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Kurssisivu: http://www.math.hut.fi/teaching/k3/
Luentomateriaalia: http://www.math.hut.fi/teaching/k3/04/L/.
Tekstiin liittyvät Matlab-"skriptit"(eli komentotiedostot) ovat kaikki saatavissa sivulta
www.math.hut.fi/teaching/k3/04/L/matlab/. Sieltä löytyvät mm. kaikki kuvien tekemiseen
käytetyt skriptit.
Tämä pruju on hiukan modi�oitu versio viime syksyn vastaavasta. Tästä puuttuu analyyttisten funktioden osuus, joka tällä kertaa
kuuluu kurssiin. Siihen liittyvää kirjoittelen:
www.math.hut.fi/teaching/k3/04/L/2CApruju.pdf

Johdanto

Tarve reaalilukuja laajempaan lukujoukkoon syntyi tarpeesta ratkaista polynomiyhtälöitä. Yk-
sinkertaisin tällainen yhtälö lienee

x2 = −1

Historian kirjoihin on jäänyt ensimmäisenä "kompleksilukuja"tarvinneena matemaatikkona Car-
dano(1501-1576), jonka sanotaan johtaneen kolmannen asteen yhtälön ratkaisukaavan. Itse asias-
sa kunnia kuulunee toiselle italialaiselle miehelle nimeltään Niccolo Fontana alias Tartaglia (1499-
1557). Lue asiaan liittyvä kiehtova tarina tästä:
http://solmu.math.helsinki.fi/2000/2/saksman/

Kompleksilukujen nimi ja systemaattinen käyttöönotto on peräisin Gauss:lta (1777-1855), kts.
http://solmu.math.helsinki.fi/2000/mathist/html/ranska/index.html#gauss_

Motivaatio

• "Perustason tehtävät". Tällaisia ovat esim. vaihtovirtapiirilaskut sähköopissa, mekaa-
niset värähtelevät systeemit, ym. Näihin riittävät kompleksilukujen perusominaisuudet,
polaarimuoto, De Moivre'n kaava jne.

• Vaativammat tehtävät, joissa tarvitaan analyyttisten ja harmonisten funktioiden omi-
naisuuksia. Monet virtausdynamiikan, lämpöopin ja sähköstatiikan tehtävät kuuluvat
sovellutusten piirin.

• Vaikka alkuperäinen tehtävä olisikin reaalialueella muotoiltu, voidaan ratkaisussa joutua
kompleksialueelle (esim. ominaisarvotehtävät).

• Monet käsitteet saadaan esitetyksi yhtenäisemmässä ja helpommassa muodossa (esim.
Fourier-sarjat ja -muunnokset) ja moni puhtaasti reaalifunktioihin liittyvä ilmiö voidaan
oikeasti "ymmärtää"vasta kompleksialueella tarkasteltuna.
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1. Kompleksiluvun määritelmä ja perusominaisuudet

1.1. Kompleksiluvun määritelmä. Selkeintä on määritellä kompleksiluvut reaalilukupareina.
Tällöin kaikki rakentuu vanhojen tuttujen käsitteiden varaan, eikä mitään �mystistä, imaginaa-
rista oliota� tarvitse ulkoapäin tuoda mukaan (kuten joissain esityksissä tehdään).
Noudatamme mm. kirjoissa [KRE] ja [AG] esiintyvää tyyliä.
Määritelmä 1.1. Kompleksiluku z = (x, y) on reaalilukupari.
Kompleksilukujoukko on reaalilukuparien joukko R2 varustettuna seuraavilla laskutoimituksilla:

• Yhteenlaskulla: z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
• Kertolaskulla: z1z2 = (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

Kompleksilukujoukolle käytetään merkintää C
Huomautus 1.1. Joukkona C on sama kuin R2. Merkintä C viittaa siihen, että käytössä on
myös yllä määritelty kertolasku.

Reaaali- ja imaginaariosa Kompleksiluvun z = (x, y) x-koordinaattia sanotaan reaalioasaksi
ja y-koordinaattia imaginaariosaksi. Merkitään:

x = Re z, y = Im z

Kompleksilukujen kertolasku voidaan muistaa näin:

Tulon reaaliosa = ReRe− ImIm (Reaaliosien tulo - imaginaariosien tulo)
Tulon imaginaariosa = ReIm + ImRe. (Ristiinkerrottujen tulojen summa.)

1.2. Luku i, esitys z = x + iy, kompleksitaso. Koska kompleksilukujoukko on vanha tuttu
taso C = R2, voimme havainnollistaa geometrisesti.
Kurssilla käytettäväksi ohjelmaksi olemma valinneet Matlab:n. Siksi teemme myös kaikki ku-
vat sillä, ja esittelemme Matlab-työskentelyä käsiteltävien aiheiden yhteydessä. Matemaattisen
juonen seuraamisen helpottamiseksi ja esteettis-hygieenisistäkin syistä emme kuitenkaaan �pa-
kota� lukijaa katselemaan koodeja. Sensijaan annamme viitteet, joista Matlab:sta kiinnostunut
lukija voi koodit hakea. Joitakin lyhyitä Matlab-sessioita otamme tekstiin mukaan.
Muistutamme, että Matlab:ia voi opiskella mm. viitteestä
http://www.math.hut.fi/~apiola/matlab/opas/lyhyt/}

Matlab-skripti: liittoluku.m
Jokainen z = (x, y) ∈ C voidaan esittää R2:n kannan {(1, 0), (0, 1)} avulla muodossa

z = x(1, 0) + y(0, 1).

