Global minimization, 1d, assignment
4 a), parallel (parfor, spmd)

Table of Contents

FUNCEION TO MINIMIZE ...ttt e e et e e e e e e e e e entneeees 1
I S PP TP PP PPTRPN 1
Define obJective TUNCLION: i e e e e 1
SPHL INEO SEVEIAl PAITS.iee ittt et e et e e et e e eaans 2
Let's make use of all 24 workers on Triton, take wider range.oooeiviiiiiiiiiiiiiin e 2
fminbnd, only bounds are needed, NO Starting POINES.vieuiiiiiiii e 2
OBSEIVEALIONS. ...ttt e ettt ettt et e et et et 3
Parallel computing With SPMA ... e 4
100 PP PPPIN 4
Compare with using just Matlab's vector fUNCLioN MIN. ... 5
COomMMENtS, CONCIUSIONS, VISIONScevuineiertieieiii ettt ettt e e e et e et e e e e e e e e nna s 6
12.3. 2018

api ol a@riton: 2018kevat / Hei kki / Lect ur e4/ d obal m nsol ve2. m

Continuation to Globalminsolvel.m

Function to minimize

flx) rsina + o cos e

Find global minimum (and local minima) on [-2,14]. Split the interval into pieces and use fminbnd on
each piece.

Task:

Enlargeinterval to [-2,14] (a) Change for to parfor, run on pc and Triton, do tic - toc- timing. (b) Change
to spmd, on Triton you can take more labs than 6. (c) Find max-points as well. Bounds: Ib = -2; ub = 14;

Here we will do some more and some less (let's |eave the max-part).

cl ear
cl ose all
format conpact

Define objective function:

f = @x) x.*sin(x) + x.*cos(2.*x)

f =
function_handl e with val ue:
@ x) x. *si n(x)+x. *cos(2.*x)

Globa minimization, 1d, assign-
ment 4 a), parallel (parfor, spmd)

Split into several parts:

%A
Ib=[-2 01 36 8 10 12]; % Lower bounds
ub=[I b(2:end) 14]; % Upper bounds

% x0=0. 5* (| b+ub) ; % Starting points for solver that requires them
N=l engt h(| b) ; % Nunber of subintervals, call them "l abs".
%

Let's make use of all 24 workers on Triton, take
wider range.

Renove(d) coments for this 2”nd run

ow=- 35; Up=35; N=24;
b=Ili nspace(Low, Up, N+1);
b=l b(2: end) ;

b=l b(1: end-1);

fminbnd, only bounds are needed, no starting
points.

Basic use: [xmin,ymin]=fminbnd(f,Ib,ub);

L
I
u
I

xm n=zeros(N, 1); ym n=xm n;
% par pool ; % Renove comment if pool not open.
tic
% Move commments to parfor and back
% Conment away pl ot-commands with parfor and when conparing tim ngs.
% or k=1:10 % Take 10 runs to have average tim ng.
%or i=1:N
parfor i=1:N
[xmin(i),ymin(i)] = fminbnd(f,Ib(i),ub(i));
% No graphi cs now.
%
subpl ot (ceil (N2),2,i)
fplot(f,[Ib(i) ub(i)]);

grid on
hol d on
plot(xmn(i),ymn(i),"'ro") %Plot "labw se" m nimum point (red
circle)
hol d of f
%
end
toc
A
N =
24

El apsed tinme is 1.479764 seconds.
El apsed tinme is 0.154422 seconds.

Globa minimization, 1d, assign-
ment 4 a), parallel (parfor, spmd)

%

El apsed tinme is 0.250532 seconds.

Observations:

o 2"nd (or 3*rd) run is much faster then the 1/\st, not to speak about the pool opening run.
e Thereislittle difference with N=8 to N=24 (parfor showsits strength)

» Thereislittle (if any) difference to for, too much overhead compared to intensive computation. Need
examples of "heavier" funs.

