1.8 Lineaarikuvaukset, johdatus

Toinen tapa katsoa yhtälöä $A \mathbf{x}=\mathbf{b}$:

Matriisi A on objekti, joka operoi argumenttivektoriin x matriisikertolaskun välityksellä. Tuloksena on uusi vektori $\mathbf{y}=A \mathbf{x}$.

Esim:

$$
\left[\begin{array}{cc}
2 & -4 \\
3 & -6 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-12 \\
-4
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
2 & -4 \\
3 & -6 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Olkoon A is $m \times n$. Yhtälön $A \mathbf{x}=\mathbf{b}$ ratkaiseminen tarkoittaa kaikkien vektorien $\mathbf{x} \in \mathbb{R}^{n}$ etsimistä, jotka kuvautuvat vektorille \mathbf{b} matriisilla A kerrottaessa.

Matriisikuvaukset Kuvaus (funktio) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ on sääntö, joka liittää jokaiseen $\mathbf{x} \in \mathbb{R}^{n}$ vektorin $\mathbf{y}=T(\mathbf{x}) \in \mathbb{R}^{m}$.

$$
\begin{aligned}
\text { Kuvaustermejä } & T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: \\
\mathbb{R}^{n} \text { - määrittelyjoukko } & \mathbb{R}^{m} \text { - maalijoukko }
\end{aligned}
$$

$T(\mathbf{x}) \in \mathbb{R}^{m}$ on $\mathbf{x}: n$ kuva kuvauksessa T.
Kaikkien kuvien $T(\mathbf{x})$ joukko on T :n kuvajoukko, "range"

Esim: Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$. Määritellään kuvaus $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{3} ; T(\mathbf{x})=A \mathbf{x}$.
Jos vaikkapa $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, niin $T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]$

Esim: Olkoon $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -5 & 10 & -15\end{array}\right], \mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}2 \\ -10\end{array}\right]$ ja $\mathbf{c}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.
Määritellään kuvaus $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, T(\mathbf{x})=A \mathbf{x}$.
a. Määritä $\mathbf{x} \in \mathbb{R}^{3}$, jonka kuva kuvauksessa T on \mathbf{b}.
b. Onko useampia kuin yksi \mathbf{x}, jonka kuva kuvauksessa T on \mathbf{b}. (yksikäsitteisyysongelma)
c. Selvitä, onko c kuvauksen T kuvajoukossa. (olemassaolo-ongelma)

$$
\left[\begin{array}{rrr}
1 & -2 & 3 \\
-5 & 10 & -15
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-10
\end{array}\right]
$$

Liitännäismatriisi:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
-5 & 10 & -15 & -10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=2 x_{2}-3 x_{3}+2 \\
& x_{2} \text { on vapaa } \\
& x_{3} \text { on vapaa }
\end{aligned}
$$

Valitaan jotkin arvot vapaille muuttujille: Olkoot $x_{2}=$ \qquad ja $x_{3}=$ \qquad . Silloin

$$
\begin{gathered}
x_{1}=---\cdot \\
\text { Ja siis } \mathbf{x}=\left[\begin{array}{c}
\\
\end{array}\right]
\end{gathered}
$$

(b) Onko olemassa \mathbf{x} jolle $T(\mathbf{x})=\mathbf{b}$?

Vapaita muuttujia on $\quad \Longrightarrow \quad$ On olemassa useita \mathbf{x} joille $T(\mathbf{x})=\mathbf{b}$
(c) Onko olemassa \mathbf{x}, jolle $T(\mathbf{x})=\mathbf{c}$? Ts. onko $A \mathbf{x}=\mathbf{c}$

No selvitä! Huomaa, että (b)- ja (c)-kohdat voitaisiin ratkaista yhtäaikaa laittamalla molemmat sarakkeiksi liitännäismatriisin loppuun.

Matriisikuvauksilla on monia sovelluksia - esimerkiksi tietokonegrafikassa.

Esim 1: $\quad A=\left[\begin{array}{rr}.5 & 0 \\ 0 & .5\end{array}\right]$. Kuvaus $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} T(\mathbf{x})=A \mathbf{x}$ on esimerkki kontraktiokuvauksesta.

Jos $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$, niin

$$
A \mathbf{x}=0.5 \mathrm{x}
$$

Miten kuvautuu O-keskinen ympyrä?
Miten kuvautuu yksikköneliö , jonka kärki on origossa?
Jne.

Esim 2: $\quad A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] . \operatorname{Jos} \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, niin $A \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right]$.
\mathbb{R}^{3} :n pisteen \mathbf{x} projektio $x_{1} x_{2}-$ tasoon,

$$
\left[x_{1}, x_{2}, x_{3}\right] \mapsto\left[x_{1}, x_{2}\right]
$$

Esim 3: $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \quad A\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+3 x_{2} \\ x_{2}\end{array}\right]$
x_{2}-koordinaatti pysyy samana, x_{1}-koordinaatti liukuu.