Suoritetaan samaistus (x, 0) ↔ x. Tämä merkitsee vain sitä, että laskiessamme "reaalisilla
kompleksiluvuilla", tulos on sama, laskimmepa kummalla tavalla tahansa.
Imaginaariyksikkö(vektori) i
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Kuva 1. Luku ja liittoluku kompleksitasossa

Merkitään erityisesti symbolilla i kompleksilukua (0, 1) . Edellä oleva esitys voidaan siten kir-
joittaa muotoon:

z = x + yi.

Tässä, kuten aina jatkossa, samaistamme: (1, 0) = 1, ja yleisesti (x, 0) = x. Nyt saamme kaipaa-
mamme laskusäännön:

i2 = (0, 1)(0, 1) = (ReRe-ImIm,ReIm+ImRe) = (−1, 0) = −1
Kaikki mystiikka salaperäisen �imaginaarisen� i:n ympäriltä on näin hälvennyt!
Toisin sanoen:
Laajennettuamme reaalilukujoukon tasoksi C ja määriteltyämme siinä laskutoimitukset
(erityisesti kertolaskun) sopivasti, löysimme tästä laajennetusta joukosta C alkion
i, joka toteuttaa yhtälön i2 = −1. Tämän laajennetun joukon alkioita kutsutaan
kompleksiluvuiksi.
Johtopäätös: Kompleksiluvut eivät ole hiukkaakaan �vähemmän reaalisia� kuin reaaliluvut.

1.3. Aritmetiikkaa kompleksiluvuilla, liittoluku (�complex conjugate�), moduli. On
helppo tarkistaa, että kompleksilukujen laskutoimitukset noudattavat samoja perussääntöjä (vaihdanta-
liitäntä- ja osittelulait) kuin reaalilukujen. Kun käytetään esitystä z = x + iy, voidaan laskea
aivan, kuten reaaliluvuilla. Sievennyksissä käytetään luonnollisesti hyväksi yhtälöä i2 = −1.

Liittoluku z

Jos z = x+ iy, niin merkitään z = x− iy ja sanotaan: z on z:n liittoluku ("complex conjugate").
Geometrisesti kyse on z:n symmetrisestä pisteestä reaaliakselin suhteen (kts. kuva 1).
Välittömästi nähdään (sekä algebrallisesti että geometrisesti), että
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z + z = 2Re z

z − z = 2i Im z.
(1.1)

Itseisarvo eli moduli
Kompleksiluvun z = x + iy moduli eli itsesisarvo on pisteen (x, y) euklidinen etäisyys origosta,
eli vektorin x + iy pituus. Toisin sanoen

|z| =
√

x2 + y2.

Laskemalla:
zz = (x + iy)(x− iy) = x2 + y2 = |z|2,
saadaan monessa yhteydessä käyttökelpoinen kaava:

(1.2) zz = |z|2,

(Huomaa, että kompleksiluvuilla |z|2 ja z2 ovat eri asioita.)
Rationaalilausekkeen saattaminen muotoon x + iy nimittäjän liittoluvulla laventa-
malla
Kun kerromme nimittäjän liittoluvullaan, saamme uuden nimittäjän, joka kaavan (1.2) mukaan
on reaalinen, jolloin rationaaliluvun saattamiseksi muotoon x + iy tarvitsee vain kertoa kaksi
kompleksilukua keskenään ja jakaa nimittäjässä olevalla reaaliluvulla.
Esimerkki 1.1. Muodostetaanpa lukujen z1 = 8 + 3i ja z2 = 9− 2i osamäärä.

z1

z2
=

z1z2

z2z2
=

(8 + 3i)(9 + 2i)
92 + 42

=
66 + 43i

85
=

66
85

+ i
43
85

(1.3)

Sama Matlab:lla

� format rational % Matlab laskekoon rationaaliaritmetiikalla.
� format compact % Tiivis tulostusmuoto.

� z2=9-2*i
z2 =

9 - 2i
� z1=8+3*i
z1 =

8 + 3i
� z2=9-2*i
z2 =

9 - 2i
� z1/z2
ans =

66/85 + 43/85i
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Matlab siis tekee tällaiset sievennykset automaattisesti.
Samoin tekee Maple, jolle voi myös antaa lukuja symbolisessa muodossa. Tällöin komento evalc tekee yleensä hyvää työtä komplek-
silukusieventäjänä.

2. Polaarimuoto

(Skripti: kuvapolar.m)
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Kuva 2. Kompleksiluku napakoordinaateissa

Kompleksiluku z = x + iy = (x, y) on tason R2 piste, joka voidaan esittää napakoordinaateissa
(φ, r):

z = r(cos φ + i sinφ).

Tässä siis r = |z|. Napakulmaa φ sanotaan kompleksiluvun z argumentiksi. Annetun komplek-
siluvun argumentti on määrätty 2π:n monikertaa vaille. Argumentille sovitaan päähaara, jota
merkitään Arg. Sovimme päähaaraksi:

−π < Arg z ≤ π.

