
Dynamic inverse problems

Inverse problems with static target:

Assume an additive noise model,

Y = f(X) + E, E ∼ N (0, σ2I).

Repeated independent observations: measure Y N times, assuming that the
target remains the same during the process.

D = {y1, y2, . . . , yN} = data,

yj = f(x) + ej .
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Likelihood:

π(y1, y2, . . . , yN | x) ∝
N∏

j=1

π(yj | x).

In particular, with Gaussian noise,

π(yj | x) ∝ exp
(
− 1

2σ2
‖f(x)− yj‖2

)
.

Then,

π(y1, y2, . . . , yN | x) ∝ exp


− 1

2σ2

N∑

j=1

‖f(x)− yj‖2

 .
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N∑

j=1

‖f(x)− yj‖2 = N‖f(x)‖2 − 2f(x)T
N∑

j=1

yj

︸ ︷︷ ︸
Ny

+
N∑

j=1

yT
j yj

= N
(‖f(x)‖2 − 2f(t)Ty + yTy

)
+ N

(
1
N

N∑

j=1

yT
j yj − yTy

)

︸ ︷︷ ︸
=C

= N‖f(x)− y‖2 + NC︸︷︷︸
=constant

.
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Therefore

π(y1, y2, . . . , yN | x) ∝ exp


− 1

2σ2

N∑

j=1

‖f(x)− yj‖2



∝ exp
(
− 1

2(σ2/N)
‖f(x)− y‖2

)
.

Hence: Repeating the measurement independently N times is equivalent to
replacing the model with

Y = f(X) + E, E ∼ N
(

0,
σ2

N

)
.

Variance reduction of the noise!
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It is quintessential that the target does not change during the measurement
process.

Examples where the condition may not be valid:

• MEG, EEG: repeated measurement of evoked potential (tiring, learning)

• Process tomography: integration of the signal

• Target tracking

• Monitoring of a chemical system

• Weather forecasting
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More general observation model:

Yj = f(Xj) + Ej , j = 1, 2, . . .

Clearly, the observations cannot be integrated unless we have a dynamic prior
model.

One of the simplest dynamic prior models is a 1–Markov evolution model,

Xj+1 = gj(Xj) + Vj+1,

where gj : Rn → Rn is presumably known, and Vj+1 is an innovation process.
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Examples

• Static measurment: gj(x) = x, Vj+1 = 0.

• Random walk model: often used in lack of anything more sophisticated:

Xj+1 = Xj + Vj+1, Vj+1 ∼ N (0, γ2I).

Despite of its simplicity, its powerfulness should not be underestimated.

• First order differential equation: assume that the unknown is a time
dependent vector x(t) ∈ Rn, satisfying ideally the differential equation

x′(t) = f(x(t), t).
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Time discretization: let

tj = jh, j = 0, 1, . . .

and write
xj = x(tj).

Finite difference equation, using forward Euler (for simplicity; I apolo-
gize),

xj+1 = xj + hf(xj , tj) + vj+1,

where vj+1 accounts for discretization errors as well as possible devia-
tions from the ideal world.

0-7



Bayes filtering, basic form

Evolution–observation model:

Xj+1 = gj(Xj) + Vj+1, j = 0, 1, 2, . . .

Yj = fj(Xj) + Ej , j = 1, 2, . . . .

Observations, or data:
Yj = yj , j = 1, 2, . . .

We assume further that the prior probability density of X0 is given.
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Adaptive algorithm

The goal is to design an algorithm along the following lines:

• Given the density of X0, predict the density of X1 using the prior evo-
lution model,

• Using the predicted density of X1 as prior, calculate the posterior density
π(x1 | y1),

• used the posterior density π(x1 | y1), predict the density of X2,

• Using the predicted density of X2 as prior, calculate the posterior density
π(x2 | y2),

• Continue similarly.
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Hence, what we need is

• Prediction step: Given the density of Xj , calculate the density of Xj+1

from
Xj+1 = gj(Xj) + Vj+1.

(Propagation problem)

• Correction step: Given the prior density of Xj , calculate the posterior
density π(xj | yj) using the observation model

Yj = f(Xj) + Ej .

(Inverse problem)
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Particular approaches

• Linear model, Gaussian innovation and error: classical Kalman filtering.

• Linearization, approximation by Gaussian densities: Extended Kalman
filtering.

