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Kurssisivu: http://www.math.hut.fi/teaching/k3/
Luentomateriaalia: http://www.math.hut.fi/teaching/k3/04/L/.

Tekstiin liittyviat MATLAB-"skriptit"(eli komentotiedostot) ovat kaikki saatavissa sivulta
www.math.hut.fi/teaching/k3/04/L/matlab/. Sieltd l6ytyviat mm. kaikki kuvien tekemiseen
kiytetyt skriptit.

Tamé& pruju on hiukan modifioitu versio viime syksyn vastaavasta. Tdstd puuttuu analyyttisten funktioden osuus, joka tilla kertaa
kuuluu kurssiin. Siihen liittyvaé kirjoittelen:

www.math.hut.fi/teaching/k3/04/L/2CApruju.pdf

JOHDANTO

Tarve reaalilukuja laajempaan lukujoukkoon syntyi tarpeesta ratkaista polynomiyhtaldita. Yk-
sinkertaisin téllainen yhtélo lienee

2= -1

Historian kirjoihin on jainyt ensimmaéisend "kompleksilukuja"tarvinneena matemaatikkona Car-
dano(1501-1576), jonka sanotaan johtaneen kolmannen asteen yhtélon ratkaisukaavan. Ttse asias-
sa kunnia kuulunee toiselle italialaiselle miehelle nimeltaan Niccolo Fontana alias Tartaglia (1499-
1557). Lue asiaan liittyva kiehtova tarina tasta:
http://solmu.math.helsinki.fi/2000/2/saksman/

Kompleksilukujen nimi ja systemaattinen kiyttoonotto on perdisin Gauss:lta (1777-1855), kts.
http://solmu.math.helsinki.fi/2000/mathist/html/ranska/index.html#gauss_

Motivaatio

e "Perustason tehtavat". Téllaisia ovat esim. vaihtovirtapiirilaskut sdhkéopissa, mekaa-
niset virdhtelevat systeemit, ym. Naihin riittdvat kompleksilukujen perusominaisuudet,
polaarimuoto, De Moivre’n kaava jne.

e Vaativammat tehtdvit, joissa tarvitaan analyyttisten ja harmonisten funktioiden omi-
naisuuksia. Monet virtausdynamiikan, ldmpdopin ja sdhkostatiikan tehtévat kuuluvat
sovellutusten piirin.

e Vaikka alkuperdinen tehtéva olisikin reaalialueella muotoiltu, voidaan ratkaisussa joutua
kompleksialueelle (esim. ominaisarvotehtavit).

e Monet kisitteet saadaan esitetyksi yhtendisemméssd ja helpommassa muodossa (esim.
Fourier-sarjat ja -muunnokset) ja moni puhtaasti reaalifunktioihin liittyvé ilmi6é voidaan
oikeasti "ymmartia"vasta kompleksialueella tarkasteltuna.
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1. KOMPLEKSILUVUN MAARITELMA JA PERUSOMINAISUUDET

1.1. Kompleksiluvun méédritelmé. Selkeintd on méairitelld kompleksiluvut reaalilukupareina.
Télloin kaikki rakentuu vanhojen tuttujen kisitteiden varaan, eikd mitdin “mystists, imaginaa-
rista oliota” tarvitse ulkoapdin tuoda mukaan (kuten joissain esityksissi tehd&én).

Noudatamme mm. kirjoissa [KRE] ja [AG] esiintyvaa tyylia.
Miéiaritelméa 1.1. Kompleksiluku z = (z,y) on reaalilukupari.
Kompleksilukujoukko on reaalilukuparien joukko R? varustettuna seuraavilla laskutoimituksilla:

e Yhteenlaskulla: z1 4+ 29 = (z1,y1) + (22, 92) = (x1 + z2, y1 + Y2)
e Kertolaskulla: 2120 = (z1,y1)(22,y2) = (172 — Y1Y2, T1Y2 + T2y1)

Kompleksilukujoukolle kiytetain merkintad C

Huomautus 1.1. Joukkona C on sama kuin R2. Merkinti C viittaa siihen, ettd kiytossi on
my0s ylld madritelty kertolasku.

Reaaali- ja imaginaariosa Kompleksiluvun z = (x,y) z-koordinaattia sanotaan reaalioasaksi
ja y-koordinaattia imaginaariosaksi. Merkitaén:

r=Rez, y=Imz
Kompleksilukujen kertolasku voidaan muistaa niin:

Tulon reaaliosa = ReRe — ImIm (Reaaliosien tulo - imaginaariosien tulo)
Tulon imaginaariosa = Relm + ImRe. (Ristiinkerrottujen tulojen summa.)

1.2. Luku i, esitys z = = + iy, kompleksitaso. Koska kompleksilukujoukko on vanha tuttu
taso C = R?, voimme havainnollistaa geometrisesti.

Kurssilla kiytettéviksi ohjelmaksi olemma valinneet MATLAB:n. Siksi teemme myds kaikki ku-
vat silld, ja esittelemme MATLAB-tyOskentelyd kisiteltdvien aiheiden yhteydessi. Matemaattisen
juonen seuraamisen helpottamiseksi ja esteettis-hygieenisistdkin syistd emme kuitenkaaan “pa-
kota” lukijaa katselemaan koodeja. Sensijaan annamme viitteet, joista MATLAB:sta kiinnostunut
lukija voi koodit hakea. Joitakin lyhyitd MATLAB-sessioita otamme tekstiin mukaan.

