

Mat-1.2991 Discrete mathematics

Appendix II

G. Gripenberg

Aalto University

September 30, 2013

1	Groups	3
•	Group actions	4
2	Fields and polynomials	9
3	Codes	13

Normal subgroups and quotients

Suppose that G is a group and H is a subgroup of G .

- $aH = Ha$ for all $a \in G$ if and only if $axa^{-1} \in H$ for all $a \in G$ and $x \in H$.

Why? Assume that $a \in G$ and $x \in H$. Now $ax \in aH$ so if $aH = Ha$ there is a $y \in H$ such that $ax = ya$. But then $axa^{-1} = y \in H$. If on the other hand $axa^{-1} = y \in H$ then $ax = ya$ so that $aH \subset Ha$. But we can consider a^{-1} instead of a and get $a^{-1}H \subset Ha^{-1}$ from which it follows that $Ha = aa^{-1}Ha \subset aHa^{-1}a = aH$ as well.

- If $aH = Ha$ for all $a \in G$ then $a_1H = a_2H$ and $b_1H = b_2H$ implies that $a_1b_1H = a_2b_2H$ which means that one can define the product of the cosets aH and bH by $(aH)(bH) = abH$.

Why? Using the assumption several times we get

$$a_1b_1H = a_1Hb_1 = a_2Hb_1 = a_2b_1H = a_2b_2H.$$

Why is $|Gx| \cdot |G_x| = |G|$?

Assume that G is a finite group. If H is a subgroup of G then $|H| \cdot m = |G|$ where m is the number of cosets of H . Since G_x is a subgroup it thus suffices to construct a bijection ψ from the set of cosets of G_x to the orbit Gx .

Define $\psi(gG_x) = gx$. If $g_1G_x = g_2G_x$ we have $g_2^{-1}g_1 \in G_x$ so $g_2^{-1}g_1x = x$ and hence $g_1x = g_2x$ so ψ is well defined

If $g_1x = g_2x$ we have $g_2^{-1}g_1x = x$ so that $g_2^{-1}g_1 \in G_x$ and therefore $g_1G_x = g_2G_x$ so that ψ is an injection. If $y \in Gx$ there is a $g \in G$ so that $y = gx$ and hence $y = \psi(gG_x)$ and hence ψ is a surjection.

Why is the number of orbits in the action of a group $\frac{1}{|G|} \sum_{g \in G} |X_g|$?

Let $E = \{(g, x) \in G \times X : gx = x\}$. Then we get by interchanging the order of summation

$$|E| = \sum_{g \in G} |\{x \in X : gx = x\}| = \sum_{x \in X} |\{g \in G : gx = x\}|,$$

so that $\sum_{g \in G} |X_g| = \sum_{x \in X} |G_x|$.

Let X/G denote the set of orbits, which are equivalence classes under the relation $x \sim y$ if and only if $x = gy$ for some $g \in G$. Thus the orbits are disjoint and their union is X . Since $|G_x| = \frac{|G|}{|G_x|}$ and Gx is the orbit containing x we get the claim from the following calculation:

$$\begin{aligned} \sum_{g \in G} |X_g| &= \sum_{x \in X} |G_x| = \sum_{A \in X/G} \sum_{x \in A} \frac{|G|}{|G_x|} = |G| \sum_{A \in X/G} \sum_{x \in A} \frac{1}{|A|} \\ &= |G| \sum_{A \in X/G} \frac{1}{|A|} \sum_{x \in A} 1 = |G| \sum_{A \in X/G} 1 = |G| |X/G|. \end{aligned}$$

Proof of Pólya's theorem on the number of colorings

Assume that Ω is a set of colorings of X invariant under G . Then the number of orbits of the action of G on Ω is $\frac{1}{|G|} \sum_{g \in G} |\Omega_g|$ where

$\Omega_g = \{\omega \in \Omega : g\omega = \omega\}$ is the set of colorings that are invariant under g , and these in turn are the ones that are constant on each orbit of the permutation g of X , or equivalently on each orbit in the action of the cyclic group generated by g on the set X . Thus we can consider each $g \in G$ separately and then add up.

