ADAPTIVE METROPOLIS-HASTINGS (AM) ALGORITHM

Adaptation: As the sampling proceeds, the proposal distribution is updated
to conform with the underlying density.
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ADAPTATION STRATEGIES

Analytic adaptation: Calculate a local Gaussian approximation of the proba-
bility density. Update every Mth step.

May be computationally heavy
May be difficult to find analytically and requires numerical differentiation

Sampling-based adaptation: Use the already calculated sample history to de-
termine the new proposal distribution.
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SAMPLING-BASED ADAPTATION

Design an algorithm along the following guidelines.
e Start a usual MH sampling at a point of your choice using a white noise
proposal distribution.

e After possibly removing a burn-in sequence from the beginning, calculate
the empirical covariance of the sample points obtained thus far.

e Use the empirical covariance to sample new points.

e Update the covariance every Mth sample point.
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ADAPTED RANDOM WALK MH ALGORITHM

. Initialize k = 0, Cj, = ~*1.

. Generate a sample sequence of length M,
LhMA+1yLEM+25 -+« L(k+1)M

using the random walk proposal

Tprop = Tcurr T W, W ~ N(07 Ck)

. Update
Cy — Cry1 = cov(z1, T2, ..., T(kt1)m) + €L

. Increase £k — k + 1 and continue from 2 until desired sample size is
reached.
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(QUESTIONS, ANSWERS

e [s this a Markov Chain method?” The update depends on all of the
sample history via the covariance matrix!

True! But one can show that little by little, the process forgets the past,
and is asymptotically Markovian and therefore ergodic.
e What is that little eI doing there?

It has two functions: Practical function is to avoid the possibility that
all sample points become collinear. Theoretical function is to make sure
that the ergodicity works.

e How do we update the covariance in practice?

Let’s see...
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COVARIANCE UPDATING, STABLY

Divide the sample in blocks of length M:

L1y L2y e ey DMy TM A1y TMA425 - oy L2M 5 L2M 415 - - -

M M

Average and covariance over subsamples:

1 kM
j=(k—1)M+1
R 1 kM
Cr = i Z (x5 — ) (z; — k).
j=(k—1)M+1
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Denote the cumulative mean and covariance by

| kM
TeM = k—M;x‘j’

1kM

CkM:k—M'

g=1

(5 — T ) (T — Thmr)-

Problem: Find a numerically stable way of updating
TkM — T(k+1)M>

Cim — 6(k+1)M-
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We have

T(k+1)M

UPDATING THE MEAN




UPDATING THE COVARIANCE

We need some auxiliary results.

Facr 1: If
12
= — 5
n 7

the covariance can be written as

C o= 23 (a7

mn
1 1 o 1
= —E ZE‘jZEj——g T; T —:1:—5 T
Hf—/ ~ ~~ -
mn
1
_ T T
= — CC]CE'j rxr

J=1
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FAacT 2: For any x, the non-centered covariance is

. 1 <& N N
C = Y (- - )"
j=1

mn mn n

1 T 1 7~ 1 T |, ~~T

= —g xjmj——g Xj —x—E T; +TT
N——— S———
=T =z 7T

1 mn
= - :cjaz;r — Tzl + (a::zzT — Tzl — 7zt + a7t

n
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With these results, we have

| (k+1)M

C(k—|—1)M = (k+ )M Z (z; —fU(k+1)M)( —fC(k+1)M)T

J=1

kM (k+1)M
(Z+ > )x — T(or ) (T — Ternyn) -

71=1 kM-+1

Both terms are, up to a multiplicative factor, non-centered covariances.
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First term:

1 kM

¥ - T
(k, + 1)M ;(xj o x(k-l-l)M)(xj - x(kz—l—l)M)

T k+1kM > (@ = Tar) (@) — Tear) '
1

e @aar = ) oas ~ Trnn)”
+ k41 <ka L(k+1)M )\ LkM (k+1)M
k k . B B
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Substituting the updating formula:

k 1

1

- k_|_1<ko _Zv\k-l-l)a

SO we have
ke M

)M Z(CEJ B T(k+1)M)($j - x(k+1)M)T
j=1
k k

=—C
ErloN T et

1
(k+1

)3 (ERM - fkﬂ) (TkM - 513\/<+1)T.
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Second term:

! (k+1)M
(ki + )M > (@ =T (@) — wwpym) "
j=kM+1
| q 1M
kE+1M Z (25 — Tha1) (25 — Thsr)
j=kM+1
L = = = = T
+ k+1 (ka—|—1 — x(k+1)M)($k+1 - x(k+1)M)
1 = 1

k—JrleH T rr (Trt1 = Ty ynr) @rar — Trgr)m)
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Again, substituting the recursion formula gives

. _ . ko _ 1
Lk+1 — L(k+1)M — Lk+1 — k1 15’3kM — k1 1$k+1

k. _
= k+1(:vk+1—:vw),

and therefore

| (k+1)M

(k+1)M jzkzj\;ﬂ(xj = T(ernyan) (25— Tsnn) |

m B+ g s — ) Fow — )"
~ kLl k+1 (k+ 1) LM — Lk4+1 )\ LM — Lk4+1) -
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Putting the pieces together gives

k k _ . _ . T
Cornym = E1 1Ck:N + i+ 1)° (flszM — xkz+1) (iCkM — $k+1)
| N k2 _ . _ . T
+ k—JrleH + (ki + 1)3 (Cl?kM - lek+1) (CCkM - $k+1)
k 1 = k _ - _ R T
= EriOe Ot Gy (e~ Ten) (@ — Ben)

which is the desired updating formula.
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EXAMPLE: PROOF OF CONCEPT

Sampling a Gaussian in R?.

7(x) o exp (—%(m )T — b)) |

where

b:[%], I'=UDU"',

sin 6 cos 6 3’

U:[COSH —Sm€]7 QZE

D = diag(1,0.1).
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THE PROGRAM: ADAPTATION VS. NON-ADAPTATION

%» Defining the underlying distribution: a 2D Gaussian

th = pi/3;

U = [cos(th),-sin(th);sin(th),cos(th)];
d = [1,0.1];

D = diag(d);

Gamma = U*xDx*U’;

b = [2;2];

invGamma = inv(Gamma) ;
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%» Initializing

x0 = [3;1]; % Initial sampling point

step = 0.02; % Initial step: no prior tuning for MH
tiny = le-6;

nsample = 150000;

M = 100; %» Adaptation period

Observe: the step size is way too small for non-adaptive MH. The point here
is to demonstrate that the adaptive method requires no tuning, i.e., you can
start with sub-optimal proposal.
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% Sampling without adaptation

SampleNA = zeros(2,nsample);
SampleNA(:,1) = xO0;

x = x0;

lpdf = -0.5%(x-b) ’*invGamma* (x-b) ;
accrate = 0;
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for j = 2:nsample
%» Draw the propsal
Xprop = x + step*randn(2,1);
lpdfprop = -0.5%(xprop-b) ’*invGamma* (xprop-b) ;
%» Check for acceptance
if lpdfprop - 1lpdf >log(rand)
haccept
X = Xprop;
lpdf = lpdfprop;
accrate = accrate + 1;
end
SampleNA(:,j) = x;
end
rel_accrate = 100*accrate/nsample
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SAMPLING WITH ADAPTATION

Updating
Tprop = Tcurr T8, S~ N(Oa C)a

that is,

m(s) x exp (—%STC’_13> :

Write the Cholesky decomposition,
C = R'R,

SO
C'=R 'R T,
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This means that

L. _
() oxexp (51T

or that
R Ys=w~N(0,1I).

Hence, the updating procedure is

Lprop = Lcurr + RTw7 w ~ N(07 [)
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% Sampling with adaptation

SampleA = zeros(2,nsample);
SampleA(:,1) = x0;

x = x0;

lpdf = -0.5%(x-b)’*invGamma* (x-b) ;
C = step™2*eye(2);

mean = zeros(2,1);