Muistutamme, ettd MATLAB:ia voi opiskella mm. viitteesté
http://www.math.hut.fi/"apiola/matlab/opas/lyhyt/}
Matlab-skripti: 1iittoluku.m

Jokainen z = (z,y) € C voidaan esitt#id R?:mn kannan {(1,0), (0,1)} avulla muodossa

z=x(1,0) +y(0,1).

Suoritetaan samaistus (z,0) < z. TAma merkitsee vain sitd, ettd laskiessamme "reaalisilla
kompleksiluvuilla", tulos on sama, laskimmepa kummalla tavalla tahansa.

Imaginaariyksikkd(vektori) i
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Kompleksitaso ja luvut (1,1.5)=1+1.5i ja (1.-1.5)=1-1.5i
2 T T T T
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Kuva 1. Luku ja liittoluku kompleksitasossa

Merkitédén erityisesti symbolilla ¢ kompleksilukua (0,1) . Edelld oleva esitys voidaan siten kir-
joittaa muotoon:

z=x+ yi.
Téssé, kuten aina jatkossa, samaistamme: (1,0) = 1, ja yleisesti (z,0) = z. Nyt saamme kaipaa-
mamme laskusdanndn:

i? = (0,1)(0,1) = (ReRe-ImIm, ReIm-+ImRe) = (—1,0) = —1

Kaikki mystiikka salaperéisen “imaginaarisen” ¢:n ympériltd on néin hélvennyt!

Toisin sanoen:

Laajennettuamme reaalilukujoukon tasoksi C ja médriteltyimme siind laskutoimitukset
(erityisesti kertolaskun) sopivasti, 16ysimme tasta laajennetusta joukosta C alkion

i, joka toteuttaa yhtélon i2 = —1. Téamin laajennetun joukon alkioita kutsutaan
kompleksiluvukss.

Johtopéitds: Kompleksiluvut eivit ole hiukkaakaan “vihemmén reaalisia” kuin reaaliluvut.

1.3. Aritmetiikkaa kompleksiluvuilla, liittoluku (“complex conjugate”), moduli. On
helppo tarkistaa, ettd kompleksilukujen laskutoimitukset noudattavat samoja perussdantdji (vaihdanta-
liiténta- ja osittelulait) kuin reaalilukujen. Kun kiytetddn esitystd z = x + iy, voidaan laskea
aivan, kuten reaaliluvuilla. Sievennyksissi kiytetiin luonnollisesti hyviksi yhtilod i2 = —1.

Liittoluku z
Jos z = x + iy, niin merkitddn Z = x — iy ja sanotaan: Z on z:n liittoluku ("complex conjugate").
Geometrisesti kyse on z:n symmetrisesti pisteesti reaaliakselin suhteen (kts. kuva 1).

Vélittomésti nahdadn (sekd algebrallisesti ettd geometrisesti), etté
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z+Z=2Rez

(1.1) z—z=2iImz.

Itseisarvo eli moduli

Kompleksiluvun z = = + iy moduli eli itsesisarvo on pisteen (z,y) euklidinen etdisyys origosta,
eli vektorin x + 4y pituus. Toisin sanoen

|z] = Va2 + y2

Laskemalla:
2z = (z +iy)(z —iy) = 22 + y% = |2]?,
saadaan monessa yhteydessa kiyttokelpoinen kaava:

(1.2) 2Z = |2|?,

(Huomaa, etti kompleksiluvuilla |z|? ja 22 ovat eri asioita.)

Rationaalilausekkeen saattaminen muotoon z + ¢y nimittijin liittoluvulla laventa-
malla

Kun kerromme nimittajan liittoluvullaan, saamme uuden nimittdjén, joka kaavan (1.2) mukaan
on reaalinen, jolloin rationaaliluvun saattamiseksi muotoon = + iy tarvitsee vain kertoa kaksi
kompleksilukua keskendin ja jakaa nimittdjissi olevalla reaaliluvulla.

Esimerkki 1.1. Muodostetaanpa lukujen z; = 8 4+ 3¢ ja 22 = 9 — 2¢ osamaéra.

2 w7z (843i)(9+2) 66+43i 66 43
Zo 22722 94 4+ 4 85 85 85

Sama Matlab:lla

» format rational % Matlab laskekoon rationaaliaritmetiikalla.
» format compact % Tiivis tulostusmuoto.

> 22=9-2%i
z2 =

9 - 2i
> z1=8+3%*i
zl =

8 + 3i
> 22=9-2%i
z2 =

9 - 2i
» z1/2z2
ans =

66/85 + 43/851
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Matlab siis tekee téillaiset sievennykset automaattisesti.
Samoin tekee Maple, jolle voi myos antaa lukuja symbolisessa muodossa. Tdlloin komento evalc tekee yleensd hyvidd tyotd komplek-

silukusieventdjana.