Suppose that $A_{g,1}, A_{g,2}, \dots, A_{g,m_g}$ are the orbits of g with $s_j = |A_{g,j}|$. Now there is of course one way of using color a_j exactly s_1 times to give the points in $A_{g,1}$ the color a_j . This can be described by the generating function $a_1^{s_1} + \dots + a_r^{s_1}$. Assume now that $p(a_1, \dots, a_r)$ is a generating function such that coefficient of the monomial $a_1^{i_1} \cdot a_2^{i_2} \cdot \dots \cdot a_r^{i_r}$ is the number of ways in which the sets $A_{g,1}, \dots, A_{g,k}$ can be colored using color a_j exactly i_j times. The elements in the set $A_{g,l+1}$ can be colored using one of the colors s_k times and all different colors give rise to different cases. If we use color a_q and want to use color a_j exactly i_j times in coloring all

Proof of Pólya's theorem on the number of colorings, cont.

the sets $A_{g,1}, \dots, A_{g,k}, A_{g,k+1}$ then we must use color a_j exactly i_j times when $j \neq q$ and color a_q exactly $i_q - s_q$ times to color the first sets $A_{g,1}, \dots, A_{g,k}$. But this means that the generating function for coloring the sets $A_{g,1}, \dots, A_{g,k}, A_{g,k+1}$ is $p(a_1, \dots, a_r) \cdot (a_1^{s_{k+1}} + \dots + a_r^{s_{k+1}})$. Thus the induction step works and we see that

$\zeta_{g,X}(a_1^1 + \dots + a_r^1, a_1^2 + \dots + a_r^2, \dots, a_1^n + \dots + a_r^n)$ is the generating function for coloring the orbits of g . In other words the coefficient of $a_1^{i_1} \cdot a_2^{i_2} \cdot \dots \cdot a_r^{i_r}$ in the generating function

$\zeta_{g,X}(a_1^1 + \dots + a_r^1, a_1^2 + \dots + a_r^2, \dots, a_1^n + \dots + a_r^n)$ is the number of orbits in the action of g on the coloring of X using color a_j exactly $i_j - s_j$ times and then we can take the sum over $g \in G$ and divide by $|G|$ to get the number of orbits when G acts on this set of colorings.

For the case where the set of colorings are all the ones using r colors, that is all functions from X to a set with r elements we proceed in the same way and note that if g has k orbits these can be colored in r^k different ways when all points in an orbit get the same color. But if g has k orbits then $\zeta_{g,X}(r, \dots, r) = r^k$ and the result follows.

The orbit or cycle index of rotations

The permutation $p = (1 \ 2 \ \dots \ n)$ of the set $\mathbb{N}_n = \{1, 2, \dots, n\}$ generates a cyclic group (denoted by C_n) with elements $I, p, p^2, \dots, p^{n-1}$ where I is the identity element. This permutation p corresponds to a rotation of a regular n -gon by $\frac{2\pi}{n}$.

The order of the element p^k , $k = 0, 1, 2, \dots, n-1$ is the smallest integer $d \geq 1$ so that $p^{d \cdot k} = I$ or, equivalently, $d \cdot k = n \cdot j$ for some integer j . Since $k \leq n-1$ we must have $0 \leq j \leq d-1$. If $\gcd(j, d) > 1$ we could make d smaller so we must have $\gcd(d, j) = 1$. But this implies that $d \mid n$ and we have $k = \frac{n}{d} \cdot j$ with $\gcd(j, d) = 1$ and $0 \leq j \leq d-1$. Conversely we see that for every $d \mid n$ and $0 \leq j \leq d-1$ with $\gcd(j, d) = 1$ we find an integer $k \in \{0, 1, \dots, n-1\}$ so that the order of p^k is d .

Thus there are $\varphi(d)$ elements of order d for each $d \mid n$. A permutation p^k of order d acting on the set $\{1, 2, \dots, n\}$ has $\frac{n}{d}$ orbits (since the identity leaves every point unchanged and all other elements in the cyclic group generated by p^k moves every element in the set) and thus the orbit index is

$$\zeta_{C_n, \mathbb{N}_n}(t_1, t_2, \dots, t_n) = \frac{1}{n} \sum_{d \mid n} \varphi(d) t_d^{\frac{n}{d}}.$$

Why is $F(\alpha)$ isomorphic to $F[x]/\langle h \rangle$ when h is irreducible and $h(\alpha) = 0$?

