PARTICLE FILTERS
Recall the setting for Kalman filtering:

Evolution—observation model:

X1 = AX;+ Vi1, j=0,1,2...
Y, = BX;+E;, j=12....

The first equation is used for prediction, the second equation for correction of
the prediction.

Kalman filtering is based on the assumption that everything is Gaussian.

Normality: Mean and covariance determine the density.
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Assumptions of the noise processes and the initial process:

1. Normality:
V}' NN(O,Fj), Ej NN(O,E])

2. Independency: Variables V;, E;, all mutually independent.

3. Initial density:
Xo ~ N (o, Do),

and X is independent of the noise processes.
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LIMITATIONS

The Kalman filtering is not applicable if

e the model is not linear with additive noise

e any of the assumptions 1.-3. fail.

Non-Gaussian densities: exploration by sampling.

Dynamic sampler requires two steps

1. Propagation of the sample points, called particles.

2. Resampling of the particles when the observation data arrives.
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(GENERAL EVOLUTION-OBSERVATION MODEL

We consider the more general model

Xj-l—l — F(Xja‘/jj—i—l)a j:071727'”
Y, = G(X;,E;), j=12,....

The functions F' and G are assumed known.

For simplicity, it is assumed here that F' and G are time invariant. More
generally, they could be different at each step.

For simplicity, we assume also that

e V;41 is independent of X},

e F; is independent of Xj;.
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INITIALIZATION

As in Kalman filtering, we assume an a priori probability density w(zg) for
Xp.

Step 1: Generate a sample

So = {xo,xo,.. }

by drawing from the density 7 (xg).

Observe: if the initial density is complicated (e.g. non-Gaussian), the genera-
tion of the initial sample may require the use of MCMC methods.
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PROPAGATION
Suppose that we have a sample
Sk = {x,ﬁ,x%,,x{f}
of points that are distributed according to the probability density

T‘-(xk | Y1, Y2, - - 7yk)

Step 2: Draw a sample of the evolution noise realizations

12 N

from the distribution 7 (v;11) of the random variable V.

Calculate the propagated prediction sample

Q N s | ~2 ~N
Sk+1 = {5’7/«+17 Lht1r- > Tp41

by the propagation formula
Tpq = F(xg,v.,), 1<j<N.
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CORRECTION

Assume that from the observation model
Yi = G(Xg, Ey),
we can calculate the likelihood density,

w(yk\xk), ]{7:1,2,...

up to a multiplicative constant, denoted here by C.

Step 3: With yr11 = Yr+1.0bs, calculate the importance of each propagated
particle: | |
ﬁj{i+1 — Oﬂ-(yk—l—l | %?ﬁ—l)v 1 S] < N,

and further, the relative importance by scaling,

@ |
J + W = E ~J
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CORRECTION (CONT.)

Now we have the predicted sample, with attached relative importance weights,
~1 1 ~2 2 ~N N
{(xk:—l—la wkz—|—1)7 (xk:—|-17 wk—l—l)v <oy (xk-l—la wk:—|—1)} .
Step 4: Resampling: draw a new sample

_ .1 2 N
Sk+1 = {xk‘—Fl? LSS EERE 7517k+1}

from the sample §k+1 drawing the particles according to their relative impor-
tance wy, ;.

The algorithm described above is referred to as Sampling Importance Resam-

pling (SIR).
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Implementation of the resampling step:

e Divide the unit interval in pieces I/ of length w*,i +1- Notice that

N

J _
g Wy, 1 = 1.
j=1

e Repeat for/=1,...,N:

1. Draw & ~ Uniform(|0, 1]),

2. If ¢ e IV set af,, =77, .
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OBSERVATIONS

The same particle 577@ .1 may appear in the final sample several times.

In fact, if wi 41 1s large, it is likely that the jth particle appears several
times.

The phenomenon that the final sample contains copies of only very few
propagated particles is called data thinning.

Data thinning is a typical phenomenon if the likelihood is very narrow.
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BIOMAGNETIC INVERSE PROBLEM
A single planar dipole moves in the plane P = {p = [p1;p2;0]}.
Vertical component of the resulting magnetic field is observed above the plane.

Data:

. to €z - qx (rj —p)
b(x) = . RL. bi(x) = J
('CC) S 9 ]('CC) 47_‘_ |Tj _p|3 9

q = dipole moment = [ Zl ] c R?
2
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Time dependent dipole:

Discrete time, t = t;. Model parameter:
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Random walk model
Xi+1 = X + Vita,

where the covariance of Vi1 is

I = diag(\2, A2, 62, 62) € R4,
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The model corresponds to the Markov transition kernel
1 _
T(Tpq1 | To) OC €Xp (—5(%+1 — fL‘x)TF 1(33x+1 — CEm)) :

The observation model:
Vi = b(Xy) + E,

where B} is independent of X, 7 < k and Gaussian with zero mean and
variance I'oise known.

Likelihood:

ﬂ-(yk ‘ xk) X exp <_%(yk - b(wk))TFr?olise(yk - b(xk))> .
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Initial prior probability density of Xj:

1 _ _
X ~ 7'('()(5170) X exp —(CEO — fo)TFO 1(560 — CEo) :
2

The particle filtering algorithm for single dipole tracking can be summarized
as follows.

Choose sample size N, and draw 2§, ...,z € R*, from 7y and set k = 0.

do
Draw v!,..., 0" ~ N (0,C) and define 2/ =z + v/, 1< j <N
Calculate the relative likelihoods, w? = m(yy | 27)/W, W = Z;.V:l m(yr | 27)
Draw :z;‘,iﬂ, 1 <j <N from {2z}, ..., 2} the propability of 27 being w’.
k—k+1

end

The above loop is repeated as long as new observations y; keep arriving.
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SIMULATION AND DATA
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Noise level: STD = 80% of the maximum of the noiseless signal.
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SELECTION OF MODEL PARAMETERS

e Number of particles: N = 200000

e Step length for location : A = 1 units (Size of the image = 10 units per
direction.)

e Step size for amplitude evolution: § = 0.25 units, about 20% of maxi-
mum dipole value in simulation.
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MEAN OVER PARTICLE SAMPLE
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DIAGNOSTICS OF DATA THINNING
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k

Relative number of particles in the prediction sample that are resampled at
least once.
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