DYNAMIC INVERSE PROBLEMS
Inverse problems with static target:

Assume an additive noise model,
Y =f(X)+E, E~N(,0%I).

Repeated independent observations: measure Y NN times, assuming that the
target remains the same during the process.
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Likelihood:
N
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In particular, with Gaussian noise,
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Therefore

N
1
7-‘-(y17y27”'7y]\f ‘ CIZ) X exp _2—2 yJH2

x exp (— 5o - y||2) .

Hence: Repeating the measurement independently N times is equivalent to
replacing the model with

Y = f(X)+E, ENN(O,(;).

Variance reduction of the noise!
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It is quintessential that the target does not change during the measurement
process.

Examples where the condition may not be valid:

e MEG, EEG: repeated measurement of evoked potential (tiring, learning)
e Process tomography: integration of the signal

e Target tracking

e Monitoring of a chemical system

e Weather forecasting
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More general observation model:
Yi=f(X;)+E;, j=12,...

Clearly, the observations cannot be integrated unless we have a dynamic prior
model.

One of the simplest dynamic prior models is a 1-Markov evolution model,
Xjr1 = g;(X;) + Viqr,

where g; : R" — R" is presumably known, and V41 is an innovation process.
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EXAMPLES

e Static measurment: g,(z) =z, V41 = 0.
e Random walk model: often used in lack of anything more sophisticated:
Xji1 = Xj + Vigr,  Visr ~N(0,9°1).
Despite of its simplicity, its powerfulness should not be underestimated.

e First order differential equation: assume that the unknown is a time
dependent vector x(t) € R™, satisfying ideally the differential equation
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Time discretization: let
t;j =gh,7=0,1,...
and write
.CIZj — x(tj).

Finite difference equation, using forward Euler (for simplicity; I apolo-

gize),
Tjt1 = j + hf(z;,t5) + vj41,

where v;11 accounts for discretization errors as well as possible devia-
tions from the ideal world.
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BAYES FILTERING, BASIC FORM

Evolution—observation model:
Xjr1 = ¢;(Xj)+ Vi, 7=0,1,2,...
Y, = f;(X;)+E;, j=12,....

Observations, or data:
}/j:yja ]:1727

We assume further that the prior probability density of X is given.
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ADAPTIVE ALGORITHM

The goal is to design an algorithm along the following lines:

e Given the density of X, predict the density of X; using the prior evo-
lution model,

e Using the predicted density of X, as prior, calculate the posterior density
7T(5131 ‘ yl)v

e used the posterior density m(z1 | y1), predict the density of X5,

e Using the predicted density of X5 as prior, calculate the posterior density
77-(332 ‘ y2)7

e Continue similarly.
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Hence, what we need is

e Prediction step: Given the density of X, calculate the density of X;
from

Xjr1 = gi(X;) + V.
(Propagation problem)

e Correction step: Given the prior density of X, calculate the posterior
density m(z; | y;) using the observation model

Yj = f(Xj) + Ej.

(Inverse problem)
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PARTICULAR APPROACHES

e Linear model, Gaussian innovation and error: classical Kalman filtering.

e Linearization, approximation by Gaussian densities: Extended Kalman
filtering.

e Nonlinear and/or non-Gaussian models: MCMC approach, known as
Particle filtering.

0-11



KALMAN FILTERING

Evolution—observation model:

Xjo1 = AX;+Viy, j=01,2,...
Y, = BX,+E;, j=12,....

Assumptions of the noise processes and the initial process:

1. Normality:
V; NN<07FJ)7 E; NN<072]')°

2. Independency: Variables V;, E;, all mutually independent.

3. Initial density:
Xo ~ N(xo, Do),

and X is independent of the noise processes.

0-12



PROPAGATION

Observation: To completely specify a Gaussian density, it is enough to know
the mean and the variance.

Assume that
X ~ N(z;,Dj).

Mean: We have
Xj-l-l — AXJ + VH—lv

implying that the mean is

v = E{Xjn} = AB{X;} +E{Vj4.]
— A.I‘j.

Hence: Propagate the mean with A.
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Covariance
Xjr1 — 2y = A(XG — ;) + Vi,

and by independency,
= E{(Xj—l—l — xjp1) (X1 — 37j+1)T}
= E{(A(X; — z;) + Vi3 )(AX; — ;) + V1) ' }
— B{(A(X; —2))(X; —2))" AT} + E{V; .V )
— ADjAT + 141,

Hence, after propagation,

Xj_|_1 ~ N(A.Cl?j, ADjAT -+ Fj_|_1).
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CORRECTION

To solve the correction step, consider a linear inverse problem,
Y =BX+ F,

where

X ~N(z,D), E~N(,3).
We need to solve the posterior density 7(zx | y).

There are two equivalent approaches, both being useful to know.
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APPROACH 1: USE BAYES’ FORMULA

Bayes’ formula says that
m(x | y) o Tprior (@) (y | ).

In this case,

Torion () o€ €Xp (——<as —3)TD e - f>) ,
| ) o exp (— 50 = B Sy - Bo)).