For each equivalence class $[a] \in F[x]/\langle h \rangle$ we let $\psi(a) = a(\alpha)$. Since $[a] = [b]$ iff $a = b + c \cdot h$ and $h(\alpha) = 0$ this function ψ is well defined. It is (?) clear that $\psi([a] + [b]) = \psi([a]) + \psi([b])$, $\psi([-a]) = -\psi([a])$, and $\psi([a] \cdot [b]) = \psi([a]) \cdot \psi([b])$. Furthermore if $[a] \neq 0$ then there are polynomials b and c so that $a \cdot b = 1 + c \cdot h$ (that is, $[b] = [a]^{-1}$) and this implies that $\psi([a]) \cdot \psi([b]) = 1$ and hence $\psi([b]) = \psi([a])^{-1}$ when $\psi([a]) \neq 0$. This implies that $\{\psi([a]) : [a] \in F[x]/\langle h \rangle\}$ is a subfield of the extension field K of F . Since $[x] \in F[x]/\langle h \rangle$ this field contains α and hence $F(\alpha)$ as well. On the other hand it follows from the fact that $F(\alpha)$ is a field and $\alpha \in F(\alpha)$ that every $\psi([a]) \in F(\alpha)$. Thus ψ is an isomorphism: $F[x]/\langle h \rangle \rightarrow F(\alpha)$.

Why is $[F[x]/\langle h \rangle : F] = \deg(h)$

In order to be able to consider F as a subfield of $F[x]/\langle h \rangle$ we have to identify F with polynomials of degree ≤ 0 and instead of equivalence classes take the elements in $F[x]/\langle h \rangle$ to be polynomials in $F[x]$ with degree at most $m - 1$ where $\deg(h) = m$. This implies that the “vectors” $1, x, x^2, \dots, x^{m-1}$ span the vector space $F[x]/\langle h \rangle$ over F . In addition these vectors are linearly independent because if

$f_0 1 + f_1 x + \dots + f_{m-1} x^{m-1} = 0$ then by the definition of polynomials as functions from $\{0, 1, 2, \dots\}$ to F we have

$(f_0, f_1, \dots, f_{m-1}, 0, \dots) = (0, 0, \dots)$ and hence $f_0 = f_1 = \dots = f_{m-1} = 0$. Thus the dimension of $F[x]/\langle h \rangle$ over F is m since the dimension can be characterized as the number of linearly independent vectors that spans the space. (The fact that the field is F and not e.g. \mathbb{R} does not matter.)

Why is $[F(\alpha) : F] = \deg(h)$ if h is irreducible and $h(\alpha) = 0$?

Since there is an isomorphism $\psi : F[x]/\langle h \rangle \rightarrow F(\alpha)$ one also gets an isomorphism of these sets when they are considered as vector spaces over F . Since isomorphic vector spaces have the same dimension the claim follows from the fact that $[F[x]/\langle h \rangle : F] = \deg(h)$.

Why is $[K : F] = [K : E][E : F]$ when E is an extension of F and K is an extension of E ?

Let $m = [K : E]$ and $n = [E : F]$. It follows from the definition that there are $k_1, \dots, k_m \in K$ which form a basis for K as a vector space over E and hence each $k \in K$ can be written in a unique way as $k = \sum_{i=1}^m c_i k_i$ where $c_i \in E$ for $i = 1, \dots, m$. Similarly there are $e_1, \dots, e_n \in E$ that form a basis for E as a vector space over F . Since each $s_i \in E$ we get

$s_i = \sum_{j=1}^n s_{i,j} e_j$ which in turn implies that $k = \sum_{i=1}^m \sum_{j=1}^n s_{i,j} k_i e_j$. This shows that the vectors $k_i e_j \in K$ span K as a vector space over F and since there are $m \cdot n$ of these vectors it remains to show that they are linearly independent. If $\sum_{i=1}^m \sum_{j=1}^n s_{i,j} k_i e_j = 0$ then

$\sum_{i=1}^m \left(\sum_{j=1}^n s_{i,j} e_j \right) k_i = 0$. Now the vectors k_i are linearly independent so $\sum_{j=1}^n s_{i,j} e_j = 0$ for each $i = 1, \dots, m$. But the vectors e_j are linearly independent as well so $s_{i,j} = 0$ for each $j = 1, \dots, n$ and for each $i = 1, \dots, m$. Thus the $m \cdot n$ vectors $k_i e_j$, $i = 1, \dots, m$, $j = 1, \dots, n$ form a basis for K as a vector space over F .