Tämä lienee yleisimmin käytössä oleva sopimus. Sitä käytetään myös [KRE]-kirjassa.
Muitakin esiintyy. Toinen tavallinen on väli (0, 2π] (tai [0, 2π)).
Merkinnällä arg z tarkoitamme jotain argumentin �haaraa�, siten

arg z = Arg z + 2nπ jollainn ∈ Z.

Esimerkki 2.1. Olkoon z = 1 + i. Laskettava moduli ja argumentti.
|z| = √

2, Arg z = π/4, arg z = π/4 + 2nπ (jokin n).
(Matlab-lasku ja kuva, jossa koordinaatistoneljännekset merkitty: kuvapolar.m)
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Saadaanko Arg z yleisesti kaavasta arctan y
x , kuten tässä? (Yläviiva tarkoittaa arkustangentin

päähaaraa.)
No ei saada, sillä luvun −1− i argumentti = −3π/4 = arctan−1

−1 − π.

Yleisesti

Argz = arctan
Im z

Re z
± kπ,missä k ∈ {0, 1,−1}.

Luku k määräytyy koordinaattineljänneksen mukaan.
Argumentin määrääminen:
Käsin laskiessa on yksinkertaisinta toimia näin:
1. Katsotaan kuvasta, mihin koordinaattineljännekseen annettu kompleksiluku kuuluu.
2. Määrätään tähän neljännekseen kuuluva kulma φ, jolle tanφ = y/x.
Reaali- ja imaginaariosan merkit määräävät neljänneksen, sen perusteella on helppo ohjelmoida
yllä oleva kaava funktioksi, joka laskee Arg z:n. Niin on tehty mm. Matlab:ssa ja Maple:ssa.
Edellisessä funktio angle ja jälkimmäisessä argument.
Tässä asiaa valaiseva Matlab-istunto:

z1=1+i; z2=-1+i; z3=-1-i; z4=conj(z1); % conj = liittoluku
angle([z1 z2 z3 z4])

Tuloksena:
0.7854 2.3562 -2.3562 -0.7854

Tehtävä 2.1. Tee yllä oleva käsin, piirrä pisteet tasoon ja laske kunkin argumentti vaikkapa
laskimesi arctan:n avulla.

2.1. Kolmioepäyhtälö, liittolukuominaisuuksia. Liittoluvuilla operoiminen käyttäytyy kau-
niisti kaikkiin laskutoimituksiin nähden:
�liittoluku laskutoimituksesta = laskutoimitus liittoluvuista�
Kerätään yhteen nämä ja pari aiemmin esiteltyä ominaisuutta:
Lause 2.1. Liittolukusäääntöjä

1. z1 + z2 = z1 + z2

2. z1z2 = z1 z2

3. ( z1
z2

) = z1
z2

4. zz = |z|2.
5. z = z.

Todistus. Olkoon tavalliseen tapaan z1 = x1 + iy1, z2 = x2 + iy2.

Kohta 1:
z1 + z2 = x1 + x2 − i(y1 + y2) = x1 − iy1 + x2 − iy2 = z1 + z2.
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Kohta 2:
z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1).

Lasketaan z1 z2 ja katsotaan, olisko se tämän liittoluku.
z1 z2 = (x1 − iy1)(x2 − iy2) = x1x2 − y1y2 − i(x1y2 + x2y1).

Kyllä on, aivan kuten väitettiin.
Kohta 3 voidaan laskea aika lyhyesti samaan tapaan laventamalla nimittäjän liittoluvulla ja
vertaamalla näin saatuja z1/z2:n ja z1/z2:n lausekkeita.
Kohdan 4 olemme jo laskeneet.
Kohta 5 on vain sitä, että miinus miinus = plus.

�
Lause 2.2 (Seuraus). Reaalikertoimiselle kompleksimuuttujan polynomille
p(z) = a0 + a1z + . . . + anzn pätee: p(z) = p(z).

Todistus. Edellisen lauseen ( 2.1) perusteella: p(z) = a0 + a1z + . . . anzn = a0 + a1 z + . . . an zn.

Koska kertoimet ak ovat reaalisia, on ak = ak kaikilla k = 0 . . . n,
joten viimeksi saatu lauseke on todellakin p(z). �
Lause 2.3 (Seuraus). Reaalikertoimisen polyomin nollakohta on joko reaalinen tai kompleksi-
sessa tapauksessa liittolukupari.

Todistus. Olkoon reaalikertoimisella polynomilla p kompleksinen nollakohta c = a + ib, missä
b 6= 0. Tällöin p(c) = 0, joten

0 = 0 = p(c) = p(c).

Niinpä c = a− ib on myös p:n nollakohta.
�

Tämä seurauslause on tärkeä mm. ominaisarvoteoriassa, palaamme siihen aika ajoin.
Tehtävä 2.2. Osoita, että pariton-asteisella reaalisella polynomilla on ainakin yksi reaalinen
nollakohta.

