1. Kanta, dimensio

Lay 2.9, 4.5, 4.6
http://math.tkk.fi/opetus/k3/03/L/LA2.html\#Kanta ja dimensio KRE 7.5. s. 354

Ajattelemme \mathbb{R}^{n} :n aliavaruutta H. Aivan samat päättelyt pätevät yleisemminkin mielivaltaisessa ("äärellisulotteisessa") vektoriavaruudessa.

- Kanta Vektorijoukko, joka virittää ja on LRT.
- LA2/Lause 1 Esitys kannan avulla on yksikäsitteinen.
- LA2/Lause 2 Avaruuden H jokaisessa kannassa on yhtä monta vektoria.
- LA2/Määritelmä (dimensio) Kannan (minkä tahansa) vektorien lukumäärä.

Kannaksi laajentaminen ja karsiminen

- LA2/Lemma 1 (LRT-lemma) Jos vektorijoukko $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\} \subset H$ on LRT ja jokin $\vec{v} \in H$ ei ole näiden lineaarikombinaatio, niin joukko $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}, \vec{v}\right\}$ on LRT.
(Vrt. Lay 4.3 Theorem 5 (The spanning set theorem)
- LA2/Lause (kannaksi laajentaminen) Aliavaruuden $H \subset \mathbb{R}^{n}$ LRT joukko voidaan laajentaa H :n kannaksi.
Tod: Käytetään (toistuvasti) LRT-lemmaa.
- LA2/Lause (kannaksi karsiminen) Aliavaruuden $H \subset \mathbb{R}^{n}$ virittävä joukko voidaan karsia H :n kannaksi.
Tod: Käytetään (toistuvasti) LRT-lemmaa.
- Lay 4.5 s. 259 /The basis theorem (kantalause)

Olkoon $H p$-dimensioinen (ali)avaruus.

1. Jokainen $p:$ n vektorin LRT joukko on H :n kanta.
2. Jokainen $p:$ n vektorin virittävä joukko on H :n kanta.

Tod: 1. Olkoon $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ LRT. Jos se ei virittäisi, voitaisiin se laajentaa H :n kannaksi. Ristiriita lauseen 2 kanssa.
2. Virittäköön $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\} H:$. Jos se ei olisi LRT, se voitaisiin karsia kannaksi, jälleen ristiriita lauseen 2 kanssa.
(Molemmissa päättelyissä pärjätään LRT-lemmalla, yksi askel riittää.)

Rangi, nulliteetti, peruslause

Perjantain (10.11.) luennolla ratkaistiin eräs $A \vec{x}=\overrightarrow{0}$ ja muodostettiin nolla-avaruuden $\mathrm{N}(A)$ kanta. Kertaukseksi vaikka LA3:n alku ("Nolla-avaruus"). Nähtiin, että $N(A)$:n kantavektoreita on yhtä monta kuin vapaita muttujia.

Avaruus	Dimensio
Nolla-avaruus N(A)	nulliteetti, $n(A)$
Sarakeavaruus col (A)	rangi, $r(A)$
Riviavaruus row (A)	rangi, $r(A)$

Sarakeavaruus ja sen dimensio

Viimeksi (pe) laskettiin ja todettiin:

1. Rivioperaatioissa sarakkeiden LRT/LRV-käytös säilyy.
2. Tukisarakkeet ovat LRT.
3. Ei-tukisarake voidaan lausua tukisarakkeiden lineaarikombinaationa.
4. Lausutaan LRT/LRV-vektoriyhtälö rivimuodossa $A \vec{c}=\overrightarrow{0}$. Ratkaisut säilyvät samoina rivioperaatioissa, ja sitten vaan takaisin vektorimuotoon.
5. Irrotetaan tukisarakkeet omaksi matrisikseen. Silloin kaikki sarakkeet ovat tukisarakkeita ja siis (HY):n ratkaisu on yksikäsitteinen. (Tai päätellään ihan suoraan "takaisinsijoittamalla".)
6. Irrotetaan matriisista tukisarakkeet kerroinmatriisiksi ja sijoitetaan haluttu mielivaltaisesti valittu ei-tukisarake yhtälösysteemin oikeaksi puoleksi. No, systeemihän on konsistentti, kun viimeinen sarake ei ole tukisarake, joten ko. ei-tukisarake on tukisarakkeiden lineaarikombinaatio.