Therefore

w(x | y) x exp (—%(CE‘ —7)'D Nz —7) - %(y — Bx)'y 1y — Ba:)> :
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Organize terms according to their order:

Denote z. =z — 7, y. = y — BZ.

(¢ —=7)' D™ (z —T) + (y — Bx) 7' (y — Bx)

—=z. D 'ae + (yo — Bxo) "X (yo — Bxe)

tX (D' 4+ BYYS T B)x, — 2a:CTBTZ_1yC —I—yc ¥ yc .

\ .

VO VO
quadratic linear Constant
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Denote
C=D'1'4+B'S"'B, ¢=B'S"ly..

The above expression reads
rrCrr — 2wt q + constant
= (2. — C ') C(z. — C*q) + another constant.

Hence, the posterior density is

e [9) > exp (3 (o~ 071 Clac — C71a)).
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Explicitly:

1
(x| y) x exp (—i(x — ) T 'post(z — 55)) :
where

=7+ (D' + BT 'B)"(BTY " (y — B7))

Tpost = (D' +B'S7'B)~!
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Notice, if
D =~%I, ¥ =21,

the midpoint is simply

1 1 A
T = T+ (—21 + —2BTB> (—QBT(y —~ BE))
Y o

Q
ol S

— 7+ (51+B™B) (BT(y—Bz)), 6=

This is the Tikhonov regularized solution with regularization parameter 9.
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APPROACH 2: USE CONDITIONING

Consider the random variable

7=y = oxre |

Calculate the mean and covariance:

E{Z}:[BZ].
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For calculating the covariance, assume for simplicity that the means have been
subtracted.

. [ XXT X(BX + E)T ]

(BX + E)YX' (BX+E)BX +E)!

Expectation, remembering that E{XE'} = 0, gives

D DB*

Cov(Z) = [ BD BDBT+ % ] =M.

Hence, the joint probability density of X and Y is

(2,y) o exp <_; B AR D |
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Unfolding:

We know that
m(x | y) o mw(x,y)
Writing a partitioning of M ! as

S S
M—l — S _ 11 12 ]
[ 521 S22 ’

we arrange terms of different degree of z. = x — :
r—T ! Sll 512 r—T . T ! 511 512 T
y — BT So1 S22 y— BT Ye So1 S22 Ye
= m;FSlla;C + 2:1:3312% + constant (521 = S;FQ)
= (zc + SfllSlgyc)TSH(xc -+ SilSlgyC) + another constant.
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Hence, we have

where

We need to resolve Si; and Sis.
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SCHUR COMPLEMENTS
We have

Partitionings

Consider the equation

Ma = b, or equivalently, a = Sb.

Let
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Ma — Miiay + Misas ] _ [ b1 ]

Moiay + Magzas by

From the second equation, we eliminate as:

as — M2_21(b2 — Mglal).
Substitute into the first equation and solve for a:

(M1 — Mo My,  Moy)ay = by — Mo My, by,

or
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The matrix N
Moy = My — Mo My My,

is called the Schur complement of Mss.

In terms of Schur complements,
T = T — Sl_llslg(y — Bf)
= T+ M2My,' (y — BT),

Fpos’c:j\z227
where
M1 Mo B D DBT
Msy Ms, | | BD BDBY+Y |-
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Finally, we have
=7+ DBY(BDB" + %) !(y — B7),
and

ot = D — DBY(BDB* + %) 'BD.
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WIENER FILTER

Consider again the special case,

D =~%I, ¥ =0l

We have

T+ ~v*BY(v*BB"' +¢%I) ' (y — B%)

&)
|

0.2

— 7+ BY(BBY+46I)"'(y—Bx), §=—

-2

This is known as the Wiener filter solution to the ill-posed problem y = Bx.
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WIENER VERSUS TIKHONOV

We have found to equivalent formulas for the midpoint and the variance:
z = T+BY(BB'+46I)'(y— Bx)

= T+ (61 +B"B) " (B"(y - B)),

and

loost = (I —BY(BB'"+6I)7'B)

2 1 T o
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Which formula to use?

Engineering rule of thumb:

Let B € R™*". Then
B'B e R""  BB' ¢ R™*x™,

It is tempting to say:

Wiener filter for underdetermined problems (m < n)

Tikhonov for overdetermined problems (n < m)

In practice, all depends on solvers!
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2

3.

4

KALMAN FILTERING

. Initialize: 7 =0, x¢ and Dy given.

. Prediction step: Calculate
Tjp1 = Az,
Ej_|_1 — ADJAT —|— Fj_|_1.
Updating step: Calculate
Tj+1 = Tjp1+Djpi B (BDji B +Xj41) " (yj41 — BTjt),
Djt1 = Dji1—Dji B (BDj1B" +3j41) ' BDj.

. Increase j by one and repeat from 2.
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COMMENTS

The above version is based on the Wiener filter form of the updating. Alter-
natively, one may use the regularized normal equation (Tikhonov) form.

The expensive step in Kalman filtering is the computation of the covariance
in Step 3.

Kjy1=Dj1 B (BDj1 B +3j41) 7"

is often called the Kalman gain matrix.
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