Kolmioepäyhtälö sanoo havainnollisesti, että kolmion sivun pituus on aina korkeintaan kahden
muun sivun pituuksien summa. Tämä lausuttuna kompleksitasossa on:
Lause 2.4 (Kolmioepäyhtälö).

|z1 + z2| ≤ |z1|+ |z2|.

Tod. Ei muuta kuin lasketaan:

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1︸︷︷︸
|z1|2

+z1z2 + z2z1 + z2z2︸︷︷︸
|z2|2

.
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z1z2 + z2z1 = z1z2 + z1z2 = 2Re(z1z2) ≤ 2|z1||z2|.
Sitten vain tavallinen binomin neliökaava, niin jopa ollaan perillä. �

3. Kerto-ja jakolasku polaarimuodossa

.
Elämänohje: Kompleksilukujen yhteen- ja vähennyslasku kannattaa tehdä (x, y)− koordinaat-
timuodossa, kerto- ja jakolasku polaarimuodossa. Kohta näemme miksi.
Palautamme mieleen trigonometrian perusasioita: sinin ja kosinin yhteenlaskukaavat. (Nykyisin
näiden käyttö lukion matematiikassa lienee jäänyt liian vähälle huomiolle.)

(3.1)
{

sin(α± β) = sin α cos β ± cos α sin β

cos(α± β) = cosα cosβ ∓ sinα sin β.

Olkoon zj = rj(cos φj + i sin φj), j = 1, 2.

Muodostetaan tulo:

z1z2 = r1r2(cos φ1 + i sin φ1)(cos φ2 + i sin φ2) =

= r1r2((cos φ1 cos φ2 − sinφ1 sin φ2) + i(sinφ1 cosφ2 + cosφ1 sinφ2)) =

= r1r2(cos(φ1 + φ2) + i sin(φ1 + φ2)).
(3.2)

Siispä:

(3.3)
{
|z1z2| = |z1||z2|
arg(z1z2) = arg z1 + arg z2

Korostuksen vuoksi jälkimmäinen kirjoitetaan usein muotoon:
arg(z1z2) = arg z1 + arg z2 + 2nπ.

Sopimuksemme mukaan arg viittaa johonkin argumentin haaraan. joten merkintä olisi oikein
ilmankin 2π:n monikerran lisäystermiä, mutta on parempi yleensä tottua kirjoittamaan se.
Päähaaran tapauksessa on kirjoitettava:

Arg(z1z2) = Argz1 + Argz2 + 2nπ,

missä n on sopivasti valittu kokonaisluku.
Hieman elegantimmin voidaan sama asia kirjoittaa myös näin:
Arg(z1z2) = Arg z1 + Arg z2(mod 2π), joka voidaan lukea: argumentit ovat samat �modulo 2π�
tai �2π:n monikertaa paitsi�.
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Esimerkki 3.1. Olkoon z1 = 1 + i
√

3 ja z2 = −1 + i. Kirjoitetaan polaarimuotoon:
z1 = 2(cos(π

3 ) + i sin(π
3 )), z2 =

√
2(cos(3π

4 ) + i sin(3π
4 )),

z1z2 = 2
√

2(cosφ + i sinφ), missä φ = π
3 + 3π

4 = 13π
12

Siten arg(z1z2) = 13π
12 (eräs argumentti), ja Arg(z1z2) = −11π

12 (päähaara).
On tietysti aivan selvää, että laskettaessa päähaaran kulmia yhteen, voidaan joutua pois pää-
haaralta. Laskettiin nyt varmuuden vuoksi konkreettinen esimerkki.
Harjoituksen vuoksi voit tarkistaa, että saat saman tuloksen kertomalla koordinaattimuodossa
ja siirtymällä sitten polaarimuotoon.

Jakolasku palautuu edelliseen suoraan, sillä z = z1
z2

⇐⇒ zz2 = z1.

Tällöin edellisen mukaan |z||z2| = |zz2| = |z1|, joten |z| = |z1|
|z2| , ja

arg z1 = arg(zz2) = arg z + arg z2, joten arg z = arg z1 − arg z2.

Päähaaroille taas (mod 2π).

3.1. Potenssit, De Moivre'n kaava.
Huomautus 3.1. Olkoon ω kompleksiluku, jonka moduli (itsesiarvo)= 1. Voidaan siis kirjoittaa
ω = cosα+i sinα. Kompleksiluvun z kertominen ω:lla merkitsee z:n kiertämistä kulman α verran.
(Itseisarvo kerrotaan 1:llä, napakulmaan lisätään α.)

Kertolaskukaavasta (3.3 sivulla 8 ) seuraa heti, että jos haluamme laskea kompleksiluvun z =
r(cos φ + i sin φ) potenssin, saamme:

zn = rn(cos n φ + i sin nφ).

Erityisesti, jos luvun z itseisarvo (moduli) = 1, saadaan

De Moivre'n kaava: (cos φ + i sin φ)n = (cosnφ + i sinnφ).

