete Cholesky factorization of A.

A drawback of the ILU preconditioning is that it is not very suitable for parallel
processing.

Problem 13.1. Test the preconditioned conjugate gradient method in the Problem
10.9 using the incomplete Cholesky factorization as a preconditioner.

13.2. Polynomial preconditioning. In cases, where A (or already slightly pre-
conditioned A) is cheap to apply in a parallel architecture it often pays to try
polynomial preconditioning.

Let be A= M,— N, some converging decomposition, in other words,
p(Eo) = p(Mg'No) < 1.
Then -
Y Ej=I+E\+Ej+---=(I-E)"
=0
This series converges, since in a suitable norm ||[Eg||, < 1, and HE |, < | Bl .

We get:
= [MyI—-M;'Ny)] ™' =T —-E)'M;".

A simple approximation for A™' we get from the trucated series:

=Y E/M,".
§=0
This proposes the preconditioner
H, = (I - My Ay M;" = pu(M;' A)M;!
§=0

where p,, is a polynomial of degree m .

m

Problem 13.2. Show, that above p,,(x Z 7::11 . Hint: show first that
k=0
i\ _ (m+1
> =0
J=0

Another way to construct polynomial preconditioners is to start with the ideal goal
pm(A)A = I. Then p,(A)A =1 for every eigenvalue A of A. Now, if A, ..., Am
are some approximate eigenvalues of A then it sounds reasonable to choose p,, to
be the polynomial that satisfies pm(xj)/)\\j =1,5=1,....m
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For example, if A is Hermitian and positive definite and we start with the conju-
gate gradient method, then the corresponding Lanczos tridiagonal matrix T'; is also
found with little extra work. From this we can get approximations for the eigen-
values and from those a polynomial preconditioner, so that we can continue using a
preconditioned method.

13.3. Direct sparse approximations of the inverse. Explicit well parallelizable
preconditioners can also be looked for in the following way: choose some sparsity
structure J and look for the matrix H € M (see subsection 13.1) for which

11— HA|

is the smallest possible. Since

II - HA|=|I-AH"|;= Z (I - A H"),)" ZHA*h* —e”
,j=1
where h; is the j™ row of H, we see that the minimization reduces to n sparate
problems, each of which has its own sparsity requirement for h; . In the minimization
we have the corresponding rows of A to which we perform for example the QR
factorization. This seems to be expensive workwise, but it parallelizes completely.

13.4. The multigrid idea. This is to construct an approximation for the inverse
from a solver H of a smaller but similar problem.

Here we consider only the cases of Example 10.2 and Problem 10.5, i.e., the Poisson
equation in one and two space dimensions.

The simplest version of the one dimensional equation is
—Uype(z) = f(2), 2€(0,1), u(0)=u(l)=0.
For this we get the discretization
—tgy(ih) = 35[—u(ih — h) + 2u(ih) — u(ih + h)]
where h =1/(n+ 1). The matrix of the corresponding system Awu = b, where
u= (u(h),u(2h),...,u(nh)), b= (f(h), f(2h),..., f(nh)),

2 -1
-1 2 -1
-1 2 -

~1 2
Let n = 2m + 1 be odd and assume, that we can easily solve the corresponding
system At = b (approximately) by u = ﬁ/l;, where the coefficient matrix is
similar but smaller A € R™™ _ The idea is now to use this solver as a preconditioner
for A. Then we have to transform the fine grid problems of size n = 2m + 1, to

becomes

A= € R .

(n+1)2
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problems on the coarser grid, i.e., of sizem and the solutions of the latter back to
n—vectors. In other words the fine grid functions have to be ”projected” on the
coarse grid and functions defined on the latter "extended” on the fine grid. The
latter is done by interpolation. The grids are depicted in the following:

OX1XX
| o °

When v; ~ v(jh) = v(z;) and v; ~ v(j2h) = ¥(Z;), we get using the linear
interpolation:

I NN _
Vojp1 = 5(U5 +Ujq1) , Vg =

Sl

In the matrix language this is

1
B = N =

B[ = b0 =

v=Q,, where Q, = e R,

B[ e D[

D[ = = D] =

The projection could be done simply u; = uy;, but a weighted mean turns out to
be nicer

~ 1
Uj = gluzj 1+ 2ug; + ugj]
since then u = %QlTu, which brings more symmetry in the iteration.

