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Normal subgroups and quotients

Suppose that G is a group and H is a subgroup of G .

aH = Ha for all a ∈ G if and only if axa−1 ∈ H for all a ∈ G and
x ∈ H.
Why? Assume that a ∈ G and x ∈ H. Now ax ∈ aH so if aH = Ha
there is a y ∈ H such that ax = ya. But then axa−1 = y ∈ H. If on
the other hand axa−1 = y ∈ H then ax = ya so that aH ⊂ Ha. But
we can consider a−1 instead of a and get a−1H ⊂ Ha−1 from which it
follows that Ha = aa−1Ha ⊂ aHa−1a = aH as well.

If aH = Ha for all a ∈ G then a1H = a2H and b1H = b2H implies
that a1b1H = a2b2H which means that one can define the product of
the cosets aH and bH by (aH)(bH) = abH.
Why? Using the assumption several times we get

a1b1H = a1Hb1 = a2Hb1 = a2b1H = a2b2H.

G. Gripenberg (Aalto University) Mat-1.2991 Discrete mathematics Appendix II September 30, 2013 3 / 17

Why is |Gx | · |Gx | = |G |?
Assume that G is a finite group. If H is a subgroup of G then
|H| ·m = |G | where m is the number of cosets of H. Since Gx is a
subgroup it thus suffices to construct a bijection ψ from the set of cosets
of Gx to the orbit Gx.
Define ψ(gGx) = gx. If g1Gx = g2Gx we have g−12 g1 ∈ Gx so g−12 g1x = x
and hence g1x = g2x so ψ is well defined
If g1x = g2x we have g−12 g1x = x so that g−12 g1 ∈ Gx and therefore
g1Gx = g2Gx so that ψ is an injection. If y ∈ Gx there is a g ∈ G so that
y = gx and hence y = ψ(gGx) and hence ψ is a surjection.
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Why is the number of orbits in the action of a group 1
|G |
∑

g∈G |Xg |?

Let E = { (g , x) ∈ G × X : gx = x }. Then we get by interchanging the
order of summation

|E | =
∑
g∈G
|{ x ∈ X : gx = x }| =

∑
x∈X
|{ g ∈ G : gx = x }|,

so that
∑

g∈G |Xg | =
∑

x∈X |Gx |.
Let X/G denote the set of orbits, which are equivalence classes under the
relation x ∼ y if and only if x = gy for some g ∈ G . Thus the orbits are
disjoint and their union is X . Since |Gx | = |G |

|Gx | and Gx is the orbit
containing x we get the claim from the following calculation:

∑
g∈G
|Xg | =

∑
x∈X
|Gx | =

∑
A∈X/G

∑
x∈A

|G |
|Gx |

= |G |
∑

A∈X/G

∑
x∈A

1

|A|

= |G |
∑

A∈X/G

1

|A|
∑
x∈A

1 = |G |
∑

A∈X/G

1 = |G ||X/G |.

G. Gripenberg (Aalto University) Mat-1.2991 Discrete mathematics Appendix II September 30, 2013 5 / 17

Proof of Pólya’s theorem on the number of colorings

Assume that Ω is a set of colorings of X invariant under G . Then the
number of orbits of the action of G on Ω is 1

|G |
∑

g∈G |Ωg | where

Ωg = {ω ∈ Ω : gω = ω } is the set of colorings that are invariant under g,
and these in turn are the ones that are constant on each orbit of the
permutation g of X , or equivalently on each orbit in the action of the
cyclic group generated by g on the set X . Thus we can consider each
g ∈ G separately and then add up.
Suppose that Ag ,1,Ag ,2, . . .Ag ,mg are the orbits of g with sj = |Ag ,j |. Now
there is of course one way of using color aj exactly s1 times to give the
points in Ag ,1 the color aj . This can be described by the generating
function as11 + . . .+ as1r . Assume now that p(a1, . . . , ar ) is a generating

functions such that coefficient of the monomial ai11 · a
i2
2 · . . . · airr is the

number of ways in which the sets Ag ,1, . . .Ag ,k can be colored using color
aj exactly ij times. The elements in the set Ag ,l+1 can be colored using one
of the colors sk times and all different colors give rise to different cases.
If we use color aq and want to use color aj exactly ij times in coloring all
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Proof of Pólya’s theorem on the number of colorings, cont.