Riviavaruus

Lause Jos A ja B ovat riviekvivalentit, niin $\operatorname{row}(A)=\operatorname{row}(B)$.

Tod: Koska B :n rivit ovat A :n rivien lineaarikombinaatioita, niin B :n rivivektorit kuuluvat viritelmään $\operatorname{row}(A)$, joten myös $\operatorname{row}(B) \subset \operatorname{row}(A)$. Mutta aivan yhtä hyvin kääntäen.
Lause Riviavaruuden kannan muodostavat ref(A):n nollasta poikkeavat (siis tuki-)rivit. Siten todellakin rivi- ja sarakeavaruuksilla on sama dimensio.
Tod: Tukirivit ovat LRT aivan samalla päättelyllä kuin tukisarakkeet. (Tukirivit ovat transpoosin tukisarakkeita.) Tukirivit ovat siis sekä LRT että virittävät (edellisen perusteella), ja muodostavat siten $\operatorname{row}(A): n$ kannan.
Huom! Rivioperaatioissa rivivektoreille säilyy viritys, muttei LRT.
Rivioperaatioissa sarakevektoreille säilyy LRT, muttei viritys.

Yhteenveto laskentaan:

$$
\begin{aligned}
& \mathrm{N}(A): \text { Ratkaistaan } A \vec{x}=\overrightarrow{0}, \text { kantavekt.: Yksi kutakin vap. muutt. kohti } \\
& \operatorname{col}(A): \text { Kanta: Tukisarakkeet poimitaan alkuperäisestä matriisista } \\
& \text { (ref-muodon vastaavat eivät yleensä viritä). } \\
& \text { row }(A) \text { : Kanta: ref-muodon ei-nollarivit. } \\
& \text { (Alkuperäisen vastaavat eivät välttämättä LRT.) }
\end{aligned}
$$

Edellisen perusteella meille putoaa:
Lause[Rangilause] (KRE s. 333 Thm 1) Matriisin A rangi $r(A)$ (joka määritellään sarakeavaruuden dimensioksi) $=$ riviavaruuden dimensio. Toisin sanoen matriisin rangi on
maksimi määrä LRT sarakkeita $=$ maks määrä LRT rivejä.
Erityisesti neliömatriisilla pätee: Rivit LRT \Longleftrightarrow sarakkeet LRT.
(Tätä olen usein kutsunut "lineaarialgebran ihmeeksi".)
Lause[Lineaarialgebran peruslause]
Olkoon $A(m \times n)$-matriisi.

$$
n(A)+r(A)=n .
$$

Tod: Tämäkin on jo perusteltu. Kerran vielä; sarakkeita on kahdenlaisia: tukisarakkeita ja ei-tuki- eli vapaiden muuttujien sarakkeita.

Neliömatrisiit: Determinantit ja käänteismatriisi

A olkoon $(n \times n)$ neliömatriisi
Determinantit, kts. http://math.tkk.fi/opetus/k3/04/L/DetInv.pdf
Determinantin kehittämislaskelma, 25×25-matriisi. Kertolaskuja ~ 25 !.
Gaussilla $\sim 25^{3}$
octave:23> oper=factorial(25)
oper $=1.5511 \mathrm{e}+25$
octave:22> tera=10~12;
octave:25> sek=oper/tera
sek $=1.5511 \mathrm{e}+13$
octave:27> vuosia=sek/3600/24/365
vuosia $=4.9186 \mathrm{e}+05 \quad \% \mathrm{n} .500000$ vuotta
octave:28> gauss=25~3
gauss = 15625
octave:29> gauss/tera
ans $=1.5625 \mathrm{e}-08 \quad \%$ Gaussilla hujahtaa $1 /(100000000)$ sekunnissa.
Algoritmillä on väliä!