2. POLAARIMUOTO

(Skripti: kuvapolar.m)

151 b

Im-akseli

y=imz

051 B

x=Re z
L

L L L
0 05 1 15 2
Re-akseli

Kuva 2. Kompleksiluku napakoordinaateissa

Kompleksiluku z = = + iy = (x,5) on tason R? piste, joka voidaan esittii napakoordinaateissa

(@,7):

z =r(cos ¢ + isin ¢).

Téssé siis r = |z]. Napakulmaa ¢ sanotaan kompleksiluvun z argumentiksi. Annetun komplek-
siluvun argumentti on médritty 2m:n monikertaa vaille. Argumentille sovitaan pddhaara, jota
merkitddn Arg. Sovimme pédhaaraksi:

- < Argz < m.

Téama lienee yleisimmin kiytossd oleva sopimus. Sitd kdytetdan myos [KRE]-kirjassa.
Muitakin esiintyy. Toinen tavallinen on vali (0, 2x] (tai [0, 27)).

Merkinnélla arg z tarkoitamme jotain argumentin “haaraa”; siten

argz = Argz + 2nm jollainn € Z.

Esimerkki 2.1. Olkoon z =1 + i. Laskettava moduli ja argumentti.
|z| = V2, Argz = /4, argz = m/4 + 2n7 (jokin n).

(MATLAB-lasku ja kuva, jossa koordinaatistoneljinnekset merkitty: kuvapolar .m)
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Saadaanko Argz yleisesti kaavasta arctan?, kuten téssd? (Yléviiva tarkoittaa arkustangentin
padhaaraa.)

No ei saada, silld luvun —1 — ¢ argumentti = —37/4 = arctan—% — .

Yleisesti

— I
Argz = arctan —" + km,missa k€ {0,1,—1}.
Rez

Luku k£ méariytyy koordinaattineljinneksen mukaan.

Argumentin miirdiminen:

Kisin laskiessa on yksinkertaisinta toimia n#in:
1. Katsotaan kuvasta, mihin koordinaattineljainnekseen annettu kompleksiluku kuuluu.
2. Madrataan tdhan neljinnekseen kuuluva kulma ¢, jolle tan ¢ = y/x.

Reaali- ja imaginaariosan merkit méaardavit neljinneksen, sen perusteella on helppo ohjelmoida
ylla oleva kaava funktioksi, joka laskee Arg z:n. Niin on tehty mm. MATLAB:ssa ja MAPLE:ssa.
Edellisessé funktio angle ja jalkimmdiisessd argument.

Tassd asiaa valaiseva MATLAB-istunto:

z1=1+i; z2=-1+i; z3=-1-i; z4=conj(zl); % conj = liittoluku
angle([zl z2 z3 z4])

Tuloksena:

0.7854 2.3562 -2.3562 -0.7854

Tehtivd 2.1. Tee ylld oleva kiisin, piirrd pisteet tasoon ja laske kunkin argumentti vaikkapa
laskimesi arctan:n avulla.

2.1. Kolmioepayhtil6, liittolukuominaisuuksia. Liittoluvuilla operoiminen kiyttaytyy kau-
niisti kaikkiin laskutoimituksiin ndhden:

“liittoluku laskutoimituksesta — laskutoimitus liittoluvuista”
Keratdan yhteen namé ja pari aiemmin esiteltyd ominaisuutta:

Lause 2.1. Liuttolukusddadntosa

21+ 22 =21+ 22

2122 = 21 22
=
Z2

2z = |z|%

AR o
—
N‘N
N =
SN—
Il

Z =

IS

Todistus. Olkoon tavalliseen tapaan z; = x1 + ty1, 22 = T2 + 1Y2.
Kohta 1:

21+ 22 =o14+ 22— i(y1 +y2) =1 — 1y1 + X2 — iYy2 = 21 + Z2.
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Kohta 2:
2120 = (1 +iy1) (22 + 1Y) = 122 — Y1y2 + i(x1Y2 + 2201).

Lasketaan z71 z3 ja katsotaan, olisko se tdmén liittoluku.

Z1 22 = (x1 — iy1) (w2 — iy2) = 2172 — Y1y2 — i(T1Y2 + T291)-
Kyllad on, aivan kuten véitettiin.

Kohta 3 voidaan laskea aika lyhyesti samaan tapaan laventamalla nimittdjan liittoluvulla ja
vertaamalla niin saatuja z1/z2:m ja Z7/Z3:n lausekkeita.

Kohdan 4 olemme jo laskeneet.

Kohta 5 on vain sité, ettd miinus miinus = plus.

O
Lause 2.2 (Seuraus). Reaalikertoimiselle kompleksimuuttujan polynomille
p(2) =ap+ a1z + ...+ apz"™ patee: p(z) = p(z).
Todistus. Edellisen lauseen ( 2.1) perusteella: p(z) = ag + a1z + ... apn2" =Gg + a1 Z + ... 0, 2"
Koska kertoimet aj, ovat reaalisia, on ag = ay kaikilla k =0...n,
joten viimeksi saatu lauseke on todellakin p(Z). O

Lause 2.3 (Seuraus). Reaalikertoimisen polyomin nollakohta on joko reaalinen tai kompleksi-
sessa tapauksessa liittolukupari.

