
Matlab Basics
Lecture 3

Heikki Apiola, Juha Kuortti
October 29, 2018

1

Contents:

1. More Graphics
2. Functions
3. Flow Control
4. Loops
5. Polynomials

2

More Graphics, 3D

3

Spacecurves, plot3

Spacecurves

Recall from Wed: ThreeDplots.m | plot3d.html
Start with a 2d-parametric curve, this is the former link:

t=linspace(0,10*pi,1000);

x=exp(-0.05*t).*cos(t);

y=exp(-0.05*t).*sin(t);

plot(x,y)

axis square

%% Let's take 3^{rd} dimension

z=t;

figure

plot3(x,y,z)

grid on

xlabel('x(t)');ylabel('y(t)');zlabel('z(t)')

4

http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/ThreeDplots.m
http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/html/plot3d.html

Surfaces and contours, meshgrid

The function meshgrid is especially useful for 3d-graphics. Also in
any computation where a function defined on a 2d-mesh is
required.
Have a look at the m-file: meshscript.m
Here’s a slight variation of the same example:

x=0:2;

y=3:6;

[X,Y]=meshgrid(x,y);

[X Y] % X and Y side by side

y' y' y'

x 0 1 2 | 3 3 3

x 0 1 2 | 4 4 4

x 0 1 2 | 5 5 5

x 0 1 2 | 6 6 6

5

http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/meshscript.m

meshgrid (cont.)

Thus X consists of length(y)(=4) x-rows,
Y consists of length(x)(=3) y’-columns,
If you list X and Y in column order side by side, i.e.
>> gridpoints=[X(:), Y(:)] you will get a 3× 4 rectangular
grid of points, let’s transpose the display to save space:

>> gridpoints'

0 0 0 0 1 1 1 1 2 2 2 2

3 4 5 6 3 4 5 6 3 4 5 6

plot(X(:),Y(:),'x')

axis([-.5 2.5 2.5 6.5])

grid on

title('xy-grid produced by meshgrid')
6

Some surface plots

With this data one gets:

hold on

mesh(x,y,Z)

waterfall(x,y,Z)

Some variations with mesh using subplot:

x=0:.1:pi; y=x;

[X,Y]=meshgrid(x,y);

Z=sin(Y.^2+X)-cos(Y-X.^2);

subplot(2,2,1), mesh(Z)

subplot(2,2,2), meshc(Z)

subplot(2,2,3), mesh(x,y,Z),axis([0 pi 0 pi -5 5])

subplot(2,2,4), mesh(Z),hidden off % No hidden ...

line removal 7

Functions

We have seen a number of MATLAB-functions in action.
Now we will see how to create our own functions, it is called
programming.

8

User-defined functions

• Function handles, anonymous functions
• One-liners, defined in the command window or in a script

>> f=@(x)x.^2 to be read: f is the function which
“at x” returns the value x2. (In math: f = x → x2)
Several inputs allowed:
>> g=@(x,y,z)sqrt(x.^2+y.^2+z.^2).

• Functions in m-files
If more lines are needed, local variables, several output-values,
control structures (for, while, if - else, etc.), then an
m-file is needed.

• Inline-function is older, more restrictive version of function
handle. We will not use them actively, the only reason to
know about them, is old Matlab-codes. (help inline)

9

Examples of writing functions

To start editing a function, open the
editor on the top left “New”-button.
Instead of script, this time click
Function. Or on the command line:
>> edit myfunction

As our first example, let’s write a function that computes the mean
of the components of the input vector.
Let’s first give some thought of the expression.

x=1:10;

avg=sum(x)/length(x)

10

Examples of writing functions

To start editing a function, open the
editor on the top left “New”-button.
Instead of script, this time click
Function. Or on the command line:
>> edit myfunction

As our first example, let’s write a function that computes the mean
of the components of the input vector.
Let’s first give some thought of the expression.

x=1:10;

avg=sum(x)/length(x)

10

Example 1, mean of a vector

function y=mymean(x)

% Compute the mean (average) ox x-values.

% Call: y=mymean(x);

% Input: vector x

% Result: mean of x

% Exampe: r=mymean(1:10)

y=sum(x)/length(x); % The only line of code

>> help mymean

Displays the 1st contiguous comment block.

Built-in functions mean,std are available. Try type mean to
see, how complicated data structure checks etc. make the code
look complicated. Beware of name conflicts, remember:
which mean.

11

Examples 2.: Make it work for matrices

Remember how sum, min,max, etc. work for matrices.

1. Write the function mymean as a function handle, call it
mymean1.

2. Write a function mymean2 that works for vectors as before
and in addition for matrices columnwise (like sum, max, etc.)
Note: The problem here is a row vector, you may need the if
statement (help if), to be discussed later.
In this case function handle doesn’t handle..., (unless you find
some ingenious MATLAB trick)

3. How about the mean of all entries of a matrix?

mymean2.m

12

http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/mymean2.m

Example 2.: function stats

Standard deviation is given by:

σ =

√√√√ 1
N

n∑
k=1

(xk − µ)2.

