
Home assignment 1

Consider the one-dimensional deconvolution problem of estimating
the input signal f = f(t) from the noisy data

g(sj) =

∫ 1

−1

a(sj − t)f(t)dt + ej, 1 ≤ j ≤ n, (1)

where the convolution kernel is a Gaussian,

a(t) = exp

(

− 1

2w2
t2

)

,

and the sampling points sj are evenly distributed in the interval
[0, 1],

sj =
j − 1

n − 1
, 1 ≤ j ≤ n.

Further, we assume that the signal f can be extended by zero outside
the interval [0, 1]. The additive noise ej is Gaussian white noise,
that is, the components ej are mutually independent, zero mean
and variance σ2 Gaussian random variables, denoted as

e ∼ N (0, σ2I).

We discretize the equation (1), for simplicity, by using n evenly
distributed discretization points,

g(sj) ≈
1

n

n
∑

k=1

a(sj − tk)f(tk) + ej, tj =
j − 1

n − 1
, 1 ≤ j ≤ n,

leading to a matrix equation

y = Ax + e,

where xj = f(tj), yj = g(sj) and Ajk = (1/n)a(sj − tk).

The likelihood function based on the model is

π(x | y) ∝ πnoise(y − Ax) ∝ exp

(

− 1

2σ2
‖y − Ax‖2

)

.

For the prior, we use the Gaussian white noise prior,

πprior(x) ∝ exp

(

− 1

2γ2
‖x‖2

)

,
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where γ2 is the prior variance. By Bayes’ theorem, the posterior
density is then

πpost(x) = πprior(x)π(y | x)

∝ exp

(

− 1

2σ2
‖y − Ax‖2 − 1

2γ2
‖x‖2

)

.

The Maximum A Posteriori (MAP) estimate is then

xMAP = arg min

(

1

2σ2
‖y − Ax‖2 +

1

2γ2
‖x‖2

)

= arg min
(

‖y − Ax‖2 + δ‖x‖2
)

, δ =
σ2

γ2
.

The classical (non-statistical) regularization literature calls the above
MAP estimate the Tikhonov regularized solution of the inverse prob-
lem, and the parameter δ is referred to as regularization parameter.

There is a huge litearature about how to choose the regularization
parameter, one of the most common ways being the Morozov dis-
crepancy principle, which is usually explained as follows: assume
that we have an estimate of the noise level,

‖e‖ ≈ ε.

It means that any vector x that satisfies the condition

‖y − Ax‖ ≤ ε (2)

can be considered as an acceptable solution, since the data is satis-
fied within the noise level. The Morozov discrepancy principle is to
find the largest δ so that the discrepancy condition (2) is satisfied.

In practice, let xδ denote the solution

xδ = arg min
(

‖y − Ax‖2 + δ‖x‖2
)

= arg min

∥

∥

∥

∥

[

A√
δI

]

x −
[

y

0

]∥

∥

∥

∥

.

We solve δ from the condition

d(δ) = ‖y − Axδ‖ = ε ⇒ δ = δ(ε).

The first assignment is to investigate this method.
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1. Write a program that plots the curve δ 7→ d(δ). What are the
limits δ → 0+ and δ → ∞? Clearly, these are the limits for ε
where the Morozov discrepancy principle is operational.

2. Write a program that solves δ = δ(ε). You can use, e.g., a
binary search algorithm.

3. Analyze the noise level condition: if e ∼ N (0, σ2I) , draw a
large sample of realizations with different variances σ2, and
find an empirical “rule of thumb”, ε = ε(σ) for how the noise
level ε should be chosen when σ2 is given and vice versa.

4. Generate data using a known input signal x. Solve the regular-
ization parameter δ with different values of ε, and check what
the prior variance γ2 = σ2/δ is, when δ is computed using the
Morozov discrepancy principle. Does this standard deviation
correspond to the dynamical range of your true signal?

5. With your input signal, plot the so called L–curve, that is, plot
the parametrized curve

δ 7→ (log ‖xδ‖, log ‖y − Axδ‖).

The folklore has that this curve should have a shape of the
letter “L”, and the optimal value should be somewhere in the
corner of the curve. try with different noise levels and see if
you are able to reporduce this phenomenon. The method of
choosing the regularization parameter with this technique is
called the L–curve method. Any comments? Can you argue
why this method might work?

Attach the Matlab code and plots to your report. Write out the
details and your conclusions, not just minimal answers to the prob-
lems.

You can use the Matlab code posted on the course web page as a
starting point.
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