How can one, in principle, find the generator of a cyclic code?

Assume first that there are at least two codewords in C .

- Let $m = \min\{\deg(\mathbf{a}) : \mathbf{a} \neq 0, \mathbf{a} \in C_p\}$ and let $\mathbf{g} \in C_p$ be such that $\deg(\mathbf{g}) = m$. If $\tilde{\mathbf{g}}$ is another such polynomial, then $\tilde{\mathbf{g}} + \mathbf{g} \in C_p$ since the code is linear and $\deg(\tilde{\mathbf{g}} + \mathbf{g}) < m$ because $1 + 1 = 0$ in F_2 and the coefficient of x^m is 1 in both $\tilde{\mathbf{g}}$ and \mathbf{g} . Thus we must have $\tilde{\mathbf{g}} = \mathbf{g}$, that is \mathbf{g} is unique.
- Since the code is cyclic it follows that $x^j \cdot \mathbf{g} \in C_p$ for all $0 \leq j \leq n - m - 1$, and since cyclicity includes linearity we have $\mathbf{a} \cdot \mathbf{g}$ for all $\mathbf{a} \in F_2[x]$ with $\deg(\mathbf{a}) \leq n - m - 1$.
- If $\mathbf{c} \in C_p$ then $\mathbf{c} = \mathbf{a} \cdot \mathbf{g} + \mathbf{r}$ with $\deg(\mathbf{a}) \leq n - m - 1$ and $\deg(\mathbf{r}) < m$. By the previous result and the linearity of the code we have $\mathbf{c} - \mathbf{a} \cdot \mathbf{g} \in C_p$ so we must have $\mathbf{r} = 0$ by the definition of m and this shows that C is generated by \mathbf{g} .

If the only element in C_p is 0, then one can choose $\mathbf{g} = x^n - 1$

Why is \mathbf{g} the generator of a cyclic code if and only if \mathbf{g} divides $x^n - 1$?

- If $\deg(\mathbf{g}) = n$ then \mathbf{g} divides $x^n - 1$ if and only if $\mathbf{g} = x^n - 1$ which happens if and only if $C = \{00 \cdots 0\}$. Thus we may assume that $0 \leq \deg(\mathbf{g}) < n$.
- By definition the code C is cyclic if and only if it is linear and the remainder when $x^j \cdot \mathbf{c}$ is divided by $x^n - 1$ is in C_p for every $\mathbf{c} \in C_p$, or equivalently if and only if it is linear and the remainder when $\mathbf{a} \cdot \mathbf{c}$ divided by $x^n - 1$ is in C_p for every $\mathbf{a} \in F_2[x]$ and $\mathbf{c} \in C_p$.
- Assume that \mathbf{g} is the generator of a cyclic code. Then $x^n - 1 = \mathbf{h} \cdot \mathbf{g} + \mathbf{r}$ where $\deg(\mathbf{r}) < \deg(\mathbf{g})$. Thus the remainder when $\mathbf{h} \cdot \mathbf{g}$ is divided by $x^n - 1$ is \mathbf{r} which thus belongs to C_p and this contradicts the construction of \mathbf{g} unless $\mathbf{r} = 0$ in which case \mathbf{g} divides $x^n - 1$.

Why is \mathbf{g} the generator of a cyclic code if and only if \mathbf{g} divides $x^n - 1$? Cont.

