GIBBS SAMPLER
Componentwise sampling directly from the target density n(x), z € R™.
Define a transition kernel

n

K(x,y) = 1_[7T(yz | Y1y Ui, Tiady ey Tom ),
i=1

and we set
r(x) =0. (move every time)

This transition kernel does not in general satisfy the detailed balance equation,

m(y)K(y,z) = m(x)K(z,y),

but it satisfies the balance equation,

/W(Q)K(yaﬂ?)dl‘: /W(ZE)K(:C,Z/)CZ:C.
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PROOF IN TWO DIMENSIONS

[ 7@K .2z = (o) [ K(y.w)da.

We have

K(z,y) =m(y1 | z2)m(y2 | y1),
and therefore

K(y,z) = m(z1 | y2)m(z2 | 21).

Integrate with respect to x:

/ K(y.2)de — / r(wy | yo) (@ | 21)doyds

— /d:vﬁr(zcl | yg)/ﬂ(af:z | z1)dzo

A\ . 4

Ve

=1
— /7’(’(%1 ‘ yg)dasl = 1.
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Hence,

[ 7K )iz = (o)
Right hand side:

m(x)K(z,y) = m(z)m(y1 | z2)7(y2 | y1),

SO

/W(JJ)K(SIJ,y)d:ﬁ = m(y1 | z2)7(y2 | yl)/ﬂ(ﬂcl,xz)dwl

\ . 7
~"

=7(z2)

— zr(yl | $2)W(£U22(7T(y2 | Y1)

~"

=m(y1,22)

= 7(y1,x2)m (Y2 | y1)-



Integrating with respect to x5, we obtain

/ r(, z2)m(ye | )drs = wlyn | y1) / (1, 22)dos

\ . 7
/"

(Y1)

= m(y2 | y1)7(y1)
— W(y2,y1)
= (y),

and the proof is complete.
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ALGORITHM

Componentwise updating:

1. Initialize x = 2! and set k& = 1.

2. Update zF — 2F*1:

e Draw J;If"'l from t — m(t, x5, %, -+ zk),

e Draw :1:’5+1 from t — W(wlfH, t,ag, -, xy),

. :

o Draw zF*! from t — w(aftabtt ... 2Rl ),

3. Increase k — k + 1 and repeat from 2. until a desired sample size is
reached.
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IMPLEMENTATION: AN EXAMPLE
Consider the following particular case:
Observation model

b=Ax+e, e~ N(0,0°I).

Whitening of the noise: Observe that

W = lefv/\/'((),[),

o

so the observation equation is equivalent to
b'=Ax+w, w~N(0,I),

where | |
A'==-A b ==b.

o o
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Without loss of generality, we may assume therefore that o = 1.

Likelihood density is

1
(b | X) o exp <—§HAX — b|\2> .

Prior: assume that we have an a prior: inequality constraint
Cx >r,
the inequality understood componentwise.

Example:
v; <x; <wu;, 1<j7<n,

B

——— S———
:C =r

can be written as
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The prior can be written as
Tprior(X) X ©(Cx — 1),

where © is the multivariate Heaviside step function.

Observe: the prior may be an improper density, i.e., it may be that the integral
is not finite.

Write

Tpost (X) = (x| b) o< (b | X)prior(X).
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Updating of the jth component: we need the conditional densities

7T(£Ifj ‘561,562, c o ’wj_lj’ivj_'_l’ c o ,ZB@, b)

updated old

that is, we have to consider the mapping

Ly = 7-‘-pos‘c(xlax% ceey Lj—1,Lj, Lj41y - - - 7:Cn)7

7

N~

updated old

where all the other components except for the jth one are fixed.
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Likelihood:

Write
A:[al ar, --- an]
Then N
Ax = Z LAdf.
k=1
Denote

A; = matrix A with jth column eliminated,
a; = jth column of A,

x; = vector x with the jth entry eliminated.
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We have

Ax —b = za;+ Z Trar — b
k=1,k#j

= ZCjaj + Aij — b

= ¥ja; — by,

where

bj = b — Aij.
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Now,

|Ax—b|* = [lz;a; —byl*

= |la;||?z7 — 2z;a; b; + ||b;]?

2
aib, (a;b
- —(am— : ) + b 2

Therefore, by denoting

we have

J

2]
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Prior, i.e., the bounds for ¢;, assuming that x; is given:

Again, we write
C; = matrix C with jth column eliminated,

c; = jth column of C,

so the bound constraints
Cx = Z;C; + Cij Z r

implies
$jCj Z r — Cij,

and by scaling with ||a;||, we have

tic; >qa, a=la;l(r—Cjx;).
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Denote

_ N
C; = c R

Make a permutation of the elements c¢;; of ¢; and q so that the Cj;s are in
decreasing order. Assume that the £ first elements are positive,

c1j = -+ = ¢cp >0,
while the entries starting from the £ + 1, kK > £ are negative,

0>cry1,; = 2 cnj.
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Writing the inequality (1) component by component and taking the signs into
account, we obtain

cwt]>qz,ortj>;, 1 <1<V,
ij
and
cijti > qi, ortj<%7 E+1<1<N.
ij

In addition, one should check that the inequalities corresponding to zero entries
are valid, that is,

This is a consistency check, and has no contribution to the sampling strategy.
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We therefore have lower and upper bounds for ¢;,

qi : qi
tjmin = Mmax [ — |, {jmax = MmN — .
1< </ Cij E+1<:<n Cij

The conditional probability density of ¢; is

1 _
m(t; | xj,b) o< exp (—5(753' - tj)z) , timin <t <t max;

and the random draw has to be done from this density.
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To do the draws properly, we have to consider three possibilities, each one
treated below separately.

1. t; > tjmax- This means that we have to draw from the left tail of the
(Gaussian distribution. The maximum value of this tail is achieved at
t; = tjmax. We scale the density so that this maximum value equals
one:

1

- _ 1 _
7T(tj) — €exXp (_§(tj - tj)2 +p) y P = _(tj,max

—t5)”.

DO

We seek the effective interval where this density is bigger than a pre-
scribed threshold value 6 > 0.
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Write
T(t;) =9,

take logarithm of both sides to obtain

1 . 1
5ty —1;)" —p=log %,

and solve for ¢;, bearing in mind that t; < ¢;,

1 1/2
tj:t*:fj—(2p+210g5) .

Hence, the effective draw interval is
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2. t; < tjmin. This time, we need to draw from the right tail of the distri-
bution. The maximum is attained at ¢; = ¢; min, and the scaled density
Now 1S

1 1 _

T(t;) = exp (—5(%' —;)° +P> , p= §(tj,min — ).

Again, we seek the effective interval, that in this time is
tj,min S tj S min(t*, tj,max):

where

1\ 1/2
t*:fj—|—<2p—|—210g5> :
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3. tjmin < t; < tjmax, the maximum thus being within the interval.
this case, the scaled density is directly

#(t;) = exp (—%(tj _ zj)2) |

and solving the equation

m(t;) =9

leads to the solutions

1 1/2
tj = t*j: = %j + (210g 5) ,

so the active interval for t; In this case is

maX(tj,mina t*,—) < tj < min(tj,maxa t*,—|—)-

Assume now that we have updated the interval to be the effective interval.
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