Tfor(k)=toc; Tparfor(k)=toc; end meanTfor=mean(Tfor) meanTfor = 0.2513 meanT parfor=mean(Tparfor)
% First call very slow, setup of pool with workers meanTparfor = 0.5459 % Still 2 x slower, gosh!

m nptspar=[xmn ym n];
closeall

figure

fplot(f,[Low Up])

hol d on

plot(xmn,ymin, *r');grid on;shg
%

o
of| |

20F

-20

-40 9

-60

L
et

-30 -20 -10 0 10 20

Globa minimization, 1d, assign-
ment 4 a), parallel (parfor, spmd)

Parallel computing with spmd

spmd
My very first spmd-block

spnd
Li nd=I abi ndex;
end
Li ndcel | =Li nd(1: 5) % First five cells
Li ndvect =[Li nd{: }]
%
% To use sprmd with fminbnd, we need a formwhose argunment list is a
% 2-vector instead of two scalars. So, here:
fm nbndl =@f,Interval) fminbnd(f,Interval (1),Interval (2))
% (On the 2-variable optim zation we need the converse.)
%

Li ndcel | =
1x5 cell array

{[1]} {[2]} {[3]} {[4]} {[5]}

Li ndvect =
Col ums 1 through 13
1 2 3 4 5 6 7 8 9 10 11
12 13

Col ums 14 t hrough 24
14 15 16 17 18 19 20 21 22 23 24
fm nbndl =
function_handl e with val ue:
@f,Interval)fminbnd(f,Interval (1),Interval (2))

tic
spnd
interval s=[Ib" ub'];
I nt =i nt erval s(I abi ndex, :);
[xmi nspnd, ymi nspnd] =f mi nbndl (f, I nt);
end
Tspmd=t oc % 0. 24. .. Slightly better than for, tw ce faster than
parf or.
% % And NOTE t he ELEGANCE!
m npt s_sprmd=[xm nspnd{: }; ymi nspnd{:}]; % From workers to client.
%

Tspmd =
0.2821

figure

fplot(f,[-35,35]);grid on

hol d on

plot(m npts_spnd(1,:),mnpts_spnd(2,:),'.r"," MarkerSi ze', 10)
shg

Globa minimization, 1d, assign-
ment 4 a), parallel (parfor, spmd)

60 -

40 ¢

20F

-20

-40

-60

-30

-20 -10 0

10

20 30

Compare with using just Matlab's vector func-

tion min.

% i gure

tic

for i=1: N

% parfor i=1:N
xx=l i nspace(l b(i),ub(i));

end

yy=f (xx);
ym n=m n(yy);
Yes=(yy==ymn);

% Better test: abs(yy-ymin)< tol, see later

xm ns{i}=xx(Yes);
ym ns{i}=yy(Yes);

A

subpl ot (4, 2,i)

fplot(f,[1b(i) ub(i)]);

grid on
hol d on

plot(xmns{i},ymns{i},"ro) % Pl ot
circle)
%ol d of f

%

"] abwi se"

m ni mum poi nt (red

Globa minimization, 1d, assign-
ment 4 a), parallel (parfor, spmd)

di spl ay(N)
Tf or =t oc % 0. 005
%parfor=toc %O0.14...
m npt svecop=[xm ns{:};ym ns{:}];
N =

24

Tfor =
0. 0054

Comments, conclusions, visions

Simple vector operation was about asfast (or even faster) and all resultswere correct, contrary to fmincon,
which got the endpoint values on "labs" 6 and 8 wrong (N=8).

If you want to increase accuracy, you will do better by adjusting the tolerances with optimset, and running
fmincon with tight intervals (obtained with logical indexing as above).

Vector operations are so fast that using this technique there's little point in splitting them up into "labs" in
case only global minimum is sought unless the dataiis very big or some parts of the domain require much
more dense discterization than some others. (Recall adaptivity with ODE-solvers).

Here we have an example of several local minima, which requires the kind of splitting we have done

Severa varibles and parameters increse the benefits of parallelization.

Published with MATLAB® R2017b

	Table of Contents
	Function to minimize
	Task:
	Define objective function:
	Split into several parts:
	Let's make use of all 24 workers on Triton, take wider range.
	fminbnd, only bounds are needed, no starting points.
	Observations:
	Parallel computing with spmd
	spmd
	Compare with using just Matlab's vector function min.
	Comments, conclusions, visions

