The Geometry of Eigenanalysis
with Applications to Structural Stability

Computational eigenproblem solving methods for non-linear systems can be
broadly divided in two categories: direct methods and approximative methods.
After briefly recalling those classical methods of linear algebra, we shall make
an attempt to interpret geometrically the algebraic objects involved. Whenever
the eigenvector solution can be interpreted as either the primary tangent di-
rection or the branching tangent direction to the equilibrium set at a singular
point, then it makes sense to asses the sensitivity of the eigenvector solution
with respect to the entries of the singular jacobian matrix. As we shall see, the
sensitivity of the eigenvector depends essentially on the geometry of the singu-
lar matrix submanifold embedded in the ambient matrix space. Therefore by
investigating the neighbourhood - on the submanifold - of a singular jacobian
matrix associated to a given physical system, we can actually evaluate a priori
the error with respect to the eigenvector.

For an engineer doing structural stability analysis, the eigenvector represents
a buckling mode for a geometrically perfect system. The investigation of initial
imperfection sensitivity therefore relies on a correct assumption of the previously
computed buckling mode. However, in engineering applications eigenvectors to
non-linear eigenproblems are solved very often in an approximative way, which
places the a-priori eigenvector error analysis to an incontournable position.

Computational eigenanalysis by direct methods

By direct methods we designate computational methods which use a variant
of the Newton’s method to solve the system of equations build up from the
equilibrium equations augmented by the criticality condition and a well chosen
normalization condition for the eigenvector. In the particular case of a limit
point, such an augmented system of equations is often referred to in the litera-
ture as the Moore-Spence system [7, 2], although the Keener-Keller method [3]
often pops up as well. The study of numerical methods for solving eigenprob-
lems related to more complex bifurcation points has also received due attention
[4, 5, 10, 6], even though there are still many pending questions.

Note that for an eigenproblem associated to a limit point, the initial guess
can be obtained by following numerically the primary equilibrium path close
enough to the limit point: the initial guess then consists of the concatenation
of a regular point on the equilibrium path and a tangent vector at that point.
As far as symmetric pitchfork bifurcation points are concerned, the eigenvector
associated to the criticality condition can be interpreted geometrically as the
generator of the branching direction. Since it is impossible to predict numeri-
cally the branching direction from a regular point on the primary equilibrium
branch we have no other choice than to take an initial guess consisting of a
regular point on the primary branch and a random eigenvector. As a corollary
we can not fully control the convergence of Newton’s method, and it is one of
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the reasons why direct methods have not been yet implemented in commercial
finite element packages.

Computational eigenanalysis by approximative methods

In contrast to direct methods, approximative methods do not inherently intend
to give exact solutions to non-linear eigenproblems with arbitrary precision.
Approximative methods are based on truncated Taylor series of the equilibrium
and criticality conditions with respect to the critical parameter and evaluated
at the reference state. Polynomial eigenproblems can always be reformulated as
generalized linear eigenproblems for which robust solvers are available. This is a
reason why in commercial finite element packages the standard solution for non-
linear eigenproblems is the linearisation, i.e. Taylor series of the eigenproblem
truncated after the first term. Although linearised eigenproblem solvers are
robust and always give real valued solutions for conservative systems, it is often
hard to interpret the meaning of those solutions with respect to the original
non-linear system.

Geometric interpretation of equilibrium states

Equilibrium states of parameter dependent dynamical systems can be defined as
the set of all steady state solutions for authorized external parameter values. If
we restrict ourselves to finite dimensional systems, either inherently or due to a
discretization process, the equilibrium set is then the zero set of a smooth vector
valued map defined on the configuration manifold. Note that if the equilibrium
defining map is a polynomial, then the equilibrium set is an algebraic variety.
On the other hand, if the equilibrium defining map is a submersion, then the
equilibrium set is a smooth manifold. Investigation of neighbourhoods of regular
points on the equilibrium set can therefore be conducted using standard smooth
manifold theory, but if we want to investigate neighbourhoods of singular points
in full generality and extent using tools from algebraic geometry we have to
restrict our equilibrium defining maps to polynomial ones.