Esimerkki 3.2 (De Moivre'n kaavan käyttö trigonometriassa). Käyttämällä binomikaavaa va-
semmalla ja vertaamalla reaaliosia ja imaginaariosia, saadaan moninkertaisten kulmien lausek-
keet cosnφ ja sinnφ lausutuksi cos φ:n ja sinφ potenssien avulla.
Lasketaan esimerkin vuoksi tutut kaksinkertaisten kulmien kaavat. De Moivre =⇒

(cos φ + i sin φ)2︸ ︷︷ ︸ = (cos 2φ + i sin 2φ).

cos2 φ− sin2 φ + 2i cos φ sinφ

Vertaamalla reaaliosia ja imaginaariosia, saadaan tutut kaavat:

{
cos 2φ = cos2 φ− sin2 φ

sin 2φ = 2 sin φ cos φ.

Tehtävä 3.1. Laske vastaavasti muita kaavoja, kuten kolminkertaisten, nelinkertaisten, jne kul-
mien kaavat.
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3.2. Kompleksiluvun juuret. Kun on määrättävä n:s juuri annetusta kompleksiluvusta z, on
tehtävänä ratkaista w yhtälöstä.

wn = z.

Tiedämme jo reaalilukujen laskennosta, että ratkaisu ei aina ole yksikäsitteinen. Jos vaikka z = 4,
niin (reaaliset) ratkaisut ovat w = ±2. Toisin sanottuna: Reaalisella neliöjuurifunktiolla on kaksi
haaraa, positiivinen ja negatiivinen.
Mikä vielä pahempaa, negatiivisille luvuille z ei ratkaisuja reaalilukujoukosta löydy lainkaan.
Tämähän oli lähtökohtana komplesilukuleikillemme.
No mitä nyt tässä uudessa leikkikehässämme saamme aikaan?
Kirjoitetaan annettu kompleksiluku z ja ratkaistava luku w polaarimuodossa

z = r(cosΘ + i sinΘ)

w = R(cos φ + i sinφ).
(3.4)

Nyt pätee wn = z ⇐⇒

Rn(cosnφ + i sinnφ) = r(cosΘ + i sinΘ).

Kompleksiluvut yhtyvät, jos ja vain jos modulit ovat samat ja argumentit yhtyvät mahdollisesti
2π:n monikertaa paitsi. Siis yhtälömme on yhtäpitävä tämän kanssa:

{
Rn = r

nφ = Θ + k2π,

eli

{
R = n

√
r

φ = Θ
n + k 2π

n , k = 0, . . . , n− 1.

Tässä k:n arvot n:stä eteenpäin toistavat samoja φ:n arvoja.
Sillä jos k = n + j, missä j = 0, 1, 2, . . ., niin
k 2π

n = (n + j)2π
n = 2π + j 2π

n .

Saadaan siis tasan n kappaletta annetun luvun z n:nsiä juuria.

Geometrisesti juuret sijaitsevat n
√
|z|-säteisen säännöllisen n-kulmion kärkipisteinä, jonka �alku-

piste� on kulman Arg z
n määräämässä pisteessä, ts. pisteessä, jonka napakoordinaatit ovat

( n
√

r, Θ/n).
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Esimerkki 3.3. Muodostetaan kaikki juuret 7
√

1 + i

Kirjoitetaan luku z = 1 + i polaarimotoon. r =
√

2, Θ = π
4 , joten R = 14

√
2 ja

φk =
Θ
7

+ k
2π

7
=

π

28
+ k

2π

7
, k = 0, . . . , 6

Kuva saadaan Matlab-skriptillä: esim7juuri.m, kts kuva 3.
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Kuva 3. Luvun z = 1 + i 7:nnet juuret w0, . . . , w6.

Huomautus 3.2. (Matlab-opinhaluisille) Yllä olevassa Matlab-skriptissä olennaista oli juurien
wj laskeminen. Teimme sen �analyyttisesti� juurikaavan mukaan, mikä tukee tässä opetettavaa
asiaa. Toisaalta Matlab:ssa on yleinen polynomiyhtälöiden numeerinen ratkaisija, jolla numeeriset
approksimaatiot saataisiin vielä vähemmällä vaivalla.
Matlab käsittelee polynomia anzn+. . .+a1z+a0 kertoimien muodostamana vektorina [an, . . . , a1, a0] .
Matlab-funktio roots ratkaisee numeerisesti (kompleksitasossa) polynomiyhtälön anzn + . . . +
a1z + a0 = 0. Komennon syntaksi on roots(kerroinvektori), missä kerroinvektori annetaan
korkeimman asteisesta alimpaan. Yllä olevan esimerkin olennainen laskenta (w-vektorin laskemi-
nen) voitaisiin siten tiivistää muotoon:

ww=roots([1 0 0 0 0 0 0 -1-i])

Kyseessähän ovat polynomin z7 − (1 + i) nollakohdat.
M-tehtävä 3.1. Suorita tekstissä oleva Matlab-istunto ja yllä oleva Matlab-komento. Vertaa tu-
loksia piirtämällä samaan kuvaan päällekkäin. Piirrä ww- vektorin alkiot vaikka sinisellä tähdellä
('*b').
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3.3. Ykkösen n:nnet juuret. n
√

1

Erityisesti luvun 1 n:nnet juuret ovat reaaliakselin yksikköpisteestä (ykkösestä) alkavan säännöl-
lisen n-kulmion kärkipisteet.
Merkitään ωn = cos 2π

n + i sin 2π
n ja

ωn,k = cos k 2π
n + i sin k 2π

n .

