
Gibbs Sampler

Componentwise sampling directly from the target density π(x), x ∈ Rn.

Define a transition kernel

K(x, y) =
n∏

i=1

π(yi | y1, . . . , yi−1, xi+1, . . . , xm),

and we set
r(x) = 0. (move every time)

This transition kernel does not in general satisfy the detailed balance equation,

π(y)K(y, x) = π(x)K(x, y),

but it satisfies the balance equation,
∫

π(y)K(y, x)dx =
∫

π(x)K(x, y)dx.
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Proof in two dimensions

∫
π(y)K(y, x)dx = π(y)

∫
K(y, x)dx.

We have
K(x, y) = π(y1 | x2)π(y2 | y1),

and therefore
K(y, x) = π(x1 | y2)π(x2 | x1).

Integrate with respect to x:
∫

K(y, x)dx =
∫

π(x1 | y2)π(x2 | x1)dx1dx2

=
∫

dx1π(x1 | y2)
∫

π(x2 | x1)dx2

︸ ︷︷ ︸
=1

=
∫

π(x1 | y2)dx1 = 1.
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Hence, ∫
π(y)K(y, x)dx = π(y).

Right hand side:

π(x)K(x, y) = π(x)π(y1 | x2)π(y2 | y1),

so
∫

π(x)K(x, y)dx1 = π(y1 | x2)π(y2 | y1)
∫

π(x1, x2)dx1

︸ ︷︷ ︸
=π(x2)

= π(y1 | x2)π(x2)︸ ︷︷ ︸
=π(y1,x2)

(π(y2 | y1)

= π(y1, x2)π(y2 | y1).
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Integrating with respect to x2, we obtain
∫

π(y1, x2)π(y2 | y1)dx2 = π(y2 | y1)
∫

π(y1, x2)dx2

︸ ︷︷ ︸
π(y1)

= π(y2 | y1)π(y1)

= π(y2, y1)

= π(y),

and the proof is complete.
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Algorithm

Componentwise updating:

1. Initialize x = x1 and set k = 1.

2. Update xk → xk+1:

• Draw xk+1
1 from t 7→ π(t, xk

2 , xk
3 , · · · , xk

n),

• Draw xk+1
2 from t 7→ π(xk+1

1 , t, xk
3 , · · · , xk

n),

• ...

• Draw xk+1
n from t 7→ π(xk+1

1 xk+1
2 , · · · , xk+1

n−1, t).

3. Increase k → k + 1 and repeat from 2. until a desired sample size is
reached.
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Implementation: an example

Consider the following particular case:

Observation model
b = Ax + e, e ∼ N (0, σ2I).

Whitening of the noise: Observe that

w =
1
σ
e ∼ N (0, I),

so the observation equation is equivalent to

b′ = A′x + w, w ∼ N (0, I),

where
A′ =

1
σ

A, b′ =
1
σ
b.
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Without loss of generality, we may assume therefore that σ = 1.

Likelihood density is

π(b | x) ∝ exp
(
−1

2
‖Ax− b‖2

)
.

Prior: assume that we have an a priori inequality constraint

Cx ≥ r,

the inequality understood componentwise.

Example:
vj ≤ xj ≤ uj , 1 ≤ j ≤ n,

can be written as [
I

−I

]

︸ ︷︷ ︸
=C

x ≥
[

v
−u

]

︸ ︷︷ ︸
=r

.
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The prior can be written as

πprior(x) ∝ Θ(Cx− r),

where Θ is the multivariate Heaviside step function.

Observe: the prior may be an improper density, i.e., it may be that the integral
is not finite.

Write
πpost(x) = π(x | b) ∝ π(b | x)πprior(x).

0-7



Updating of the jth component: we need the conditional densities

π(xj | x1, x2, . . . , xj−1︸ ︷︷ ︸
updated

, xj+1, . . . , xn︸ ︷︷ ︸
old

,b)

that is, we have to consider the mapping

xj 7→ πpost(x1, x2, . . . , xj−1︸ ︷︷ ︸
updated

, xj , xj+1, . . . , xn︸ ︷︷ ︸
old

),

where all the other components except for the jth one are fixed.
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Likelihood:

Write
A =

[
a1 a2 · · · an

]

Then

Ax =
n∑

k=1

xkak.