Todistus. Olkoon reaalikertoimisella polynomilla p kompleksinen nollakohta ¢ = a + b, missé
b # 0. Talloin p(c) = 0, joten

0=0=p(c) =p(e).

Niinpd ¢ = a — ib on myds p:n nollakohta.

Témaé seurauslause on térked mm. ominaisarvoteoriassa, palaamme siihen aika ajoin.

Tehtivd 2.2. Osoita, ettd pariton-asteisella reaalisella polynomilla on ainakin yksi reaalinen
nollakohta.

Kolmioepéyhtilo sanoo havainnollisesti, ettd kolmion sivun pituus on aina korkeintaan kahden
muun sivun pituuksien summa. Tamé lausuttuna kompleksitasossa on:

Lause 2.4 (Kolmioepéyhtald).
|21 + 22| < [21] + |22].

Tod. Ei muuta kuin lasketaan:

|21 + 22!2 = (21 + 22)(21 + 22) = 2171 +2122 + 2271 + 22732 .
~~ <~

212 |22/
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2172 + 2071 = 2172 + 2172 = 2Re(2172) < 2|21]22].

Sitten vain tavallinen binomin nelidkaava, niin jopa ollaan perilla. U

3. KERTO-JA JAKOLASKU POLAARIMUODOSSA

Eliminohje: Kompleksilukujen yhteen- ja vihennyslasku kannattaa tehdé (z,y)— koordinaat-
timuodossa, kerto- ja jakolasku polaarimuodossa. Kohta ndemme miksi.

Palautamme mieleen trigonometrian perusasioita: sinin ja kosinin yhteenlaskukaavat. (Nykyisin
ndiden kiytto lukion matematiikassa lienee jadnyt liian vihéalle huomiolle.)

(3.1)

sin(a £+ ) = sinacos § £ cos asin 3
cos(a £ ) = cosacos 8 F sin asin 3.

Olkoon z; = rj(cos ¢; +ising;),j =1,2.

Muodostetaan tulo:

2122 = T1T2(COS ¢1 + isin qbl)(COS ¢ + i sin gf)g) =
(3.2) = r172((Ccos ¢1 cos Py — sin ¢y sin Pa) + i(sin ¢1 cos Pg + cos ¢y sin ¢g)) =
= r17r2(cos(¢1 + ¢2) + isin(p1 + ¢2)).

53) {| = J21]]22|

arg(z122) = argz1 + argz2

Korostuksen vuoksi jalkimmaéinen kirjoitetaan usein muotoon:
arg(z122) = argz1 + argze + 2n.

Sopimuksemme mukaan arg viittaa johonkin argumentin haaraan. joten merkinta olisi oikein
ilmankin 27:n monikerran lisdystermié, mutta on parempi yleensé tottua kirjoittamaan se.

Pashaaran tapauksessa on kirjoitettava:

Arg(z122) = Argz1 + Argze + 2nm,

missd n on sopivasti valittu kokonaisluku.
Hieman elegantimmin voidaan sama asia kirjoittaa myos néin:

Arg(z129) = Argz1 + Argza(mod 2m), joka voidaan lukea: argumentit ovat samat “modulo 277
tai “27:n monikertaa paitsi”.



X HEIKKI APIOLA, TKK/MATEMATIIKAN LAITOS

Esimerkki 3.1. Olkoon 21 = 1 +iv/3 ja 2o = —1 + 4. Kirjoitetaan polaarimuotoon:
71 = 2(cos(3) +isin(%)), 22 = V2(cos(2F) + isin(2)),

2122 = 21/2(cos ¢ + i sin @), missi ¢ = T+ %r = %’T

Siten arg(z122) = LT (eris argumentti), ja Arg(z122) = —1F (piihaara).

On tietysti aivan selvéé, ettd laskettaessa pddhaaran kulmia yhteen, voidaan joutua pois paé-
haaralta. Laskettiin nyt varmuuden vuoksi konkreettinen esimerkki.

Harjoituksen vuoksi voit tarkistaa, ettd saat saman tuloksen kertomalla koordinaattimuodossa
ja siirtymaéllé sitten polaarimuotoon.

Jakolasku palautuu edelliseen suoraan, silld z = % = 220 = 27.

Tallin edellisen mukaan |z||z2| = |z22| = |z1], joten |z| = %, ja

argz1 = arg(zze) = argz + arg za, joten argz = argz — arg zo.

Pédhaaroille taas (mod 2m).

3.1. Potenssit, De Moivre’n kaava.

Huomautus 3.1. Olkoon w kompleksiluku, jonka moduli (itsesiarvo)= 1. Voidaan siis kirjoittaa
w = cos a+1 sin . Kompleksiluvun z kertominen w:lla merkitsee z:n kiertdmistd kulman « verran.
(Itseisarvo kerrotaan 1:1l4, napakulmaan lisdtédn «.)

Kertolaskukaavasta (3.3 sivulla 8 ) seuraa heti, ettd jos haluamme laskea kompleksiluvun z =
r(cos ¢ + isin ¢) potenssin, saamme:
2" =r"(cosn ¢ + i sinng).