Tällöin ωn,k = (ωn)k.
Nämä luvut tulevat siellä täällä vastaan matematiikan poluilla, mm. johdettaessa nopean Fourier-
muunnoksen (FFT) algoritmia.

3.4. Kertolaskun geometrinen merkitys. Ajatellaan erityisesti kertomista luvulla w, joka
on yksikköympyrän kehällä, eli |w| = 1.
Tulo wz merkitsee annetun vektorin z kiertoa kulman arg(w) verran.
Jos |w| 6= 1, kyseessä on kierto yhdistettynä venytykseen/kutistukseen.

4. Eksponenttifunktio

[KRE] 12.6, s. 679 ...
Pidämme tunnettuna reaalisen eksponenttifunktion ominaisuuksineen. Käytämme sille tuttua
merkintää ex, missä siis x ∈ R.
Miten tulisi määritellä ez, kun z on kompleksiluku? Helpoimmalla pääsemme tällä määritelmällä:
Määritelmä 4.1. Olkoon z = x + iy, asetetaan
(4.1) ez = ex(cos y + i sin y).

Tässä siis ex tarkoittaa entuudestaan tunnettua reaalista eksponenttifunktiota.
1

ez:n ominaisuuksia

1. Jos z ∈ R, niin ez yhtyy reaaliseen exp-funktioon. Sillä tällöinhän z = x + 0i = x, joten
määritelmän mukaan ez = ex, missä edellinen tarkoittaa kompleksista ja jälkimmäinen
reaalista exp-funktiota.

2. Jos z on �puhtaasti imaginaarinen�, ts. z = iy, y ∈ R, niin ez = eiy = cos y + i sin y.
3. ez1+z2 = ez1ez2 .
4. d

dz ez = ez

Kohdan 3 perustelu. Olkoon z1 = x1 + iy1 ja z2 = x2 + iy2.

ez1ez2 = ex1ex2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ex1+x2(cos(y1 + y2) + i sin(y1 + y2))
(4.2)

1Huom! Exp-funktio voitaisiin määritellä samalla potenssisarjalla, joka pätee reaalialueella. Tällöin ei tarvitsisi
tietää mitään reaalisen exp-funktion ominaisuuksista. Palataan aiheeseen matriisiexp-funktion yhteydessä.
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Tässä käytimme reaalisen exp-funktion vastaavaa tunnettua ominaisuutta ja toisaalta edellä
laskettua sääntöä: "Tulon argumentti = argumenttien summa", joka seuraa kosinin ja sinin
yhteenlaskukaavoista, kuten muistanemme (3.3 sivulla 8 ).
Derivoimiskaavan perustelun jätämme tuonnemmaksi, koska emme vielä ole käsitelleet derivointia
kompleksimuuttujan suhteen.

�

Eulerin kaava2

Tällä nimellä tunnetaan kohdan 2 ominaisuus:

eiφ = cosφ + i sin φ.

Voidaan sanoa, että määrittelimme eksponenttifunktion niin, että se toisaalta yhtyy reaaliakse-
lilla entuudestaan tunnettuun reaaliseen exp-funktioon, ja toisaalta toteuttaa puhtaasti imagi-
naarisella argumentilla Eulerin kaavan.
Nyt voimme kirjoittaa kompleksiluvun polaariesityksen lyhyemmin:

z = r(cos φ + i sinφ) = reiφ.

Erityisesti i = eiπ/2,−1 = eiπ,−i = e−iπ/2.

Muista ajatella kompleksilukuja geometrisesti!

4.1. ez:n välittämä kuvaus. Kuten olemme jo todenneet, ja kuten tulemme monesti vielä
toteamaan, kompleksifunktio f : C → C määrittelee kuvauksen (voidaan oikeammin sanoa: �on
kuvaus�) kompleksitasosta tai sen osajoukosta kompleksitasoon.
Tässä käsittelemme exp-funktiota ja katsomme, miten sen �kuvaajaa� voi luonnehtia.
Voisimme aloittaa valitsemalla joukon z−pisteitä kompleksitasosta, joita merkitsimme vaikka
◦:llä ja laskemalla kuvapisteet w = ez. Niitä merkittäisiin vaikka punaisella ?:lla.
Teepä ihan huvin vuoksi ruutupaperille, jos siltä tuntuu!
Tästä ei "kuvaaja"vielä oikein hahmotu .
Systemaattisemmin pääsemme hommaan kiinni tutkimalla, miten koordinaattiviivat kuvautuvat.
Matlab on tässä hyvänä apuna, näytetään tässä tulos.
Matlab-skripti ja kuvat (värillisinä) ...03/L/CA1.html.
Kuvassa 6 näkyvä käytös voidaan päätellä suoraan exp-funktion määritelmäatä:

ez = ex(cos y + i sin y).