Käänteismatriisi

Määr: $A(n \times n)$ on kääntyvä, (ei-singulaarinen, säännöllinen), jos on olemassa $B(n \times n$ siten että

$$
A B=B A=I,
$$

missä I on $\vec{n} \times n$-yksikkömatriisi. Merk $B=A^{-1}$.
Huom: Jos $\exists A^{-1}$, niin se on yksikäsitteinen: Olkoot B ja C kaksi käänteismatriisia.

$$
B=I B=(C A) B=C(A B)=C I=C
$$

Lause 1[Kääntyvyys ja rangi]

$$
A \text { on kääntyvä } \Longleftrightarrow r(A)=n
$$

Tod: 1. Oletetaan kääntyvyys. Tarkastellaan (HY):ä $A \vec{x}=\overrightarrow{0}$. Kerrotaan puolittain A^{-1} :llä, ja saadaan: $x=A^{-1} \overrightarrow{0}=\overrightarrow{0}$. Siis (HY):llä vain triv. ratk (ja ratk. siis yksikäs), joten jokainen sarake on tukisarake.
2. Oletetaan: $r(A)=n$. Tällöin yhtälöllä $A \vec{x}=\vec{b}$ on yksikäsitteinen ratkaisu kaikilla $\vec{b} \in \mathbb{R}^{n}$. (Matriisin sarakkeet muodostavat $\mathbb{R}^{n}:$ n kannan.)
Valitaan $\vec{b}=\vec{e}_{j}, \quad j=1, \ldots, n$.
Ratkaisuvektorit \vec{x}_{j} ladotaan sarakkeiksi: $X=\left[\vec{x}_{1} \ldots \vec{x}_{n}\right]$.
Tällöin $A X=I$.
Onko myös $X A=I$?
Yksityiskohdat luennolla.
Huom! Edellisestä todistuksesta seuraa: Toinen ehdoista $A B=I$ tai $B A=I$ riittää käänteismatriisille.
Lause 2 [Kääntyvyys ja determinantti]

$$
A \text { on kääntyvä } \Longleftrightarrow \operatorname{det}(A) \neq 0 .
$$

Tod: Rivioperaatiot eivät muuta rangia eivätkä determinantin 0 -käytöstä. $r(A)=n \Longleftrightarrow \operatorname{ref}(A)$:n kaikki sarakkeet tukisarakkeita $\Longleftrightarrow \operatorname{ref}(A)$:n kaikki
diagonaalialkiot $\neq 0 \Longleftrightarrow \operatorname{det}(A) \neq 0$.
$\operatorname{det}(A)=C d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n}, \quad C \neq 0$.
Lause 3[Tulo ja transpoosi]

1. Jos A on kääntyvä, niin myös A^{-1} on kääntyvä ja

$$
\left(A^{-1}\right)^{-1}=A
$$

2. Jos A ja B kääntyviä, niin $A B$ kääntyvä ja $(A B)^{-1}=B^{-1} A^{-1}$.
3. Jos A on kääntyvä, niin myös A^{T} on kääntyvä ja $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Tod. Kerrotaan vaikka oikealta ko. "kandidaatilla"
Nyt voidaan koota sopiva versio "käänteismatriisilauseeksi".

Käänteismatriisilause (Layssa monta versiota eri paikoissa)
Seuraavat ovat yhtäpitävät $(A(n \times n))$:

1. A on kääntyvä
2. $r(A)=n$
3. $\operatorname{det}(A) \neq 0$
4. $N(A)=\{0\}(n(A)=0)$
5. A :n sarakkeet ovat LRT (\Longleftrightarrow) virittävät $\mathbb{R}^{n}: n$
6. A :n rivit ovat LRT (\Longleftrightarrow) virittävät $\mathbb{R}^{n}: n$
7. (HY):llä $A \vec{x}=\overrightarrow{0}$ vain triviaaliratk. $\vec{x}=\overrightarrow{0}$
8. (EHY):llä $A \vec{x}=\vec{b}$ on ratkaisu $\forall \vec{b} \in \mathbb{R}^{n}$

Käänteismatriisikaavat ja laskenta

Determinanttien avulla voidaan esittää kaunis ratkaisukaava käänteismatriisille ja yhtälösysteemille. Pienillä $n(n=2, \quad n=3)$ voivat olla käteviä. Suuremmilla hyödyttömiä. (Ellei ole aikaa odotella 500000 vuotta.)

Tarvitaanko käänteismatriisin laskemista?
Yleensä ei! Käänteismatriisi on teoreettisena välineenä hyödyllinen matriisilausekkeissa. Käytännössä sitä voitaisiin soveltaa yhtälösysteemin ratkaisukaavana $\vec{x}=A^{-1} \vec{b}$. Mutta tämä on tehotonta ja numeerisesti epätarkempaa kuin suora ratkaisu.
Entä, jos oikeita puolia on paljon? No ei silloinkaan, vaan esim. LU-hajotelma.