the sets Ag ,1, . . .Ag ,k ,Ag ,k+1 then we must use color aj exactly ij times
when j 6= q and color aq exactly iq − sq times to color the first sets
Ag ,1, . . .Ag ,k . But this means that the generating function for coloring the
sets Ag ,1, . . .Ag ,k ,Ag ,k+1 is p(a1, . . . ar ) · (a

sk+1

1 + . . .+ a
sk+1
r ). Thus the

induction step works and we see that
ζg ,X (a11 + . . .+ a1r , a

2
1 + . . .+ a2r , . . . , a

n
1 + . . .+ anr ) is the generating

function for coloring the orbits of g . In other words the coefficient of
ai11 · a

i2
2 · . . . · airr in the generating function

ζg ,X (a11 + . . .+ a1r , a
2
1 + . . .+ a2r , . . . , a

n
1 + . . .+ anr ) is the number of orbits

in the action of g on the coloring of X using color aj exactly i − j times
and then we can take the sum over g ∈ G and divide by |G | to get the
number of orbits wwhen G acts on this set of colorings.
For the case where the set of colorings are all the ones using r colors, that
is all functions from X to a set with r elements we proceed in the same
way and note that if g has k orbits these can be colored in rk different
ways when all points in an orbit get the same color. But if g has k orbits
then ζg ,X (r , . . . r) = rk and the result follows.
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The orbit or cycle index of rotations

The permutation p = (1 2 . . . n) of the set Nn = {1, 2, . . . , n} generates a
cyclic group (denoted by Cn) with elements I , p, p2, . . . , pn−1 where I is
the identity element. This permutation p corresponds to a rotation of a
regular n-gon by 2π

n .
The order of the element pk , k = 0, 1, 2 . . . , n − 1 is the smallest integer
d ≥ 1 so that pd ·k = I or, equivalently, d · k = n · j for some integer j .
Since k ≤ n − 1 we must have 0 ≤ j ≤ d − 1. If gcd(j , d) > 1 we could
make d smaller so we must have gcd(d , j) = 1. But this implies that d | n
and we have k = n

d · j with gcd(j , d) = 1 and 0 ≤ j ≤ d − 1. Conversely
we see that for every d | n and 0 ≤ j ≤ d − 1 with gcd(j , d) = 1 we find an
integer k ∈ {0, 1, . . . , n − 1} so that the order of pk is d.
Thus there are ϕ(d) elements of order d for each d | n. A permutation pk

of order d acting on the set {1, 2 . . . , } has n
d orbits (since the identity

leaves every point unchanged and all other elements in the cyclic group
generated by pk moves every element in the set) and thus the orbit index is

ζCn,Nn(t1, t2, . . . , tn) =
1

n

∑
d | n

ϕ(d)t
n
d
d .
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Why is F (α) isomorphic to F [x ]/〈h〉 when h is irreducible and
h(α) = 0?

For each equivalence class [a] ∈ F [x ]/〈h〉 we let ψ(a) = a(α). Since
[a] = [b] iff a = b + c · h and h(α) = 0 this function ψ is well defined. It is
(?) clear that ψ([a] + [b]) = ψ([a]) + ψ([b]), ψ([−a]) = −ψ([a]), and
ψ([a] · [b]) = ψ([a]) · ψ([b]). Furthermore if [a] 6= 0 then there are
polynomials b and c so that a · b = 1 + c · h (that is, [b] = [a]−1) and this
implies that ψ([a]) · ψ([b]) = 1 and hence ψ([b]) = ψ([a])−1 when
ψ([a]) 6= 0. This implies that {ψ([a]) : [a] ∈ F [x ]/〈h〉 } is a subfield of the
extension field K of F . Since [x ] ∈ F [x ]/〈h〉 this field contains α and
hence F (α) as well. On the other hand it follows from the fact that F (α)
is a field and α ∈ F (α) that every ψ([a]) ∈ F (α). Thus ψ is an
isomorphism: F [x ]/〈h〉 → F (α).
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Why is [F [x ]/〈h〉 : F ] = deg(h)