Erityisesti, jos luvun z itseisarvo (moduli) = 1, saadaan

’De Moivre’n kaava: (cos ¢ + i sing)™ = (cosn ¢ + i sinng). ‘

Esimerkki 3.2 (De Moivre'n kaavan kdytto trigonometriassa). Kayttamalld binomikaavaa va-
semmalla ja vertaamalla reaaliosia ja imaginaariosia, saadaan moninkertaisten kulmien lausek-
keet cosng ja sinng lausutuksi cos ¢:n ja sin ¢ potenssien avulla.

Lasketaan esimerkin vuoksi tutut kaksinkertaisten kulmien kaavat. De Moivre —

(cos ¢ + i sin ¢)? = (cos2 ¢ + 1 sin 2¢).
cos® ¢ — sin® ¢ + 2i cos ¢ sin ¢

Vertaamalla reaaliosia ja imaginaariosia, saadaan tutut kaavat:

cos 2¢ = cos? ¢ — sin® ¢
sin 2¢ = 2sin ¢ cos ¢.

Tehtédva 3.1. Laske vastaavasti muita kaavoja, kuten kolminkertaisten, nelinkertaisten, jne kul-
mien kaavat.
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3.2. Kompleksiluvun juuret. Kun on méarittavi n:s juuri annetusta kompleksiluvusta z, on
tehtdvina ratkaista w yhtalosta.

w" = 2.

Tieddmme jo reaalilukujen laskennosta, ettd ratkaisu ei aina ole yksikésitteinen. Jos vaikka z = 4,
niin (reaaliset) ratkaisut ovat w = £2. Toisin sanottuna: Reaalisella neliGjuurifunktiolla on kaksi
haaraa, posititvinen ja negatiivinen.

Mika vield pahempaa, negatiivisille luvuille z ei ratkaisuja reaalilukujoukosta 16ydy lainkaan.
Tamahéan oli ldhtokohtana komplesilukuleikillemme.

No mitd nyt tdssd uudessa leikkikehdssimme saamme aikaan?

Kirjoitetaan annettu kompleksiluku z ja ratkaistava luku w polaarimuodossa

z=r(cos© +isinO)

(3.4) w = R(cos ¢ + isin ).

Nyt patee w" = z <=

R"(cosng + isinng) = r(cos © + isin ©).

Kompleksiluvut yhtyvit, jos ja vain jos modulit ovat samat ja argumentit yhtyvit mahdollisesti
2m:n monikertaa paitsi. Siis yhtdlémme on yhtdpitdva tdmin kanssa:

R"=r
ng = O + k2,
eli

R=3/r

¢p=2+kZ k=0,...,n— 1L
Tassé k:n arvot n:sté eteenpéin toistavat samoja ¢:n arvoja.
Silld jos kK =n + j, missd 7 = 0,1,2,..., niin
k2 = (n+j)E =271 + j2.
Saadaan siis tasan n kappaletta annetun luvun z n:nsii juuria.

Geometrisesti juuret sijaitsevat {/|z|-siteisen sdénnollisen n-kulmion kirkipisteind, jonka “alku-

Argz
n

piste” on kulman madrdaméssi pisteessd, ts. pisteessd, jonka napakoordinaatit ovat

(Vr,©/n).
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Esimerkki 3.3. Muodostetaan kaikki juuret v/1+1
Kirjoitetaan luku z = 1 + i polaarimotoon. r = /2, © = T, joten R = V2 ja

Q)] 2T T 2T
= 4+ k= __—_ 4+ k= k=0.....6
O 7—i— 7 28+ 7 ) )

Kuva saadaan MATLAB-skriptilld: esim7juuri.m, kts kuva 3.

1t |

05} |

of |

_05 = 4

_l = 4
-1 -05 0 05 1

Kuva 3. Luvun z =1+4¢ T:mnet juuret wy, ..., ws.

Huomautus 3.2. (MATLAB-opinhaluisille) Y1l olevassa Matlab-skriptissé olennaista oli juurien
w; laskeminen. Teimme sen “analyyttisesti” juurikaavan mukaan, mikd tukee téssd opetettavaa
asiaa. Toisaalta Matlab:ssa on yleinen polynomiyhtiléiden numeerinen ratkaisija, jolla numeeriset
approksimaatiot saataisiin vield vihemmaélla vaivalla.

Matlab kisittelee polynomia a, 2" +. . .4+a1 z+ag kertoimien muodostamana vektorina [ay, . . ., a1, ap) .
Matlab-funktio roots ratkaisee numeerisesti (kompleksitasossa) polynomiyhtalon a,z™ + ... +
a1z + ag = 0. Komennon syntaksi on roots(kerroinvektori), missi kerroinvektori annetaan
korkeimman asteisesta alimpaan. Y14 olevan esimerkin olennainen laskenta (w-vektorin laskemi-
nen) voitaisiin siten tiivistdd muotoon:

ww=roots([1 0 0 0 0 0 0 -1-i])

Kyseessihin ovat polynomin 27 — (1 + i) nollakohdat.

M-tehtdva 3.1. Suorita tekstissd oleva Matlab-istunto ja ylld oleva Matlab-komento. Vertaa tu-
loksia pirtamdlld samaan kuvaan pddllekkdin. Piirrd ww- vektorin alkiot vaikka siniselld tahdelld

(47).
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3.3. YkkOsen n:nnet juuret. /1

Erityisesti luvun 1 n:nnet juuret ovat reaaliakselin yksikkopisteestd (ykkosestd) alkavan saannol-
lisen n-kulmion kérkipisteet.

