TKK Matematiikan laitos

Arponen/Pursiainen

Mat-1.3651 Numerical Linear Algebra, spring 2008 (Numeerinen matriisilaskenta, kevät 2008)

Exercise 6 (28.2.2008)

These are held in the computer classroom Y339b (close to Y313). Please hand in the exercises marked with an asterisk (*) either to the assistant's folder in front of U313 or latest at the beginning of the exercise. In addition to that, hand in the exercises marked with [Comp. hand-in] in the *next* exercise session (13th March, that is).

- * 1. Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. Show that there exists a Hermitian positive semidefinite P and a $U \in \mathbb{C}^{m \times n}$ with orthonormal columns, such that A = PU. Furthermore: $P^2 = AA^*$. Note: this is called the *polar decomposition* of A, due to reminiscence with that of a complex number $z = r e^{\mathrm{i}\theta}$ where $r \geq 0$ and $|e^{\mathrm{i}\theta}| = 1$.
- * 2. Consider

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1.0001 \\ 1 & 1.0001 \end{pmatrix}, \qquad b = \begin{pmatrix} 2 \\ 0.0001 \\ 4.0001 \end{pmatrix}.$$

- (a) What are the matrices A^+ (pseudoinverse) and P (orthogonal projection to $\mathcal{R}(A)$)?
- (b) Find the exact solutions x and y = Ax to the least squares problem $Ax \approx b$.
- (c) What are $\kappa(A)$, θ , and η from the lectures?
- 3. Consider the polynomial $p(x) = (x-2)^9 = x^9 18x^8 + 144x^7 672x^6 + 2016x^5 4032x^4 + 5376x^3 4608x^2 + 2304x 512$.
 - (a) Plot p(x) for $x = 1.920, 1.921, 1.922, \ldots, 2.080$ evaluating p via its coefficients. (Input the coefficients either by hand or by using expand.)
 - (b) Produce the same plot again, this time evaluating p via the expression $(x-2)^9$.

- 4. [Comp. hand-in] Take m = 50, n = 12. Using Matlab's linspace, define t to be the m-vector corresponding to linearly spaced grid points from 0 to 1. Using Matlab's vander and fliplr, define A to be the m × n matrix associated with least squares fitting on this grid by a polynomial of degree n 1. Take b to be the function cos(4t) evaluated on the grid. Now, calculate and print (to sixteen-digit precision) the least squares coefficient vector x by six methods:
 - (a) Formation and solution of the normal equations, using Matlab's \backslash ,
 - (b) QR factorization computed by mgs (modified Gram-Schmidt, Exercise 4)
 - (c) QR factorization computed by house (Householder triangularization, Exercise 4)
 - (d) QR factorization computed by Matlab's qr (also Householder triangularization),
 - (e) x = A\ b in Matlab (based on QR)
 - (f) SVD, using Matlab's svd.
 - (g) Compare and comment the results from (a)-(f).
- 5. [Comp. hand-in] Here we stick to the real matrices. A random square matrix is an $m \times m$ matrix whose entries are random numbers, independently sampled from the normal distribution with zero mean and standard deviation $m^{-1/2}$. Explore certain properties of random matrices. In Matlab, use A = randn(m,m)/sqrt(m).
 - (a) The factor $m^{-1/2}$ gives "normalized" results as $m \to \infty$. Test this by looking at the matrix norms with/without the normalization, for example:

```
for m=1:100,
for j=1:10,
nor(m,j)=norm(randn(m,m));
nor2(m,j)=nor(m,j)/sqrt(m);
end,end
```

- What do you observe? (Naturally, you modify the program as you find suitable.)
- (b) What do the eigenvalues of a random matrix look like? What happens, if you take e.g. 100 random matrices and plot their eigenvalues in a single picture? Do this for $m = 8, 16, 32, \ldots$ and comment on the pattern. How does the spectral radius (Exercise 2) $\rho(A)$ behave as $m \to \infty$?
- (c) How does the 2-norm of a random matrix behave as $m \to \infty$? We know that $\rho(A) \le ||A||$, does this appear to approach an equality?
- (d) How about the smallest singular values σ_{\min} (which are quite like the condition numbers)? First, fix m and see what proportions of random matrices seem to have $\sigma_{\min} \leq \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$. Then, how does the situation change as m changes?
- (e) How do the answers to (b)-(d) change if we use random triangular matrices instead of the full ones? (Matlab's triu might be useful.)
- 6. Experiments show that random triangular matrices with entries ± 1 are exponentially ill-conditioned in the following sense: if $A \in \mathbb{C}^{m \times m}$ is such a matrix and κ_m denotes its 2-norm condition number, then $\lim_{m \to \infty} (\kappa_m)^{1/m} = C$ for some constant 1 < C < 1.5. Perform numerical experiments involving random matrices of various dimensions to estimate C to at least 10% accuracy.