In order to be able to consider F as a subfield of F [x ]/〈h〉 we have to
identify F with polynomials of degree ≤ 0 and instead of equivalence
classes take the elements in F [x ]/〈h〉 to be polynomials in F [x ] with
degree at most m − 1 where deg(h) = m. This implies that the “vectors”
1, x , x2, . . . , xm−1 span the vector space F [x ]/〈h〉 over F . In addition
these vectors are linearly independent because if
f0 1 + f1x + . . . fm−1xm−1 = 0 then by the definition of polynomials as
functions from {0, 1, 2 . . .} to F we have
(f0, f1, . . . , fm−1, 0, . . .) = (0, 0, . . .) and hence f0 = f1 = . . . = fm−1 = 0.
Thus the dimension of F [x ]/〈h〉 over F is m since the dimension can be
characterized as the number of linearly independet vectors that spans the
space. (The fact that the field is F and not e.g. R does not matter.)
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Why is [F (α) : F ] = deg(h) if h is irreducible and h(α) = 0?

Since there is an isomorphism ψ : F [x ]/〈h〉 → F (α) one also gets an
isomorphism of these sets when they are considered as vector spaces over
F . Since isomorphic vector spaves have the same dimension the claim
follows from the fact that [F [x ]/〈h〉 : F ] = deg(h).
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Why is [K : F ] = [K : E ][E : F ] when E is an extension of F and
K is an extension of E?

Let m = [K : E ] and n = [E : F ]. It follows from the definition that
there are k1, . . . , km ∈ K which form a basis for K as a vector space over
E and hence each k ∈ K can be written in a unique way as k =

∑m
i=1 ciki

where ci ∈ E for i = 1, . . . ,m. Similarly there are e1, . . . en ∈ E that form
a basis for E as a vector space over F . Since each si ∈ E we get
si =

∑n
j=1 si ,jej which in turn implies that k =

∑m
i=1

∑n
j=1 si ,jkiej . This

shows that that the vectors kiej ∈ K span K as a vector space over F and
since there are m · n of these vectors it remains to show that they are
linearly independent. If

∑m
i=1

∑n
j=1 si ,jkiej = 0 then∑m

i=1

(∑n
j=1 si ,jej

)
ki = 0. Now the vectors ki are linearly independent so∑n

j=1 si ,jej = 0 for each i = 1, . . . ,m. But the vectors ej are linearly
independet as well so si ,j = 0 for each j = 1, . . . , n and for each
j = 1, . . . ,m. Thus the m · n vectors kiej , i = 1, . . . ,m, j = 1, . . . , n form
a basis for K as a vector space over F .
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How can one, in principle, find the generator of a cyclic code?

Assume first that there are at least two codewords in C .

Let m = min{ deg(a) : a 6= 0, a ∈ Cp } and let g ∈ Cp be such that
deg(g) = m. If g̃ is another such polynomial, then g̃ + g ∈ Cp since
the code is linear and deg(g̃ + g) < m because 1 + 1 = 0 in F2 and
the coefficient of xm is 1 in both g̃ and g. Thus we must have g̃ = g,
that is g is unique.

Since the code is cyclic it follows that x j · g ∈ Cp for all
0 ≤ j ≤ n −m − 1, and since cyclicity includes linearity we have a · g
for all a ∈ F [x ] with deg(a) ≤ n −m − 1.

If c ∈ Cp then c = a · g + r with deg(a) ≤ n−m− 1 and deg(r) < m.
By the previous result and the linearity of the code we have
c− a · g ∈ Cp so we must have r = 0 by the definition of m and this
shows that C is generated by g.

If the only element in Cp is 0, then one can can choose g = xn − 1
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Why is g the generator of a cyclic code if and only if g divides xn− 1?

If deg(g) = n then g divides xn − 1 if and only if g = xn − 1 which
happens if and only if C = {00 · · · 0}. Thus we may assume that
0 ≤ deg(g) < n.