- Assume that \mathbf{g} divides $x^n - 1$ and $\deg(\mathbf{g}) = n - k$. Then there is a polynomial \mathbf{h} with $\deg(\mathbf{h}) = k$ so that $\mathbf{h} \cdot \mathbf{g} = x^n - 1$. Furthermore, we note that the set $C_p = \{ \mathbf{a} \cdot \mathbf{g} : \mathbf{a} \in F_2[x], \deg(\mathbf{a}) \leq k - 1 \}$ is such that if \mathbf{c}_1 and $\mathbf{c}_2 \in C_p$ then $\mathbf{c}_1 + \mathbf{c}_2 \in C_p$, that is the code C generated by \mathbf{g} is linear. If now $\mathbf{c} \in C_p$ then $\mathbf{c} = \mathbf{a} \cdot \mathbf{g}$ and the remainder when $x^j \cdot \mathbf{c}$ is divided by $x^n - 1$ is $\mathbf{r} = x^j \cdot \mathbf{a} \cdot \mathbf{g} - \mathbf{q} \cdot (x^n - 1) = (x^j \cdot \mathbf{a} - \mathbf{q} \cdot \mathbf{h}) \cdot \mathbf{g}$ and since $\deg(\mathbf{r}) \leq n - 1$ we have $\deg(x^j \cdot \mathbf{a} - \mathbf{q} \cdot \mathbf{h}) \leq k - 1$ which implies that $\mathbf{r} \in C_p$ and hence the code C is cyclic.

The check matrix and the code generator matrix for a cyclic code

- Do the codewords $\mathbf{c} = \mathbf{a}G$ satisfy $H\mathbf{c}^T = 0$?
- Are there other solutions to $H\mathbf{c}^T = 0$ than the vectors $\mathbf{c} = \mathbf{a}G$?

Answers:

- Let $h_j = 0$ when $j = k + 1, \dots, n - 1$ and $h_{j+n} = h_j$ for all $j \in \mathbb{Z}$. Similarly let $g_j = 0$ for $j = n - k + 1, \dots, n - 1$ and $g_{j+n} = g_j$ for all $j \in \mathbb{Z}$. Thus $H(i, j) = h_{j-i}$ and $G(i, j) = g_{n-k+i-j}$. Now $HG^T = 0$ because $(HG^T)(i, j) = \sum_{m=1}^n h_{m-i}g_{n-k+j-m}$ which is the coefficient for $x^{n-k+j-i}$ in $\mathbf{h} \cdot \mathbf{g}$ and hence zero because $1 \leq n - k + j - i \leq n - 1$ when $i = 1, \dots, n - k$ and $j = 1, \dots, k$. Thus the codewords $\mathbf{c} = \mathbf{a}G$ satisfy $H\mathbf{c}^T = 0$.
- Since $\mathbf{h} \cdot \mathbf{g} = x^n - 1$ we must have $h_0 = g_0 = 1$ so H is in row echelon form with pivot elements in the first $n - k$ columns, hence the dimension of the kernel of H is k and hence there are 2^k solutions to the equation $H\mathbf{c}^T = 0$. But G is also in row echelon form so the mapping $\mathbf{a} \mapsto \mathbf{a}G$ is an injection and there are 2^k vectors of the form $\mathbf{a}G$. Thus there are no other solutions than the vectors $\mathbf{c} = \mathbf{a}G$.

An auxilary result

Assume that F is a field, $n > 1$, $u \in F \setminus \{0\}$ is such that $u^j \neq 1$ when $1 \leq j < n$, $\mathbf{c} \in F[x] \setminus \{0\}$ with $\deg(\mathbf{c}) < n$, and $\mathbf{c}(u^m) = 0$ when $m = m_0 + 1, \dots, m_0 + s$. Then \mathbf{c} has at least $s + 1$ nonzero coefficients.

Proof

Suppose that \mathbf{c} has at most s nonzero coefficients, so that $\mathbf{c} = \sum_{j=1}^s a_j x^{b_j}$ with $0 \leq b_1 < \dots < b_s < n$. Thus we have the system of equations

$$\sum_{j=1}^s M_{i,j} a_j = 0, \quad i = 1, 2, \dots, s \quad \text{where } M_{i,j} = u^{(k_0+i)b_j} = u^{(m_0+1)b_j} (u^{b_j})^{i-1}.$$

Now the matrix $V_{i,j} = (u^{b_j})^{i-1}$ is a Vandermonde matrix and

$$\det(M) = u^{(m_0+1) \sum_{j=1}^s b_j} \prod_{1 \leq j < k \leq s} (u^{b_j} - u^{b_k}).$$

It follows from $0 \leq b_j < b_k < n$ and the assumption $u^j \neq 1$ when $1 \leq j < n$ that

$\det(M) \neq 0$ and thus $a_j = 0$ for $j = 0, 1, \dots, s$ which is a contradiction since $\mathbf{c} \neq 0$.