Write the code for the following function file:

function [avg,sd,range] = stats(x)

% Returns the average (mean), standard deviation

% and range of input vector x

N=length(x);

...

...

13

Calling example function stats

Test your function using a script like the following:

%% Test script for function stats

x=linspace(0,pi);

y=sin(x);

[a,s,r]=stats(y) % Function call

plot(x,y,'b') % 'b' for blue

hold on

plot([0 pi],[a a],'k') % 'k' for blacK

shg % show graphics

14

Solution: Listing of function stats

function [avg,sd,range] = stats(x)

% Returns the average (mean), standard deviation

% and range of input vector x

N=length(x);

avg=sum(x)/N;

sd = sqrt(sum(x - avg).^2)/N);

range=[min(x),max(x)];

15

Logical operators
Flow Control.
1. Relational operators
2. Indexing, logical and numeric
3. if,statements,end

4. if statements,elseif statements, else,end

16

Relational Operators

Relational operators are used to compare variables. There are 6
comparison available:

• “equal to”, using ==
• “not equal to”, using ∼=
• “less than”, using <
• “less than or equal to”, using <=
• “greater than”, using >
• “greater than or equal to”, using >=

The result of a comparison is either TRUE (1) or FALSE (0). Note
that MATLAB makes difference between logical value and
numerical one, but allows the usual arithmetic operations even
with logical values.

17

Array comparisons

Suppose A and B are double arrays of the same size. Let op be
any of the 6 relational operators (==,∼=, <,<=, >,>=).

Then the expression
A op B

is a logical array of the same size. The relational operator is
applied elementwise, comparing A(i , j) to B(i , j).

Example:

>> A = rand(2,4);

>> B = 0.5*ones(2,4);

>> A<B

18

Excercise

Using meshgrid create a 2d space of matrices X and Y that
covers the area [−4, 4]× [−4, 4].

Then find all the elements in X and Y for which
X (i , j)2 + Y (i , j)2 < 2. Call the resulting logical array Z .

Finally mesh(X,Y,Z).

19

Array comparisons, logical arrays

The result of a relational operation is a logical array.

• A logical array contains only 0’s and 1’s
• Internal representation is different from double arrays.

You can use a logical array in any numerical calculation similarly as
a double array; the 0’s and 1’s behave normally. MATLAB
automatically typecasts the logicals into doubles when arithmetic
operations are applied.

A = [1 0 1 1]; B = logical(A);

whos

v=1:4;

v(A), v(B)

B2=2*B

whos
20

Logical indexing

• In addition to using numerical indexing, we can also extract
entries using a bit pattern, i.e. a matrix of logical values.

• Only the entries corresponding to 1 are returned.
• Useful for selecting elements that satisfy some logical criteria

formed by the above logical operators or “is”-functions such
as isprime or isfinite.

A=magic(6)

B=A>30

21

Logical indexing (cont.)

We can then use this logical matrix to extract elements from A. In
the following line, we repeat the call to A > 30 but pass the result
directly in, without first storing the interim result.

A=magic(6)

B1 = A(A > 30) % get all elements in ...

A greater than 30

B = A(isprime(A) & (A > 30)) % get all prime ...

elements in A greater than 30

Try also: A.*(A>30)
We could also achieve the same result using the find function,
which returns the indices of all of the non-zero elements in a
matrix. (find can be slightly slower.)
B2 = A(find(A > 30)) 22

Using find

As noted, the command find returns the indices of the nonzero
entries of a logical array. Another example:

>> m = rand(6,1);

>> m(find(m<0.5)) = 0;

Usually logical indexing will work just fine, so you can just do

>> m = rand(6,1);

>> m(m<0.5) = 0;

If (and only if) you need the numerical indices, use find.

23

More on find

Task: Find the min and max of

f (x) = sin(3x) + 2 cos(5x)

x=linspace(0,4*pi,1000);

y=sin(3*x)+2*cos(5*x);

plot(x,y);grid on

[maxy,Ind]=max(y) % max with 2 outputs does a ...

``find''

maxx=x(Ind)

[miny,Ind]=min(y) % min with 2 outputs does a ...

``find''

minx=x(Ind)

24

Example continues

hold on

plot(maxx,maxy,'*r',minx,miny,'*b')

disp(['Peak value of y is ' num2str(maxy)])

title(['Peak value of y is ' num2str(maxy)])

This and a 2-d-example are found in:

minmaxexa.m, minmax2d.m

Excercise: Try to find the minimum point using the functions
fminsearch, fminbnd, study with help.