R = stepxeye(2);

accrate = 0;

tempSample = [x];

k = 0;
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for j =2:nsample

%» Draw the proposal
xprop = x + R’*randn(2,1);
lpdfprop = -0.5%(xprop-b) ’*invGamma* (xprop-b) ;
%» Check for acceptance
if lpdfprop - lpdf >log(rand)

haccept

X = Xprop;

lpdf = lpdfprop;

accrate = accrate + 1;
end
SampleA(:,j)

tempSample [t empSample x];
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if mod(j,M) ==
%» Update the proposal distribution
xk = 1/M*xsum(tempSample’) ’;
aux = tempSample - xk*ones(1,M);
Ck = 1/M*xaux*aux’;
mean = k/(k+1)*mean + 1/(k+1)x*xk;
C = k/(k+1)*C + 1/(k+1)*Ck + k/(k+1) "2*x(mean-xk)* (mean-xk)’;

R = chol(C);

k = k+1;

tempSample = [];
end

end rel_accrateA = 100*accrate/nsample
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SCATTER PLOTS
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SAMPLE HISTORIES

4 : . 5

0.5 : ' -1
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DIAGNOSTICS

The p% probability region:

r=ubput=r1r"1t=UD"1U",

r(z) o exp (—%(az )T (g — b))

1
— exp(~5ID U@ - D).

SO
W =D~ Y2UT(X —b) ~ N(0, ).
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The p% probability region for W is a disc D,, of radius «:
P{WeD.) = 5 [ Slwll?) d
or Jp TP\ 2

1 o 27 5
= —/ / e~ 2dfrdr
27 Jo Jo
2/2 p

= 1-—e /2=

100’

100
= 4/21 :
“ \/ ©5 100 — p

which is equivalent to
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Given a sample {xl,:cg, e ,:r;N}, we

e calculate the sample {331, T2, ... ,xN},
wy; = D_1/2UT<$]' — b),

e calculate the relative amount of these sample points are within the disc

D,
100
rp(IN) = W#{wj [ fJw;ll < a}.
When N grows, we should have
rp(N) — p.
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PROGRAM

%» Number of points within a p percent ellipse

W = diag(1l ./sqrt(d))*U’*(SampleNA-b*ones(1l,nsample));
normW = sqrt(sum(W."2));
p = [90,50];

for j = 1:2
alpha = sqrt(2*1log(100/(100-p(j))));
xinside = (normW<alpha) ;
reln = 100*cumsum(xinside)./[1:nsample];
end
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EXAMPLE: INVERSE PROBLEMS IN CHEMICAL ENGINEERING

Recall the reversible chemical reactions
A2 B,

with reaction rates ki and ko, respectively.

Concentrations C'4 and Cp satisty

dC'4

e k
g 1C4+ koCp
dCp

——— =k — k

= 1C'4 2Cp,

with initial data

CA(0) = Cap, Cg(0) = Cho.
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INVERSE PROBLEM

Assume that we know the initial concentrations.
Data: For 0 < t; <tg--- <t,, measure Cs(t;), 1 <j <n.
Estimate k; and k.

Noisy observations:
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STEADY STATE DATA

2
1.5

3.5

257

057

o=0.2

ko = 0.5,

ky = 2,

Cpo =1,

2,

Ca.0
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SAMPLING WITH NON-ADAPTIVE MH

1.2

3.5
3 1
25 0.8
5 0.6
15 0.4
1 0.2
0.5 0
0 - - - - - ' -0.2
0 2 4 6 8 10 12 14

Initial point (1, 2)
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SAMPLING WITH ADAPTIVE MH

19
x 10

0 2 4 6 8 10 12

19
x 10

25

0 2000 4000 6000 8000 10000

Adaptation after every 100 sample points
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EXAMPLE: HORSESHOE DISTRIBUTION

1.5 1.5

)

-1.5 - - - - - -1.5 - - - - -
-5 -1 -05 ©0 05 1 15 ~-15 -1 -05 0 05 1 15

Non-adaptive (left) vs. adaptive (right).
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15 15

1 1
0.5 0.5
0 0
-0.5 -0.5
1 -1
-15 -15
0 5000 10000 15000 0 5000 10000 15000

Non-adaptive (left) vs. adaptive (right).
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OBSERVATIONS
In this example, the adaptation, as defined here, is not of great help:

The distribution is almost circular, so the asymptotic covariance is almost an
identity, and we end up drawing essentially from a white noise density.

The only advantage is that the step length need no tuning.
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