Merkitéddn w, = cos %’T + ¢sin 27? ja

Wp,k = COS k:QW—’T + i sin k%”

Tallsin wy, x = (wn)*.

Namaé luvut tulevat sielld taalla vastaan matematiikan poluilla, mm. johdettaessa nopean Fourier-

muunnoksen (FFT) algoritmia.

3.4. Kertolaskun geometrinen merkitys. Ajatellaan erityisesti kertomista luvulla w, joka
on yksikkdympyrin kehlla, eli |w| = 1.

Tulo wz merkitsee annetun vektorin z kiertoa kulman arg(w) verran.

Jos |w| # 1, kyseessé on kierto yhdistettynd venytykseen/kutistukseen.

4. EKSPONENTTIFUNKTIO

[KRE] 12.6, s. 679 ...

Piddmme tunnettuna reaalisen eksponenttifunktion ominaisuuksineen. Kdytdmme sille tuttua
merkintdd e”, missi siis z € R.
Miten tulisi médritelld e®, kun z on kompleksiluku? Helpoimmalla padsemme talld mairitelmalli:

Maiidritelmd 4.1. Olkoon z = = + iy, asetetaan

(4.1) e® = e*(cosy + isiny).

Téssd siis e” tarkoittaa entuudestaan tunnettua reaalista eksponenttifunktiota.
1

e“:n ominaisuuksia

1. Jos z € R, niin e* yhtyy reaaliseen exp-funktioon. Silld t&lldinhdn z = = 4+ 0i = z, joten
méadritelmén mukaan e* = e, missé edellinen tarkoittaa kompleksista ja jalkimmé&inen
reaalista exp-funktiota.

2. Jos z on “puhtaasti imaginaarinen”, ts. z = iy, y € R, niin e* = ¥ = cosy + isiny.

eA1t22 — o21p22

d z _ 2
4. e =e

b

Kohdan 3 perustelu. Olkoon z1 = x1 4 ty1 ja 22 = T2 + 1yo.

e1e® = e"e*?(cosyr + isiny;)(cosyz + isinys)

(4.2) eraa

=e cos(y1 + y2) + isin(yr + y2))

'Hyom! Exp-funktio voitaisiin m#aritelld samalla potenssisarjalla, joka pétee reaalialueella. T#ll6in ei tarvitsisi
tietdd mitddn reaalisen exp-funktion ominaisuuksista. Palataan aiheeseen matriisiexp-funktion yhteydessa.
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Téssa kiytimme reaalisen exp-funktion vastaavaa tunnettua ominaisuutta ja toisaalta edelld
laskettua sdantod: "Tulon argumentti = argumenttien summa", joka seuraa kosinin ja sinin
yhteenlaskukaavoista, kuten muistanemme (3.3 sivulla 8 ).

Derivoimiskaavan perustelun jaitdmme tuonnemmaksi, koska emme vield ole kisitelleet derivointia
kompleksimuuttujan suhteen.

0

Eulerin kaava®

Talla nimelld tunnetaan kohdan 2 ominaisuus:

€' = cos ¢ + i sin ¢.

Voidaan sanoa, ettd madrittelimme eksponenttifunktion niin, ettd se toisaalta yhtyy reaaliakse-
lilla entuudestaan tunnettuun reaaliseen exp-funktioon, ja toisaalta toteuttaa puhtaasti imagi-
naarisella argumentilla, Fulerin kaavan.

Nyt voimme kirjoittaa kompleksiluvun polaariesityksen lyhyemmin:

2z =r(cos ¢+ isinp) = re'®.
Erityisesti ¢ = €/™/2, —1 = ¢i™ —j = ¢~"/2,
Muista ajatella kompleksilukuja geometrisesti!
4.1. e®:n vilittdma kuvaus. Kuten olemme jo todenneet, ja kuten tulemme monesti vield

toteamaan, kompleksifunktio f : C — C mééarittelee kuvauksen (voidaan oikeammin sanoa: “on
kuvaus”) kompleksitasosta tai sen osajoukosta kompleksitasoon.

Tassa kisittelemme exp-funktiota ja katsomme, miten sen “kuvaajaa”’ voi luonnehtia.

Voisimme aloittaa valitsemalla joukon z—pisteitd kompleksitasosta, joita merkitsimme vaikka
o:114 ja laskemalla kuvapisteet w = e*. Niitd merkittéisiin vaikka punaisella %:1la.

Teepd ihan huvin vuoksi ruutupaperille, jos siltd tuntuu!
Téastd el "kuvaaja'vield oikein hahmotu .

Systemaattisemmin padsemme hommaan kiinni tutkimalla, miten koordinaattiviivat kuvautuvat.
MATLAB on téssd hyvana apuna, niytetddn tassa tulos.

Matlab-skripti ja kuvat (vérillisind) ...03/L/CAl.html.