25

http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/minmaxexa.m
http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/minmax2d.m

All things are not equal

In finite precision arithmetic (MATLAB has about 17 digits of
precision), it is not true that

(a + b) + c is equal to a + (b + c)

In practice this means that when comparing doubles, equality is
not a good test for similarity; instead we usually use
abs(x-y)<tol to check for “equality”. There are also other
metrics — well learn them as we go.

26

Logical Operators

Logical operators are used to operate on logical variables. There
are 3 binary operations

• “logical AND”, using &
• “logical OR”, using |
• “logical exclusive OR”, using xor

There is also the unary operation

• “logical NOT”, using ∼

For arrays, the operators are applied elementwise, and the results
have logical values of TRUE (1) or FALSE (0)

In case of scalar values, there are also operators && and ||, that
perform more efficiently.

27

Logical Operators

If A and B are scalars (double or logical), then

• A&B is TRUE (1) if A and B are both nonzero, otherwise it is
FALSE (0)

• A|B is TRUE (1) if either A or B are nonzero, otherwise it is
FALSE (0)

• xor(A,B) is TRUE (1) if one argument is 0 and the other is
nonzero, otherwise it is FALSE (0)

• ∼ A is TRUE if A is 0, and FALSE if A is nonzero.

For arrays, the operations are applied elementwise, so A and B
must be the same size, or one must be a scalar.

If you wish to check if two arrays are same, use all, if you wish
see whether they have any similarities, use any.

28

Control:if, end

To conditionally control the execution of statements, you can use

if expression

statements

end

If the real part of all of the entries of expression are nonzero,
then the statements between the if and end will be executed.
Otherwise they will not be. If the expression is an array, then the
check is implicitly all(expression).

Execution continues with any statements after the end.

29

Control:if, else, end

if exp1

statements1

else

statements2

end

One of the sets of statements will be executed

• If exp1 is TRUE, then statements1 are executed
• If exp1 is FALSE, then statements2 are executed

30

Control:if, elseif, end

If you need to check for multiple cases, use elseif:

if exp_1

statements1

elseif exp_2

statements2

elseif exp_3

statements3

end

MATLAB also contains a switch,case,...,otherwise,end
structure, which can be seen as an alternative to
if,elseif,else,end. See >>help switch, also

>> type why as an amusing example.

31

Iterations, More control.
1. for <cond>,statements,end

2. while <cond> ,statements, end

3. case, switch,...,end

32

Control: for, end

Execute collection of statements a fixed number of times.

for x=expression

statements(x)

end

The expression is in most cases a vector and the loop variable x
runs through all the components of “expression”.

The most common “expression” would be the vector 1:N or 1:h:N
with suitable h and N.

33

Control: for, end

Examples:

for k=1:n

v(k)=k^2;

end

v

Produces the same as the vectorized form: p=1:n; v=p.^2

34

Example

Write a function to compute the amount owed for a loan amount
L, given interest rate R, loan duration N (months) and fixed
monthly payments of amount P.

To save time, I give the code on the next slide. Study the code
carefully and write (copy/paste) it into an m-file loancalc.m and
test it.

Write a script file (runloancalc.m for instance) including call to
loancalc. Choose suitable values for the parameters (for instance
planning your apartment loan or something). Suppose for instance
that the time of loan is 15 years. What is the minimum monthly
payment for making it with certain interest rate and loan amount.
You can ask (and answer) other relevant questions as well.

35

Code for loancalc

function P = loancalc(L,R,N,MP)

% P = loancalc(L,R,N,MP) computes the

% history of amount owed on a loan of amount

% L, interest rate R, duration N, and fixed

% monthly payment MP.

P = zeros(N+1,1);

P(1) = L; % amount owed at Month=0

% interest rate R is annual, but applied

% monthly, yielding a 1+R/12 factor.

G = 1+R/12;

for i=2:N+1

P(i) = P(i-1)*G - MP;

end

36

Control: while, end

If you need to execute commands for an undetermined number of
times, use while loop

while expression

statements

end

while evaluates expression, and if it is TRUE, then executes the
statements, and repeats, otherwise it jumps to end.

Notice, that expression need not become FALSE ever, leading to
an infinite loop.

37

Example:
√

a with Newton, for-loop

Applying Newton’s method to the equation x2 − a = 0, leads to an
iteration sequence:

x0 = a, xn+1 = 1
2(xn + a

xn
),

that converges to
√
a.

Write a MATLAB-script, that let’s you examine this when a = 5.
As an initial guess you may use a itself, as suggested.
Give as a result a 3-column matrix T (just numbers, no text):

n x(n) error
0 a

√
a − 1

1 x(1)
√
a − x(1)

...
...