By definition the code C is cyclic if and only if it is linear and the
remainder when x j · c is divided by xn − 1 is in Cp for every c ∈ Cp, or
equivalently if and only if it is linear and the remainder when a · c
divided by xn − 1 is in Cp for every a ∈ F2[x ] and c ∈ Cp.

Assume that g is the generator of a cyclic code. Then
xn − 1 = h · g + r where deg(r) < deg(g). Thus the remainder when
h · g is divided by xn − 1 is r which thus belongs to Cp and this
contradicts the construction of g unless r = 0 in which case g divides
xn − 1.
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Why is g the generator of a cyclic code if and only if g divides
xn − 1? Cont.

Assume that g divides xn − 1 and deg(g) = n − k. Then there is a
polynomial h with deg(h) = k so that h · g = xn − 1. Furthermore,
we note that the set Cp = { a · g : a ∈ F2[x ], deg(a) ≤ k − 1 } is such
that if c1 and c2 ∈ Cp then c1 + c2 ∈ Cp, that is the code C
generated by g is linear. If now c ∈ Cp then c = a · g and the
remainder when x j · c is divided by xn − 1 is
r = x j · a · g − q · (xn − 1) = (x j · a− q · h) · g and since
deg(r) ≤ n − 1 we have deg(x j · a− q · h) ≤ k − 1 which implies that
r ∈ Cp and hence the code C is cyclic.
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The check matrix and the code generator matrix for a cyclic code

(a) Do the codewords c = aG satisfy HcT = 0?

(b) Are there other solutions to HcT = 0 than the vectors c = aG ?

Answers:

(a) Let hj = 0 when j = k + 1. . . . n − 1 and hj+n = hj for all j ∈ Z.
Similarly let gj = 0 for j = n − k + 1, . . . , n − 1 and gj+n = gj for all
j ∈ Z. Thus H(i , j) = hj−i and G (i , j) = gn−k+i−j . Now HGT = 0
because (HGT)(i , j) =

∑n
m=1 hm−ign−k+j−m which is the coefficient

for xn−k+j−i in h · g and hence zero because
1 ≤ n − k + j − i ≤ n − 1 when i = 1, . . . , n − k and j = 1, . . . , k.
Thus the codewords c = aG satisfy HcT = 0.

(b) Since h · g = xn − 1 we must have h0 = g0 = 1 so H is in row echelon
form with pivot elements in the first n − k columns, hence the
dimension of tke kernel of H is k and hence there are 2k solutions to
the equation HcT = 0. But G is also in row echelon form so the
mapping a 7→ aG is an injection and there are 2k vectors of the form
aG . Thus there are no other solutions than the vectors c = aG .
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An auxilary result

Assume that F is a field, n > 1, u ∈ F \ {0} is such that uj 6= 1 when
1 ≤ j < n, c ∈ F [x ] \ {0} with deg(c) < n, and c(um) = 0 when
m = m0 + 1, . . . ,m0 + s. Then c has at least s + 1 nonzero coefficients.

Proof

Suppose that c has at most s nonzero coefficients, so that c =
∑s

j=1 ajx
bj

with 0 ≤ b1 < · · · < bs < n. Thus we have the system of equations∑s
j=1 Mi ,jaj = 0, i = 1, 2 . . . , s where Mi ,j = u(ko+i)bj = u(m0+1)bj (ubj )i−1.

Now the matrix Vi ,j = (ubj )i−1 is a Vandermonde matrix and

det(M) = u(m0+1)
∑s

j=1 bj
∏

1≤j<k≤s(ubj − ubk ). It follows from

0 ≤ bj < bk < n and the assumption uj 6= 1 when 1 ≤ j < n that
det(M) 6= 0 and thus aj = 0 for j = 0, 1, . . . , s which is a contradiction
since c 6= 0.

G. Gripenberg (Aalto University) Mat-1.2991 Discrete mathematics Appendix II September 30, 2013 17 / 17


	Groups
	Group actions

	Fields and polynomials
	Codes