Matlab/Octave-sessio
>> nx=[0 22200$] ; n y=\left[\begin{array}{lllll}0 & 0 & 2 & 2 & 0\end{array}\right] ;$
>> plot(nx, ny)
>> axis([-. 5 2.5 -. 5 2.5])
>> nelio=[nx;ny]

```
nelio =
\begin{tabular}{lllll}
0 & 2 & 2 & 0 & 0 \\
0 & 0 & 2 & 2 & 0
\end{tabular}
>> kuva=A*nelio
kuva =
\begin{tabular}{lllll}
0 & 2 & 8 & 6 & 0 \\
0 & 0 & 2 & 2 & 0
\end{tabular}
>> figure;plot(kuva(1,:),kuva(2,:))
>> axis([-.5 9 -. 5 2.5])
```

Tämäntyyppinen kuvaus on nimeltään "shear", "leikkaus" tai ehkä "liu'utus". Sovellusalueita: Fysiikka yleisesti, geologia, kristallografia.

Lineaarikuvaukset Jos A on $m \times n$, niin matriisikuvauksella $T(\mathbf{x})=A \mathbf{x}$ on seuraavat ominaisuudet:

$$
\begin{gathered}
T(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v} \\
={ }_{----}^{+}+---- \\
T(c \mathbf{u})=A(c \mathbf{u})=_{---} A \mathbf{u}=_{---} T(\mathbf{u})
\end{gathered}
$$

kaikilla $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ ja kaikilla skalaareilla c.

Määritelmä

Kuvaus T on lineaarinen jos:
i. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} T$:n määrittelyjoukossa.
ii. $T(c \mathbf{u})=c T(\mathbf{u})$ kaikilla $\mathbf{u} T$:n määrittelyjoukossa ja kaikilla skalaareilla c.

Jokainen matriisikuvaus on lineaarinen .

Ominaisuuksia Jos T on lineaarikuvaus, niin

$$
T(\mathbf{0})=\mathbf{0} \quad \text { ja } \quad T(c \mathbf{u}+d \mathbf{v})=c \mathbf{T}(\mathbf{u})+d \mathbf{T}(\mathbf{v})
$$

Perustelu:

$$
\begin{gathered}
T(\mathbf{0})=T(0 \mathbf{u})=--T(\mathbf{u})=--- \\
T(c \mathbf{u}+d \mathbf{v})=T(\quad)+T(\quad)=----)^{T(\quad)+_{-----} T(\quad)}
\end{gathered}
$$

EXAMPLE: Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ ja $\mathbf{y}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is a linear transformation which maps \mathbf{e}_{1} into $\mathbf{y}_{1} \mathrm{ja} \mathbf{e}_{2}$ into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{l}3 \\ 2\end{array}\right] \mathrm{ja}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Solution: First, note that

$$
T\left(\mathbf{e}_{1}\right)=___-{ }_{-} \quad \mathrm{ja} \quad T\left(\mathbf{e}_{2}\right)=\ldots __-_.
$$

Also

$$
---\mathbf{e}_{1}+\ldots \mathbf{e}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Then

$$
T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=T\left({ }_{---} \mathbf{e}_{1}+_{\ldots--} \mathbf{e}_{2}\right)=_{---} T\left(\mathbf{e}_{1}\right)+_{---} T\left(\mathbf{e}_{2}\right)
$$

$$
=
$$

$$
T\left(3 \mathbf{e}_{1}+2 \mathbf{e}_{2}\right)=3 T\left(\mathbf{e}_{1}\right)+2 T\left(\mathbf{e}_{2}\right)
$$

Also

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(-----\mathbf{e}_{1}+_{-----} \mathbf{e}_{2}\right)= \\
----T\left(\mathbf{e}_{1}\right)+_{----} T\left(\mathbf{e}_{2}\right)=
\end{gathered}
$$

EXAMPLE: Define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ such that $T\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(\left|x_{1}+x_{3}\right|, 2+5 x_{2}\right)$. Show that T is a not a linear transformation.

Solution: Another way to write the transformation:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\left|x_{1}+x_{3}\right| \\
2+5 x_{2}
\end{array}\right]
$$

Provide a counterexample - example where $T(\mathbf{0})=$ $\mathbf{0}, T(c \mathbf{u})=c \mathbf{T}(\mathbf{u})$ or $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ is violated.

A counterexample:

$$
T(\mathbf{0})=T\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)=[\neq----
$$

which means that T is not linear.
Another counterexample: Let $c=-1 \mathrm{ja} \mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then

$$
T(c \mathbf{u})=T\left(\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{l}
|-1+-1| \\
2+5(-1)
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

