
Let c and z0 be complex numbers. We define the following recursion:

zn = z2
n−1 + c

This is a dynamical system known as a quadratic map. Given different choices for parameter c
and the initial value z0 the recursion leads to a sequence of complex numbers z1, z2, . . . known
as the orbit of z0. This dynamical system is highly chaotic, meaning that depending on the
selected c and z0, a huge number of different orbit patterns are possible.
Suppose that we fix the parameter c. In such cases, most choices of z0 tend towards infinity
(i.e. |zn| → ∞ as n → ∞). For some z0 (this depends a little on c as well), however, the orbit
is stable, meaning that it goes into periodic loop; and finally there are some orbits, that seem
to do neither, dancing around the complex space apparently at random.
In this assignment, your task is to you write a MATLAB script that visualizes a slightly different
set, called the filled-in Julia set (or Prisoner Set), denoted Kc , which is the set of all z0 with
orbits which do not tend towards infinity. The ”normal” Julia set would be the edges of of Kc.

a) It is known that if the modulus of zn (i.e. |zn|) becomes larger than 2 for any n, the
sequence will tend to infinity. The value of n for which this becomes true is called the
’escape velocity’ of a particular z0. Write a function that returns the escape velocity of
given z0 and c. Note you cannot test the recursion for all n: but rather you should select
an upper bound N , so that if |zn| < 2∀n < N , the function should return N . This allows
you to avoid infinite loops.

b) Then write a function that takes c, zmax and N as arguments. The function will define
a square in complex plane of complex numbers with real part between −zmax and zmax,
and imaginary part between −zmax and zmax, and discretise it into a 500 × 500 grid. It
will then compute the escape velocity of every element in the grid using the function you
wrote previously, and the parameters c and N . Save the escape velocities to a matrix M ;
remember to preallocate.

c) Visualize your fractal using imagesc(M). You may also want to try imagesc(atan(0.1*M)).