• Nonlinear and/or non-Gaussian models: MCMC approach, known as
Particle filtering.
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Kalman filtering

Evolution–observation model:

Xj+1 = AXj + Vj+1, j = 0, 1, 2, . . .

Yj = BXj + Ej , j = 1, 2, . . . .

Assumptions of the noise processes and the initial process:

1. Normality:
Vj ∼ N (0, Γj), Ej ∼ N (0, Σj).

2. Independency: Variables Vj , Ej , all mutually independent.

3. Initial density:
X0 ∼ N (x0, D0),

and X0 is independent of the noise processes.
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Propagation

Observation: To completely specify a Gaussian density, it is enough to know
the mean and the variance.

Assume that
Xj ∼ N (xj , Dj).

Mean: We have
Xj+1 = AXj + V+1,

implying that the mean is

xj+1 = E
{
Xj+1

}
= AE

{
Xj

}
+ E

{
Vj+1

}

= Axj .

Hence: Propagate the mean with A.
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Covariance
Xj+1 − xj+1 = A(Xj − xj) + Vj+1,

and by independency,

= E
{
(Xj+1 − xj+1)(Xj+1 − xj+1)T

}

= E
{
(A(Xj − xj) + Vj+1)(A(Xj − xj) + Vj+1)T

}

= E
{
(A(Xj − xj)(Xj − xj)TAT

}
+ E

{
Vj+1V

T
j+1

}

= ADjA
T + Γj+1.

Hence, after propagation,

Xj+1 ∼ N (Axj , ADjA
T + Γj+1).
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Correction

To solve the correction step, consider a linear inverse problem,

Y = BX + E,

where
X ∼ N (x,D), E ∼ N (0, Σ).

We need to solve the posterior density π(x | y).

There are two equivalent approaches, both being useful to know.
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Approach 1: Use Bayes’ formula

Bayes’ formula says that

π(x | y) ∝ πprior(x)π(y | x).

In this case,

πprior(x) ∝ exp
(
−1

2
(x− x)TD−1(x− x)

)
,

π(y | x) ∝ exp
(
−1

2
(y −Bx)TΣ−1(y −Bx)

)
.

Therefore

π(x | y) ∝ exp
(
−1

2
(x− x)TD−1(x− x)− 1

2
(y −Bx)TΣ−1(y −Bx)

)
.
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Organize terms according to their order:

Denote xc = x− x, yc = y −Bx.

(x− x)TD−1(x− x) + (y −Bx)TΣ−1(y −Bx)

= xT
c D−1xc + (yc −Bxc)TΣ−1(yc −Bxc)

xT
c (D−1 + BTΣ−1B)xc︸ ︷︷ ︸

quadratic

− 2xT
c BTΣ−1yc︸ ︷︷ ︸

linear

+ yT
c Σ−1yc︸ ︷︷ ︸
constant

.
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Denote
C = D−1 + BTΣ−1B, q = BTΣ−1yc.

The above expression reads

xT
c CxT

c − 2xT
c q + constant

= (xc − C−1q)TC(xc − C−1q) + another constant.

Hence, the posterior density is

π(x | y) ∝ exp
(
−1

2
(xc − C−1q)TC(xc − C−1q)

)
,
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Explicitly:

π(x | y) ∝ exp
(
−1

2
(x− x̂)TΓ−1post(x− x̂)

)
,

where
x̂ = x + (D−1 + BTΣ−1B)−1(BTΣ−1(y −Bx))

Γpost = (D−1 + BTΣ−1B)−1
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Notice, if
D = γ2I, Σ = σ2I,

the midpoint is simply

x̂ = x +
(

1
γ2

I +
1
σ2

BTB

)−1 (
1
σ2

BT(y −Bx)
)

= x +
(
δI + BTB

)−1 (
BT(y −Bx)

)
, δ =

σ2

γ2
.

This is the Tikhonov regularized solution with regularization parameter δ.
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Approach 2: Use conditioning

Consider the random variable

Z =
[

X
Y

]
=

[
X

BX + E

]
.

Calculate the mean and covariance:

E
{
Z

}
=

[
x

Bx

]
.
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For calculating the covariance, assume for simplicity that the means have been
subtracted.

ZZT =
[

XXT X(BX + E)T

(BX + E)XT (BX + E)(BX + E)T

]
.

Expectation, remembering that E{XET} = 0, gives

Cov(Z) =
[

D DBT

BD BDBT + Σ

]
= M.

