Sec. 8.8 Implicit Methods

With the same step size, 0.1, the corresponding errors are given below.

tn Error tn Error
0.1 0.050 1.1 15.93
0.2 0.337 1.2 13.25
0.3 1123 e 10.18
0.4 2.642 1.4 7.28
0.5 5.328 1.5 4.87
0.6 8.909 1.6 3.06
0.7 12,731 1.7 1.81
0.8 15.899 1.8 1.01
0.9 17617 1.9 0.54
LU 17.570 2.0 0.27
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Referring to Figure 8.3 we see that when ¢ < 1, being above the correct solution is more
serious than being below. By studying Figure 8.6 convince yourself that BE wiil place y,
above y(t;) thus moving above the correct solution curve, but EM will be below it. Hence
we expect BE to be less accurate than EM on this particular problem. These expectations

are reflected in the errors listed for this example. W

Figure 8.6 Graphical Interpretation of EM, BE and TR
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Fig. 6.4. Local and global discretization errors for an unstable differential
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Euler’s Method: (a) Becomes Unstable, (b) On A Stiff Problem
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15.1 Runge-Kutta Method
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Figure 15.1.1. Euler’s method. In this simplest (and least-accurate) method for integrating
an ODE, the derivative at the starting point of each interval is extrapolated to find the
next function value. The method has first-order accuracy.
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Figure 15.1.2. Midpoint method. Second order
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accuracy is obtained by using the initial

derivative at each step to find a point halfway across the interyal, then using the midpoint
derivative across the full width of the interval, In the figure, filled dots represent final

function values, while

open_dots represent function values that are discarded once their
!%’—— i o ——

erivatives have been calculated and used.

As indicated in the error term, this symmetrization cancels

out the first order

error term, making the method second order. [A method is conventionally
called n** order if its error term is O(h™*1).] In fact, (15.1.2) is called the
second-order Runge-Kutta or midpoint method.

We needn’t stop there. There are many

ways to evaluate the right-hand

side f'(z,y) which all agree to first order, but which have different coeffi-
cients of higher-order error terms. Adding up the right combination of these,

we can eliminate the error terms order

by order. That is the basic idea of
e ——

the Runge-Kutta method. Abramowitz and Stegun, and Gear,

give various

specific formulas which derive from this basic idea. By far the r
used, and arguably even most useful, is the fourth-order Runge-Kutta for-
* mula, which has a certain sleekness of organization about it:

most often

}
k1 = B (2 yn) |
ko =hf,($n+g,?/n+%
b = hf'(an + 3,00+ 2)
ks = hf'(zn + h,yn + ks) fl
L
i

The Avt of fei. Gmp. ||

e e
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