Let c and z_{0} be complex numbers. We define the following recursion:

$$
z_{n}=z_{n-1}^{2}+c
$$

This is a dynamical system known as a quadratic map. Given different choices for parameter c and the initial value z_{0} the recursion leads to a sequence of complex numbers z_{1}, z_{2}, \ldots known as the orbit of z_{0}. This dynamical system is highly chaotic, meaning that depending on the selected c and z_{0}, a huge number of different orbit patterns are possible.
Suppose that we fix the parameter c. In such cases, most choices of z_{0} tend towards infinity (i.e. $\left|z_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$). For some z_{0} (this depends a little on c as well), however, the orbit is stable, meaning that it goes into periodic loop; and finally there are some orbits, that seem to do neither, dancing around the complex space apparently at random.

In this assignment, your task is to you write a MATLAB script that visualizes a slightly different set, called the filled-in Julia set (or Prisoner Set), denoted K_{c}, which is the set of all z_{0} with orbits which do not tend towards infinity. The "normal" Julia set would be the edges of of K_{c}.
a) It is known that if the modulus of z_{n} (i.e. $\left.\left|z_{n}\right|\right)$ becomes larger than 2 for any n, the sequence will tend to infinity. The value of n for which this becomes true is called the 'escape velocity' of a particular z_{0}. Write a function that returns the escape velocity of given z_{0} and c. Note you cannot test the recursion for all n : but rather you should select an upper bound N, so that if $\left|z_{n}\right|<2 \forall n<N$, the function should return N. This allows you to avoid infinite loops.
b) Then write a function that takes $c, z_{\max }$ and N as arguments. The function will define a square in complex plane of complex numbers with real part between $-z_{\max }$ and $z_{\max }$, and imaginary part between $-z_{\max }$ and $z_{\max }$, and discretise it into a 500×500 grid. It will then compute the escape velocity of every element in the grid using the function you wrote previously, and the parameters c and N. Save the escape velocities to a matrix M; remember to preallocate.
c) Visualize your fractal using imagesc(M). You may also want to try imagesc (atan(0.1*M)).