Hence, the joint probability density of X and Y is

π(x, y) ∝ exp

(
−1

2

[
x− x

y −Bx

]T

M−1

[
x− x

y −Bx

])
.
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Unfolding:

We know that
π(x | y) ∝ π(x, y)

Writing a partitioning of M−1 as

M−1 = S =
[

S11 S12

S21 S22

]
,

we arrange terms of different degree of xc = x− x:
[

x− x
y −Bx

]T [
S11 S12

S21 S22

] [
x− x

y −Bx

]
=

[
xc

yc

]T [
S11 S12

S21 S22

] [
xc

yc

]

= xT
c S11xc + 2xT

c S12yc + constant (S21 = ST
12)

= (xc + S−1
11 S12yc)TS11(xc + S−1

11 S12yc) + another constant.
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Hence, we have

π(x | y) ∝ exp
(
−1

2
(x− x̂)TΓ−1post(x− x̂)

)
,

where
x̂ = x− S−1

11 S12(y −Bx),

Γpost = S−1
11 .

We need to resolve S11 and S12.
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Schur complements

We have
S = M−1.

Partitionings

S =
[

S11 S12

S21 S22

]
, M =

[
M11 M12

M21 M22

]
.

Consider the equation

Ma = b, or equivalently, a = Sb.

Let

a =
[

a1

a2

]
, b =

[
b1

b2

]
.
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Ma =
[

M11a1 + M12a2

M21a1 + M22a2

]
=

[
b1

b2

]
.

From the second equation, we eliminate a2:

a2 = M−1
22 (b2 −M21a1).

Substitute into the first equation and solve for a1:

(M11 −M12M
−1
22 M21)a1 = b1 −M12M

−1
22 b2,

or

a1 = (M11 −M12M
−1
22 M21)−1

︸ ︷︷ ︸
=S11

b1 +−(M11 −M12M
−1
22 M21)−1M12M

−1
22︸ ︷︷ ︸

=S12

b2.
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The matrix
M̃22 = M11 −M12M

−1
22 M21

is called the Schur complement of M22.

In terms of Schur complements,

x̂ = x− S−1
11 S12(y −Bx)

= x + M12M
−1
22 (y −Bx),

Γpost = M̃22,

where [
M11 M12

M21 M22

]
=

[
D DBT

BD BDBT + Σ

]
.
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Finally, we have

x̂ = x + DBT(BDBT + Σ)−1(y −Bx),

and

Γpost = D −DBT(BDBT + Σ)−1BD.
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wiener filter

Consider again the special case,

D = γ2I, Σ = σ2I.

We have

x̂ = x + γ2BT(γ2BBT + σ2I)−1(y −Bx)

= x + BT(BBT + δI)−1(y −Bx), δ =
σ2

γ2

This is known as the Wiener filter solution to the ill-posed problem y = Bx.
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Wiener versus Tikhonov

We have found to equivalent formulas for the midpoint and the variance:

x̂ = x + BT(BBT + δI)−1(y −Bx)

= x +
(
δI + BTB

)−1 (
BT(y −Bx)

)
,

and

Γpost = γ2(I −BT(BBT + δI)−1B)

= γ2

(
I +

1
δ
BTB

)−1
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Which formula to use?

Engineering rule of thumb:

Let B ∈ Rm×n. Then

BTB ∈ Rn×n, BBT ∈ Rm×m.

It is tempting to say:

Wiener filter for underdetermined problems (m < n)

Tikhonov for overdetermined problems (n < m)

In practice, all depends on solvers!
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Kalman filtering

1. Initialize: j = 0, x0 and D0 given.

2. Prediction step: Calculate

xj+1 = Axj ,

Dj+1 = ADjA
T + Γj+1.

3. Updating step: Calculate

xj+1 = xj+1 + Dj+1B
T(BDj+1B

T + Σj+1)−1(yj+1 −Bxj+1),

Dj+1 = Dj+1 −Dj+1B
T(BDj+1B

T + Σj+1)−1BDj+1.

4. Increase j by one and repeat from 2.
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Comments

The above version is based on the Wiener filter form of the updating. Alter-
natively, one may use the regularized normal equation (Tikhonov) form.

The expensive step in Kalman filtering is the computation of the covariance
in Step 3.

Kj+1 = Dj+1B
T(BDj+1B

T + Σj+1)−1

is often called the Kalman gain matrix.
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