Kuvassa 6 nidkyvi kiytds voidaan péditelld suoraan exp-funktion méiritelmaata:

e =e"(cosy +isiny).
Merk w = e*. Médarittelykaavasta nakyy heti:

2Euler oli sen luokan nero, ettd matematiikassa on koko joukko "Eulerin kaavoja". Tdmé on ehki niista eniten
siteerattu. Talld kurssilla tulemme kohtaamaan muita samannimisii mm. Fourier-sarjojen yhteydessi. (Sama
ilmio koskee esim. Newtonia)
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5. Muutaman pisteen kuva exp-kuvauksessa

XV

e Jos x = vakio = c ja y; <y < yo, niin w kulkee pitkin e“-siteistd ympyriviivaa piirtden
sektorin, jota rajaavat kulmat y; ja yo.
e Jos y = vakio = d ja x1 < x < x9, niin w kulkee pitkin puolisddettd, joka muodostaa
z-akselin kanssa kulman d, piirtden siteen osan, jota rajaavat e® — ja e®?— sdteiset

ympyrat.

e Mitd kauempana vasemmalla pystyjanamme sijaitsee, sitd pienemmin O-keskisen ym-
pyriviivan (osan) vastaava w—kéyréd piirtda. Pieni reikd origon ympérille aina jaa, silld
|lw| = e”, joka ei saa arvoa 0, olipa = kuinka negatiivinen tahansa.
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z-taso w-taso
2.5 3

25

15 15
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Kuva 6. e* kuvaa pystyviivat ympyriankaariksi ja vaakaviivat "sddejanoiksi"

e Vastaavasti positiivisella puolella saadaan miten suuria ymyro6itd vain ikind halutaan.
Ympyroiden siteet kasvavat jopa eksponentiaalisesti x:n suhteen.

Yll& piirretyssa kuvassa z-tason hilaviivat on valittu tdmé huomioon ottaen “dlykkadsti”. Turha
haaskata laskentaruutia suorien piirtdmiseen monen pisteen voimin.

Lyhyesti sanottuna siis:

’ Pystyjanat kuvautuvat ympyrisektoreiksi.

’ Vaakajanat kuvautuvat puolisiteelld makaaviksi janoiksi.

4.2. Jaksollisuus,perusalue. Koska kosini ja sini ovat 2m— jaksoisia, niin e!27) = ¢ Jog
siis z = = + 1y, niin

e T2im exei(y+27r) — %l — o7
Niinpé e* on 2mi—jaksoinen. Kuvaa katsoessa tdmé nikyy niin, ettd jos jokin pystyjana on 2m:n
korkuinen, niin vastaava kuvakaari on koko ympyré, joten aina 27i:n lisdyksen jalkeen kuvapiste
palaa sithen, misté lahdettiin.

Jos suoritat Matlab:ssa seuraavat komennot, néet keltaisella tdytetyn suorakulmion, jonka kor-
keus on 27, ja —20 <z < 20.

clf

v=([-20+i*pi, 20+i*pi,20-i*pi, -20-i*pil)
fill(real(v),imag(v),’y’)

axis([-20 20 -10 10])

grid

Tamén kuva exp-funktiossa on siis ympyrirengas, jota rajoittavat r1— ja ro—séteiset ympyrit,

missi r; = e 20 jary = €20,

Kun annetaan tdmén keltaisen vyon ulottua koko reaaliakselin leveydelle, saadaan kuvina kaik-
ki kompleksiluvut lukuunottamatta nollaa. Kun rajoitumme télle (puoliavoimelle) "keltaisel-
le"alueelle, kukin kompleksiarvo w saavutetaan tdsmélleen kerran. (Mietipa!)

Téssd on sopiva paikka siirtyd tarkastelemaan kdanteisfunktiota, logaritmia.
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5. LOGARITMI JA YLEINEN POTENSSI

5.1. Logaritmi. |[KRE]| 12.8.

Olemme todenneet, ettd exp-funktio kuvaa 27:n korkuisen vyon:
V={:=z+iylzr eR,y € (—m, x|}

bijektiivisesti kompleksitasolle, josta on origo poistettu. (Puhumme O:ssa punkteeratusta tasos-
ta). Niinpa silla on kidnteiskuvaus, jonka méarittelyjoukko on Wy = W\0.

Saamme siten kuvauksen

Log: Wy — V.
Esimerkki 5.1. (KRE8 Exa 1 s. 681) Haluamme mé#érita kompleksiluvun 3 + 4¢ logaritmin.
Toisin sanoen on ratkaistava z yhtaldsta

e* =3+ 4i.
Olkoon z = x + 4y, tdlléin
e®e = 3 + 4i = 5e'?,
missd
¢ = arg(3 + 4i) = arctan (4/3),
missd yldviiva viittaa arkustangentin paihaaraan. (Muistathan, ettd argumentti ei automaatti-

sesti ole sama kuin arkustangentin pddhaara, tdssd tapauksessa se on siksi, etté piste 3 + 47 on
ensimmaéisessd koordinaattineljainneksessi.)

Siis on oltava
(5.1) " =5y=¢+2nm

Jos kéddnteisfunktion arvo valitaan jaksovyostd V, on y = ¢, joten

4
Log(3 + 4i) = Inb + i arctan 3

Jos merkitsemme log(3 + 44):114 mitd tahansa yhtilon ratkaisua, saamme:

S—
log(3 4 4i) = Inb + i(arctan 3 + 2nm).