...
N x(N)

√
a − x(N)

Use for-loop. Here a better solution would be while-loop. 38

Example:
√

a with Newton, while-loop

Yes, do it! This time write a function newtsqrt2 that just returns
the result, pure scalar code to make it simple.

Sols:
newtsqrt.m , newtsqrt2.m

39

http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/newtsqrt.m
http://math.aalto.fi/opetus/MatOhjelmistot/2018syksy/Heikki/L2/newtsqrt2.m

Polynomials

40

Polynomials, coefficient vector, value

MATLAB represents a polynomial as the vector of coefficients
starting at the highest power.
Let

p(x) = x4 − 15x2 + 45x − 36.

To compute p(x) at a vector of points x you should’n and needn’t
proceed as: p=x.^4 -15*x.^2 + 45*x-36.5. Instead there is a
more efficient and easy-to-use function polyval.

c=[1 0 -15 45 -36]; % Note: 0 for a missing power

x=linspace(-6,6); % 100 points on the interval [-2,2].

p=polyval(c,x); % Values of ``c-polynomial''

plot(x,p); grid on;shg

41

Polynomials, roots

The roots of a polynomial equation can be obtained (numerically)
by the function roots.

>> pzeros=roots(c)

pzeros =

-5.0355 + 0.0000 % Real root

1.8680 + 1.4184i % complex conjugate roots

1.8680 - 1.4184i % (always with real polynomial)

1.2996 + 0.0000i % Real root

Note: One is tempted to use variable names such as roots or
zeros. Both are names of Matlab’s built-in functions (we just
used roots). Check: which roots, which zeros.
Using such names may lead to “nonsense” error messages.

42

Polynomials, roots (continued)

To check how close to zero the values of the polynomial are at the
computed zeros, we need the function polyval.

>> polyval(c,pzeros) % Values of p at pzeros

ans =

1.0e-11 * % Small enough

0.1300 + 0.0000i

-0.0043 - 0.0046i

-0.0043 + 0.0046i

0.0000 + 0.0000i

Find the real roots in the figure, zoom in (menu: “tools”).

43

Exercise

• Plot the values of the polynomial p(x) = x4 − 3x3 + 8x + 2
on the interval x = [−3, 3].

• Find the roots of p(x).
• Find the roots of z5 − 1, and plot them on the complex plane.

Plot the unit circle in the same figure and use axis equal.
Note: plot works nicely in the complex plane, it just needs
the vector of complex numbers. The shortest way to plot the
unit circle. is
t=linspace(-pi,pi); plot(exp(i*t));axis equal

Here you have to do one plot at a time and use hold on.
• Construct a polynomial of degree 6, with roots rk = k. (i.e.,

first root is 1, second 2 and so on). How high can you increase
the degree, before the root-finding becomes inaccurate?
Hint: help poly

44

Interpolation, curve fitting

How to model given data with a polynomial

MATLAB-functions: polyfit,polyval

https://se.mathworks.com/help/matlab/data_analysis/programmatic-
fitting.html

• polyfit(x,y,n) finds the vector of coefficients of a polynomial
p(x) of degree n that fits the y data (least-squares fit).
Especially, if n = (nr. of datapoints) -1, the polynomial passes
through all the datapoints, this is called polynomial
interpolation.

45

https://se.mathworks.com/help/matlab/data_analysis/programmatic-fitting.html
https://se.mathworks.com/help/matlab/data_analysis/programmatic-fitting.html

Interpolation, curve fitting, example

Given datapoints:
t = 0, 0.3, 0.8, 1.1, 1.6, 2.3
y = 0.6, 0.67, 1.01, 1.35, 1.47, 1.25,
fit polynomials of different degrees starting at the interpolation
polynomial, which is of degree 5

clear;close all

t = [0 0.3 0.8 1.1 1.6 2.3];

y = [0.6 0.67 1.01 1.35 1.47 1.25];

plot(t,y,'o')

title('Plot of ydata Versus tdata')

n=length(t);

c=polyfit(t,y,n-1) % Coefficient vector of fitted ...

polynomial

46

Interpolation example continued

Compute values of the polynomial at 100 or so points on the
interval [tmin, tmax].

clf % Clear figure

a=min(t);b=max(t);

tev=linspace(a-.1,b+.1); % Points of evaluation

yev=polyval(c,tev); % Values of polynomial

plot(tev,yev,t,y,'o');grid on;shg

legend('fitted polynomial','datapoins')

title('Polynomial interpolation')

47

Spline interpolation example

Spline is a piecewise polynomial, most often consisting of cubic
polynomial pieces. It avoids the extra bends and peaks often
present with high degree polynomials. The basic use of MATLAB’s
spline-function is even (one step) easier than the
polyfit,polyval combination above.

Continuing the previous example:

ysp=spline(t,y,tev); % Values of spline at tev (above)

hold on

plot(tev,ysp,'r')

48

