
Markov and p–Markov processes

Recall the definition of a Markov process:

A stochastic process
X0, X1, . . . , Xn, . . .

is a Markov process if

π(xn+1 | x0, x1, . . . , xn) = π(xn+1 | xn)

for all n.

0-0

Generalization: a stochastic process

X0, X1, . . . , Xn, . . .

is a p–Markov process if

π(xn+1 | x0, x1, . . . , xn) = π(xn+1 | xn−p+1, . . . , xn−1, xn︸ ︷︷ ︸
p

)

for all n, where we interpret Xj = 0 for j < 0.

Markov = p–Markov with p = 1.

0-1

From p–Markov to Markov

Let {Xn} be a p–Markov process.

Define

Zn =




Xn

Xn−1

...
Xn−p+1


 , (X−j = 0).

We have

π(zn+1 | zn, zn−1, . . . , z0) = π(xn+1, xn, . . . , xn−p+2 | xn, xn−1, . . . , x0).

0-2

Now we use a bit heuristics (everything can be done rigorously):

• If xn is known, knowing xn−1, xn−2, . . . , x0 brings no extra information
about xn,

• If xn−1 is known, knowing xn−2, xn−3, . . . , x0 brings no extra information
about xn−1,

• ...

• If xn−p+2 is known, knowing xn−p+1, xn−p, . . . , x0 brings no extra infor-
mation about xn−p+2,

0-3

But since the process is p–Markov, knowing xn−p, xn−p−1, . . . , x0 gives no
extra information of xn+1.

Conclusion: Knowing xn−p, xn−p−1, . . . , x0 gives no information that would
not be included in knowing xn, . . . , xn−p+2.

π(xn+1, xn, . . . , xn−p+2 | xn, xn−1, . . . xn−p+1, xn−p, . . . , x0︸ ︷︷ ︸
useless

)

= π(xn+1, xn, . . . , xn−p+2︸ ︷︷ ︸
zn+1

| xn, xn−1, . . . xn−p+1︸ ︷︷ ︸
=zn

),

in other words,

π(zn+1 | zn, zn−1, . . . , z0) = π(zn+1 | zn).

0-4

Moving window adaptation

Design a Metropolis-Hastings algorithm along the following guidelines:

• Random walk update,

• Adaptation: update the proposal distribution after every M steps,

• Proposal depends on few (two, say) previous blocks of length M .

0-5

Algorithm

1. Initialize k = 0, Ck = γ2I.

2. Generate a sample sequence of length M ,

Sk =
{
xkM+1, xkM+2, . . . , x(k+1)M

}
,

using the random walk proposal

xprop = xcurr + w, w ∼ N (0, Ck)

3. Update
Ck → Ck+1 = cov(Sk−1, Sk) + εI, (S−1 = ∅).

4. Increase k → k + 1 and continue from 2 until desired sample size is
reached.

0-6

Observe: The chain is not Markov, but it is 3M–Markov.

We may write a proposal for z (p = 3M) as

zprop =




xn + RT
k w

xn

...
xn−p+2


 (Ck = RT

k Rk)

=




1
1

1
. . .

1 0







xn

xn−1

xn−2

...
xn−p+1




+




RT
k w
0
...
0


 ,

0-7

zprop = V zn + η,

where η depends on zn, since the matrix Ck depends on xj ’s with j ≥ n−3M =
n− p, which are all included in zn.

In other words: One step in zn–history covers an xn–history of length 3M ,
which fully determines the updating matrix Ck.

0-8

Updating the covariance

Assume that j = (k + 1)M :

x0, . . . , x(k−1)M , x(k−1)M+1, . . . , xkM︸ ︷︷ ︸
Sk−1

, xkM+1, . . . , x(k+1)M︸ ︷︷ ︸
Sk

.

We have in memory

xk−1 =
1
M

kM∑

j=(k−1)M+1

xj ,

Ck−1 =
1
M

kM∑

j=(k−1)M+1

(xj − xk−1)(xj − xk−1)T,

which have been computed when j = kM .

0-9

Calculate

xk =
1
M

(k+1)M∑

j=kM+1

xj ,

Ck =
1
M

(k+1)M∑

j=kM+1

(xj − xk)(xj − xk)T,

Mean over Sk−1 ∪ Sk is

x =
1

2M

(k+1)M∑

j=(k−1)M+1

xj

=
1
2


 1

M

kM∑

j=(k−1)M+1

+
1
M

(k+1)M∑

j=kM+1


 xj

=
1
2
(xk−1 + xk).

0-10

Covariance

Write

C =
1

2M

(k+1)M∑

j=(k−1)M+1

(xj − x)(xj − x)T

=
1
2


 1

M

kM∑

j=(k−1)M+1

+
1
M

(k+1)M∑

j=kM+1


 (xj − x)(xj − x)T.

The sums above are off-centered variances, and from the results of the previous
lectures, we know that

1
M

kM∑

j=(k−1)M+1

(xj − x)(xj − x)T = Ck−1 + (x− xk−1)(x− xk−1)T.

0-11

Similarly,

1
M

(k+1)M∑

j=kM+1

(xj − x)(xj − x)T = Ck + (x− xk)(x− xk)T.

Since
x− xk−1 =

1
2
(xk − xk−1) = −(x− xk),

we obtain the updating formula,

C =
1
2
(Ck−1 + Ck) +

1
4
(xk − xk−1)(xk − xk−1)T.

0-12

Program

% Sampling with moving window adaptation

SampleA = zeros(2,nsample);
SampleA(:,1) = x0;
x = x0;
lpdf = -1/(2*sigr^2)*(norm(x)-r0)^2 - 1/(2*sigy^2)*(x(2)-1)^2;
C2 = step^2*eye(2);
x2 = zeros(2,1);
mean = zeros(2,1);
R = step*eye(2);
accrate = 0;
tempSample = [x];
k = 0;
S1 = [];
S2 = [];

0-13

for j = 2:nsample

% Draw the proposal
xprop = x + R’*randn(2,1);
lpdfprop = -1/(2*sigr^2)*(norm(xprop)-r0)^2 ...

- 1/(2*sigy^2)*(xprop(2)-1)^2;
% Check for acceptance
if lpdfprop - lpdf >log(rand)

%accept
x = xprop;
lpdf = lpdfprop;
accrate = accrate + 1;

end
SampleA(:,j) = x;
tempSample = [tempSample x];

0-14

if mod(j,M) == 0
% Update the proposal distribution
S1 = S2;
S2 = tempSample;
tempSample = [];
x1 = x2;
C1 = C2;
x2 = 1/M*sum(S2’)’;
aux = S2 - x2*ones(1,M);
C2 = 1/M*aux*aux’;
C = 1/2*(C1 + C2) + 1/4*(x1-x2)*(x1-x2)’;
R = chol(C);
k = k+1;

end

end rel_accrateA = 100*accrate/nsample;

0-15

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Acc. rate = 49

Plotting: 1–500, 501–1000, 1001–1500, 1501–2000.

Observe: the sampler moves along the horseshoe, not across the gap, indicating
that the step is locally adapted.

0-16