Denote
Aj = matrix A with jth column eliminated,

aj = jth column of A,

xj = vector x with the jth entry eliminated.
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We have

Ax− b = xjaj +
n∑

k=1,k 6=j

xkak − b

= xjaj + Ajxj − b

= xjaj − bj ,

where
bj = b−Ajxj .
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Now,

‖Ax− b‖2 = ‖xjaj − bj‖2

= ‖aj‖2x2
j − 2xjaT

j bj + ‖bj‖2

= =

(
‖aj‖xj −

aT
j bj

‖aj‖

)2

+ ‖bj‖2 −
(aT

j bj)2

‖aj‖2 .

Therefore, by denoting

tj = ‖aj‖xj , tj =
aT

j bj

‖aj‖ ,

we have

π(xj | xj ,b) ∝ exp
(
−1

2
(tj − tj)2

)
.
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Prior, i.e., the bounds for tj , assuming that xj is given:

Again, we write

Cj = matrix C with jth column eliminated,

cj = jth column of C,

so the bound constraints

Cx = xjcj + Cjxj ≥ r

implies
xjcj ≥ r− Cjxj ,

and by scaling with ‖aj‖, we have

tjcj ≥ q, q = ‖aj‖
(
r− Cjxj

)
. (1)
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Denote

cj =




c1j

c2j

...
cNj


 ∈ R

N .

Make a permutation of the elements cij of cj and q so that the Cijs are in
decreasing order. Assume that the ` first elements are positive,

c1j ≥ · · · ≥ c`j > 0,

while the entries starting from the k + 1, k ≥ ` are negative,

0 > ck+1,j ≥ · · · ≥ cNj .
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Writing the inequality (1) component by component and taking the signs into
account, we obtain

cijtj ≥ qi, or tj ≥ qi

cij
, 1 ≤ i ≤ `,

and
cijtj ≥ qi, or tj ≤ qi

cij
, k + 1 ≤ i ≤ N.

In addition, one should check that the inequalities corresponding to zero entries
are valid, that is,

0 ≥ ri, ` + 1 ≤ i ≤ k.

This is a consistency check, and has no contribution to the sampling strategy.

0-14



We therefore have lower and upper bounds for tj ,

tj,min = max
1≤i≤`

(
qi

cij

)
, tj,max = min

k+1≤i≤n

(
qi

cij

)
.

The conditional probability density of tj is

π(tj | xj ,b) ∝ exp
(
−1

2
(tj − tj)2

)
, tj,min ≤ tj ≤ tj,max,

and the random draw has to be done from this density.
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To do the draws properly, we have to consider three possibilities, each one
treated below separately.

1. tj > tj,max. This means that we have to draw from the left tail of the
Gaussian distribution. The maximum value of this tail is achieved at
tj = tj,max. We scale the density so that this maximum value equals
one:

π̃(tj) = exp
(
−1

2
(tj − tj)2 + p

)
, p =

1
2
(tj,max − tj)2.

We seek the effective interval where this density is bigger than a pre-
scribed threshold value δ > 0.
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Write
π̃(tj) = δ,

take logarithm of both sides to obtain

1
2
(tj − tj)2 − p = log

1
δ
,

and solve for tj , bearing in mind that tj < tj ,

tj = t∗ = tj −
(

2p + 2 log
1
δ

)1/2

.

Hence, the effective draw interval is

max(tj,min, t∗) ≤ tj ≤ tj,max.
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2. tj < tj,min. This time, we need to draw from the right tail of the distri-
bution. The maximum is attained at tj = tj,min, and the scaled density
now is

π̃(tj) = exp
(
−1

2
(tj − tj)2 + p

)
, p =

1
2
(tj,min − tj)2.

Again, we seek the effective interval, that in this time is

tj,min ≤ tj ≤ min(t∗, tj,max),

where

t∗ = tj +
(

2p + 2 log
1
δ

)1/2

.
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3. tj,min ≤ tj ≤ tj,max, the maximum thus being within the interval. In
this case, the scaled density is directly

π̃(tj) = exp
(
−1

2
(tj − tj)2

)
,

and solving the equation
π̃(tj) = δ

leads to the solutions

tj = t∗± = tj ±
(

2 log
1
δ

)1/2

,

so the active interval for tj in this case is

max(tj,min, t∗,−) ≤ tj ≤ min(tj,max, t∗,+).

Assume now that we have updated the interval to be the effective interval.
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