Merk w = ez. Määrittelykaavasta näkyy heti:
2Euler oli sen luokan nero, että matematiikassa on koko joukko "Eulerin kaavoja". Tämä on ehkä niistä eniten

siteerattu. Tällä kurssilla tulemme kohtaamaan muita samannimisiä mm. Fourier-sarjojen yhteydessä. (Sama
ilmiö koskee esim. Newtonia)
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Kuva 4. Luvut 1 = ei0, i = eiπ/2,−1 = eiπ,−i = e−iπ/2
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Kuva 5. Muutaman pisteen kuva exp-kuvauksessa

• Jos x = vakio = c ja y1 ≤ y ≤ y2, niin w kulkee pitkin ec-säteistä ympyräviivaa piirtäen
sektorin, jota rajaavat kulmat y1 ja y2.

• Jos y = vakio = d ja x1 ≤ x ≤ x2, niin w kulkee pitkin puolisädettä, joka muodostaa
x-akselin kanssa kulman d, piirtäen säteen osan, jota rajaavat ex1− ja ex2− säteiset
ympyrät.

• Mitä kauempana vasemmalla pystyjanamme sijaitsee, sitä pienemmän O-keskisen ym-
pyräviivan (osan) vastaava w−käyrä piirtää. Pieni reikä origon ympärille aina jää, sillä
|w| = ex, joka ei saa arvoa 0, olipa x kuinka negatiivinen tahansa.
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Kuva 6. ez kuvaa pystyviivat ympyränkaariksi ja vaakaviivat "sädejanoiksi"

• Vastaavasti positiivisella puolella saadaan miten suuria ymyröitä vain ikinä halutaan.
Ympyröiden säteet kasvavat jopa eksponentiaalisesti x:n suhteen.

Yllä piirretyssä kuvassa z-tason hilaviivat on valittu tämä huomioon ottaen �älykkäästi�. Turha
haaskata laskentaruutia suorien piirtämiseen monen pisteen voimin.
Lyhyesti sanottuna siis:

Pystyjanat kuvautuvat ympyräsektoreiksi.
Vaakajanat kuvautuvat puolisäteellä makaaviksi janoiksi.

4.2. Jaksollisuus,perusalue. Koska kosini ja sini ovat 2π− jaksoisia, niin ei(y+2π) = eiy. Jos
siis z = x + iy, niin

ez+2iπ = exei(y+2π) = exeiy = ez.

Niinpä ez on 2πi−jaksoinen. Kuvaa katsoessa tämä näkyy niin, että jos jokin pystyjana on 2π:n
korkuinen, niin vastaava kuvakaari on koko ympyrä, joten aina 2πi:n lisäyksen jälkeen kuvapiste
palaa siihen, mistä lähdettiin.
Jos suoritat Matlab:ssa seuraavat komennot, näet keltaisella täytetyn suorakulmion, jonka kor-
keus on 2π, ja −20 ≤ x ≤ 20.

clf
v=([-20+i*pi, 20+i*pi,20-i*pi, -20-i*pi])
fill(real(v),imag(v),'y')
axis([-20 20 -10 10])
grid

Tämän kuva exp-funktiossa on siis ympyrärengas, jota rajoittavat r1− ja r2−säteiset ympyrät,
missä r1 = e−20 ja r2 = e20.
Kun annetaan tämän keltaisen vyön ulottua koko reaaliakselin leveydelle, saadaan kuvina kaik-
ki kompleksiluvut lukuunottamatta nollaa. Kun rajoitumme tälle (puoliavoimelle) "keltaisel-
le"alueelle, kukin kompleksiarvo w saavutetaan täsmälleen kerran. (Mietipä!)
Tässä on sopiva paikka siirtyä tarkastelemaan käänteisfunktiota, logaritmia.
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5. Logaritmi ja yleinen potenssi

5.1. Logaritmi. [KRE] 12.8.
Olemme todenneet, että exp-funktio kuvaa 2π:n korkuisen vyön:

V = {z = x + iy|x ∈ R, y ∈ (−π, π]}
bijektiivisesti kompleksitasolle, josta on origo poistettu. (Puhumme O:ssa punkteeratusta tasos-
ta). Niinpä sillä on käänteiskuvaus, jonka määrittelyjoukko on W0 = W\0.

Saamme siten kuvauksen
Log : W0 −→ V.

Esimerkki 5.1. (KRE8 Exa 1 s. 681) Haluamme määrätä kompleksiluvun 3 + 4i logaritmin.
Toisin sanoen on ratkaistava z yhtälöstä

ez = 3 + 4i.

Olkoon z = x + iy, tällöin
exeiy = 3 + 4i = 5eiφ,

missä
φ = arg(3 + 4i) = arctan (4/3),

missä yläviiva viittaa arkustangentin päähaaraan. (Muistathan, että argumentti ei automaatti-
sesti ole sama kuin arkustangentin päähaara, tässä tapauksessa se on siksi, että piste 3 + 4i on
ensimmäisessä koordinaattineljänneksessä.)
Siis on oltava
(5.1) ex = 5, y = φ + 2nπ

Jos käänteisfunktion arvo valitaan jaksovyöstä V, on y = φ, joten

Log(3 + 4i) = ln 5 + i arctan
4
3
.

Jos merkitsemme log(3 + 4i):llä mitä tahansa yhtälön ratkaisua, saamme:

log(3 + 4i) = ln 5 + i(arctan
4
3

+ 2nπ).

Saimme laskusäänön logaritmeille:

• Laske luvun (tässä 3 + 4i) itseisarvo (moduli) ja ota sen logaritmi (ln).
Näin saat logaritmin reaaliosan.