Saimme laskus&anén logaritmeille:

o Laske luvun (téssd 3 + 4¢) itseisarvo (moduli) ja ota sen logaritmi (In).
Néin saat logaritmin reaaliosan.

e Laske luvun (3 4 47) argumentti, se antaa logaritmin imaginaariosan.
(Argumentin pdahaara antaa logaritmin paahaaran.)

Lasketaan Matlabilla:

w=3+4*i

itseisarvow=sqrt(3~2+4"2) % saadaan myds komennolla abs(w)
argumenttiw=angle (w) % Argumentin padhaara
x=log(itseisarvow) % Logaritmin reaaliosa (log = 1ln)
y=argumenttiw % Logaritmin imaginaariosa

komplog=log(w) % Tarkistetaan Matlabin log:lla sovellettuna
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% suoraan kompleksilukuun.

Téssa ylla olevien komentojen tulokset:

w =
3.0000 + 4.00001
itseisarvow =
5
argumenttiw =
0.9273
x =
1.6094
y =
0.9273
komplog =

1.6094 + 0.9273i

Siis kaikki toimii, kuten pitdéd. Ndemme, ettd Matlab:n log-funktio laskee kompleksisen logaritmin
padhaaran, kuten luonnollista on.

Huomautus pédihaarasta (uudestaan). Kiyttdmédmme (argumentin ja logaritmin) paahaa-
ra [—m,7) on varsin yleisesti kilytetty, mutta tdmé on sopimuskysymys. Joissakin oppikirjoissa
kiytetadn pddhaarana valid (0, 2] (tai [0,2m)).

Tehdidin vield sama lasku uudestaan yleisesti

Haluamme laskea Logz:n mielivaltaiselle z € C\{0}. Kyseessé on siis yhtilon
eV =z
ratkaiseminen w:n suhteen, kun z € C\{0} on annettu.

Olkoon z = re'®, ja merkitdin w = u + sv. T#lldin siis:

Aivan kuten &dsken, ndemme, etta:
u=1Inr,v=¢=Argz.
Muut logaritmin haarat saadaan lisddmalld imaginaariosaan v 27:n monikertoja.

Matlab-ajo: demolog.m

5.2. Yleinen potenssi. [KRE| [12.8 ss. 687-691]

Eksponentti- ja logaritmifunktioiden avulla voidaan méaritelld yleinen potenssi, kuten reaalialu-
eellakin. Olkoot z ja ¢ kompleksilukuja ja z # 0. Ma#ritelldan:

pra eclogz.

Yleisessd tapauksessa saadaan monihaarainen funktio, pdihaara saadaan ottamalla logaritmin
piahaara Ln.

Jos c on kokonaisluku tai yleisemmin rationaaliluku, kyseessd on sama potenssifunktio, jota edella
olemme késitelleet (kokonaislukupotenssi, juuri tai niiden yhdistelmé).



KOMPLEKSILUVUT JA -FUNKTIOT xix

Tehtiivi 5.1. Laske 17,4, /e, /i

Ratkaisu: Lasketaan 4°, eli tehtévini on laskea e’

Lasketaan ensin Ini = In |i| + iargi = 0 +i(7w/2 4 2n7) (n € Z).

ilni = —71/2+ 2nm, joten i = e~ 22",

Péddhaara on logaritmin pddhaara, joka saadaan n :n arvolla 0, joten ¢*:n pddhaara-arvo on e 2.

6. TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Fulerin kaavan avulla: Jos x on
reaaliluku, niin

e =cosx+isinx, e " =cosx —isinx

Jos ndmé lasketaan yhteen ja vihennetddn, saadaan heti ratkaistuksi:

COST = %(e” + e—i:z:)’ sinx = %(ell’ _ e—iac).

N&m4 kaavat ovat sindnsd hyodyllisid monessa kohdassa matematiikan kentilld. Aktivoi niiden
kdytto!

Tassé kiiytdmme niitd antamaan johtolangan sithen, miten kompleksiargumentin sin — ja cos —funktiot
tulisi méaritella.

Olemme palauttaneet reaalisen sinin ja kosinin kompleksimuuttujan exp-funktioon. Helppo tapa
on madritelld kompleksiset sini ja kosini yksinkertaiseti samoilla kaavoilla, siis antamalla x:n
tarkoittaa mielivaltaista kompleksilukua (jolloin merkitsemme sitd mieluummin z:la). Tallin
ainakin saamme vastaavien reaalialueen funktioiden laajennuksen, koskapa tuo kaava sielld pétee.

Toivottavaa tietysti on, ettd mahdollisimman paljon sinin ja kosinin tunnetuista ominaisuuksista
séilyisi.
Miiritelmi 6.1. Olkoon z € C Asetamme:

(61) {COSZ =

sinz =

(eiz 4 e—iz)

(eiz o e—iz).

| ol

Voimme nyt tutkia sinin ja kosinin ominaisuuksia, saamme yleisen Eulerin kaavan:

e"” = cosz +isin z.

Kiintoisaa on ndhdé trigonometristen ja hyperbolisten funktioiden vilinen yhteys.

Funktioiden kuvausominaisuuksia voidaan selvitella.

[KRE| [12.7 ss. 682-687]