A naive iteration based purely on the multigrid preconditioning would be
Up1 = Ui + %Ql.HQf(b — A’U,k) s

where H ~ A ! (a good symmetric approximation). Here k is the iteration
(not component) index. This however does not work, since in the iteration the
preconditioner has to be invertible. Here the rank of the matrix QlﬁQf is only
m. A working multigrid iteration we get by combining this with a cheap basic
iteration on the fine grid. A good choice turns out to be underrelazed Jacobi:
H = ] diag(A)~". In order to get the full iteration to become based on a symmetric
preconditioner, we perform the Jacobi twice, before and after the coarse grid step.
Denoting Q = %Ql we finally get:
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Multigrid iteration:

vy =ur + H (b— Auy) Jacobi step
w, =v,+ Q /I-TQT (b — Avy) coarse grid step
U1 = wi + H (b— Awy,) Jacobi step

This, in fact, is anly a 2-grid iteration, but if we use the same iteration to build the
solver H we recursively get the genuine multigrid iteration.

Problem 13.3. Show, that the previous iteration can be written w1 = wy +
H (b — Auy,), where

H=2H+C-HAH -CAH -HAC+ HACAH

and C = Q ﬁQT. Hence the preconditioner is symmetric. Show: if p(I — HA) <
1 and if H is positive definite, then also H is positive definite.

Problem 13.4. When the conditions of the previous problem are valid, this works
also as a preconditioner for the conjugate gradient method. How do you write the
preconditioning step?

In the following figure the one dimensional Poisson equation has been solved with
grid sizes h = 0.1, 0.05, 0.025, 0.0125 and 0.00625 , i.e., for n values 9,19, 39,79 and

159, darker ones corresponding to smaller h . Here H= 21_1 . The direct multigrid
iteration is drawn in dots and the preconditioned conjugate gradient method in solid
lines.. The remarkable thing here is that the speed does not seem to depend on h.
How is this with the classic iterations?

logyo([l74[l5) ©
-2¢F

-4t
-6f
-8t
-10¢t
-12¢%

- 14t
0 5 10 15 20
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For the two dimensional Poisson equation

_UCECE(‘ray) - Uyy(l‘,y) = f(x,y), (LE,y) € (0’ 1) X (0’ 1)

we get respectively the discretization:

117

1
— gy (ih, jh) = ﬁ[—u(ih — h,jh) + 2u(ih, jh) — u(ih + h, jh)]

1
—Uyy(ih, jh) = ﬁ[—u(ih,jh — h) + 2u(ih, jh) — u(ih, jh + h)] ,

and the corresponding matrix

T

4

—1 4 4

c Rn2 xn?

Let again n =2m +1 and A € R™**m" he the corresponding smaller matrix. The

grids are depicted in the following

e o o
e O e
e o o
e O o
e o o
e O o
e o o
n-.l-l O e
e o o
1 2 3

e O e Oe Oe O e
® © 06 06 06 0 0 0 o
e O e O e O e O e

e o o
e O e
e o o
e O o
e o o
e O o
e o o
e O 2
e o o

n

Set Viynj; & v(ih,jh) = v(z;,y;) and Ui =~ U(i2h,j2h) = U(Z;,7y;). If Q,
denotes the interpolation matrix of the 1-dim case, then for the present case the

linear interpolation matrix becomes:

[1Q,
Q
%Q1 %Ql
Q
Q2 — %Q1 %.Q1

1
5Q1
1

5Q1

=Q,2Q, eR™.
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Problem 13.5. Show this®.

The projection becomes respectively v = ngv and for @) we take () = %Qg.
Otherwise we proceed similarly as before and the corresponding figure, again with
grid sizes h = 0.1,0.05, 0.025, 0.0125 and 0.00625 (in the last case A is a 25281 x
25281 matrix, but solving this on a PC is no problem) is the following. The speed
is not much worse than in the one dimensional case and it is essentially independent
on h.

10%10(”7%“2) 0

-10¢+

-12¢

2Above we used the Kronecker product: If A € R"*" and B € RP*?  then A® B € R™?>n4 .
(A® B)(ifl)p+k,(j71)q+l = a; ;b -
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