• Laske luvun (3 + 4i) argumentti, se antaa logaritmin imaginaariosan.
(Argumentin päähaara antaa logaritmin päähaaran.)

Lasketaan Matlabilla:

w=3+4*i
itseisarvow=sqrt(3^2+4^2) % saadaan myös komennolla abs(w)
argumenttiw=angle(w) % Argumentin päähaara
x=log(itseisarvow) % Logaritmin reaaliosa (log = ln)
y=argumenttiw % Logaritmin imaginaariosa
komplog=log(w) % Tarkistetaan Matlabin log:lla sovellettuna
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% suoraan kompleksilukuun.

Tässä yllä olevien komentojen tulokset:

w =
3.0000 + 4.0000i

itseisarvow =
5

argumenttiw =
0.9273

x =
1.6094

y =
0.9273

komplog =
1.6094 + 0.9273i

Siis kaikki toimii, kuten pitää. Näemme, että Matlab:n log-funktio laskee kompleksisen logaritmin
päähaaran, kuten luonnollista on.
Huomautus päähaarasta (uudestaan). Käyttämämme (argumentin ja logaritmin) päähaa-
ra [−π, π) on varsin yleisesti käytetty, mutta tämä on sopimuskysymys. Joissakin oppikirjoissa
käytetään päähaarana väliä (0, 2π] (tai [0, 2π)).
Tehdään vielä sama lasku uudestaan yleisesti
Haluamme laskea Logz:n mielivaltaiselle z ∈ C\{0}. Kyseessä on siis yhtälön

ew = z

ratkaiseminen w:n suhteen, kun z ∈ C\{0} on annettu.
Olkoon z = reiφ, ja merkitään w = u + iv. Tällöin siis:

eueiv = reiφ.

Aivan kuten äsken, näemme, että:
u = ln r, v = φ = Arg z.

Muut logaritmin haarat saadaan lisäämällä imaginaariosaan v 2π:n monikertoja.
Matlab-ajo: demolog.m

5.2. Yleinen potenssi. [KRE] [12.8 ss. 687�691]
Eksponentti- ja logaritmifunktioiden avulla voidaan määritellä yleinen potenssi, kuten reaalialu-
eellakin. Olkoot z ja c kompleksilukuja ja z 6= 0. Määritellään:

zc = ec log z.

Yleisessä tapauksessa saadaan monihaarainen funktio, päähaara saadaan ottamalla logaritmin
päähaara Ln.
Jos c on kokonaisluku tai yleisemmin rationaaliluku, kyseessä on sama potenssifunktio, jota edellä
olemme käsitelleet (kokonaislukupotenssi, juuri tai niiden yhdistelmä).
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Tehtävä 5.1. Laske 1i, ii, i
√

e, e
√

i

Ratkaisu: Lasketaan ii, eli tehtävänä on laskea ei ln i

Lasketaan ensin ln i = ln |i|+ iargi = 0 + i(π/2 + 2nπ) (n ∈ Z).

i ln i = −π/2 + 2nπ, joten ii = e−
π
2 e2nπ.

Päähaara on logaritmin päähaara, joka saadaan n :n arvolla 0, joten ii:n päähaara-arvo on e−
π
2 .

6. Trigonometriset ja hyperboliset funktiot

Reaaliset sin ja cos voidaan palauttaa eksponenttifunktioon Eulerin kaavan avulla: Jos x on
reaaliluku, niin
eix = cos x + i sin x, e−ix = cos x− i sin x

Jos nämä lasketaan yhteen ja vähennetään, saadaan heti ratkaistuksi:
cos x = 1

2(eix + e−ix), sin x = 1
2i(e

ix − e−ix).

Nämä kaavat ovat sinänsä hyödyllisiä monessa kohdassa matematiikan kentillä. Aktivoi niiden
käyttö!
Tässä käytämme niitä antamaan johtolangan siihen, miten kompleksiargumentin sin− ja cos−funktiot
tulisi määritellä.
Olemme palauttaneet reaalisen sinin ja kosinin kompleksimuuttujan exp-funktioon. Helppo tapa
on määritellä kompleksiset sini ja kosini yksinkertaiseti samoilla kaavoilla, siis antamalla x:n
tarkoittaa mielivaltaista kompleksilukua (jolloin merkitsemme sitä mieluummin z:lla). Tällöin
ainakin saamme vastaavien reaalialueen funktioiden laajennuksen, koskapa tuo kaava siellä pätee.
Toivottavaa tietysti on, että mahdollisimman paljon sinin ja kosinin tunnetuista ominaisuuksista
säilyisi.
Määritelmä 6.1. Olkoon z ∈ C Asetamme:

(6.1)
{

cos z = 1
2(eiz + e−iz)

sin z = 1
2i(e

iz − e−iz).

Voimme nyt tutkia sinin ja kosinin ominaisuuksia, saamme yleisen Eulerin kaavan:

eiz = cos z + i sin z.

Kiintoisaa on nähdä trigonometristen ja hyperbolisten funktioiden välinen yhteys.
Funktioiden kuvausominaisuuksia voidaan selvitellä.
...
[KRE] [12.7 ss. 682�687]