Singularity theory [8, 9, 1] trades some of the generality by restricting the
investigation to transversal singularities, which then enables to develop results
similar to algebraic geometry for smooth equilibrium defining maps. Classical
approaches in singularity theory heavily rely on a technique called the Lyapunov-
Schmidt reduction, which enables to investigate some properties of singular
points in multi-dimensional or Banach spaces by investigating the corresponding
properties in reduced - two dimensional - spaces. It can be shown that in
the neighbourhood of a singular point each individual equilibrium branch is
diffeomorphic to it’s counterpart in the reduced space, and additionally that
transversality is preserved by the Lyapunov-Schmidt reduction. This important
proposition enables us to locally identify the equilibrium set in the state space
with its image in the reduced space. In particular tangent cones in the state
space and in the reduced space can be identified.
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Although it is possible to develop computational algorithms based on sin-
gularity theory such that they directly compute the tangent cone at a singular
equilibrium point, that sort of approach necessitates the computation of second
order derivatives of the equilibrium defining map. Is it possible to get some
information about the tangent cone without the computation of second order
derivatives? It turns out that yes, it is in some special cases. First note that in
the case of a limit point, which is not a singular point in the geometric sense,
the tangent space to the primary branch is equal to the kernel of the jacobian
matrix at that point. It can be also shown that if two equilibrium branches in-
tersect orthogonally in the state space, then the tangent space to the secondary
branch is equal to the kernel of the jacobian matrix. In particular the case of
symmetric pitchfork bifurcation falls into this category, where the branching
direction can be identified with the eigenvector to the singular jacobian matrix.

A-priori eigenvector error analysis

Assuming that the branching direction can be identified with the eigenvector and
that the eigenproblem is solved in an approximate way, it is of great interest
to know a-priori, i.e. without computing the exact solution, how much the
approximately found branching direction differs form the exact one. It can
be shown that the unit length eigenvector can be computed from the entries
of the singular jacobian matrix, and therefore that it makes sense to define a
unit eigenvector map defined on the singular matrix submanifold. We shall then
define the unit eigenvector error map between two points on the singular matrix
submanifold as the angle between the two corresponding unit eigenvectors. Note
that this error map would correspond to an a-posteriori error analysis since we
need to know both points.

For an a-priori error analysis, we have to choose one center point and com-
pute the error map with respect to a point lying on a geodesic sphere of radius
e around the center point. One can then compute minimum, maximum and
average error values at a distance e form the center point. It can be shown
that there are some locations on the singular matrix submanifold that are more
error prone than others. In particular, neighbourhoods of points of higher rank
deficiency, which are points on the boundary of the singular - rank deficient 1 -
matrix submanifolds, constitute risk zones for approximate eigenanalysis.

The particular case of 2 x 2 real symmetric matrices provide us an illustrative
example of how things work in higher dimensions. Figure shows two case of
behaviour of the unit eigenvector map defined on the singular matrix submani-
fold M of symmetric 2 x 2 rank 1 matrices. On the left, we have considered the
case where the center point A € M is far from the set of higher rank deficiency
matrices C. The image of the geodesic sphere S by the unit eigenvector map
q is then concentrated around the image point g(A). On the right we have
considered the case when the center point is close to the set C. In this case we
can observe a high deviation of points from the image set g(S) compared to the
reference point q(A).
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Figure 1: Cases of behaviour of the unit eigenvector map in a small neighbor-
hood

If we consider € the radius of the A-centred geodesic sphere S and p the
shortest distance from the center point A to the set of higher rank deficiency
matrices C, then we may plot maximum, minimum and average errors versus
the relative distance €/p, as we did in Figure .
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Figure 2: Maximum, minimum and average eigenvector error plot

Although the minimum error is a constant zero function, it is easy to see
a qualitative jump in the maximum and average error at the relative distance
e/p =1, aresult which corroborates with the claims that we have set previously
forth.
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