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The most realistic boundary condition is of the form � � � � 
� � � � � 
 � � where
the parameter � is also to be determined.
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There are enormous amounts of data: GONG (Global Oscillation Network Group)
data consists of � � �� ’s with � from 0 to 1,000 and � from 1 to about 50-100.
Accuracy is very good in an absolute scale, but poor from a usable standpoint.
No other spectral information is readily available.
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If the terms in colour are removed, this is a standard Sturm-Liouville problem:
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is uniquely determined by the eigenvalues � � � �� !�� �

, together with a
second sequence: norming constants, end-point values, or a second spectral
sequence corresponding to another boundary condition at� � � .
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The helioseismology application does not allow a change in the boundary
values or the measurement of anything other than eigenvalue data.
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What we must do is use the existence of the singular term, and the
resulting eigenvalue sequence for different� values to compensate.
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What we must do is use the existence of the singular term, and the
resulting eigenvalue sequence for different� values to compensate.

We can say nothing about the critical question of uniqueness for the full problem.

Break into two simpler problems - each containing only one of the coloured terms.
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Problem 1: Can � �� 
 be determined from two spectral sequences, namely � � � � � � !� � � �

for � � � � � � � ?

Carlson and Shubin showed that the set of potentials sharing the same two spectral
sequences is locally of finite dimension provided that�

�
� � � is an odd integer.

There are positive answers (and reconstructions) for cases with small� :
for example,� � � � � � ! ,� � � � � � ! ,� � � � � � ! ,� � � (Rundell, Sacks).
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The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each
value of � � � define � to be the solution of
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� is it possible to recover

both � and � ? Do we need 3, 4, or an infinite number of different� values?

� Not all spectral sequences � � � �� !� � � �
for different� values carry the same infor-

mation content about � (we would prefer small� ). It is certainly the case that
the error in the spectra also varies with� . If we use more data than is necessary,
how do take all of this into account?
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We can write (4) in the form of a quadratic eigenvalue problem:
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 � . These are all self-adjoint,
and provided � � � � 
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 � � , are also positive operators. Under these
conditions the spectrum is real, positive, and consists of two sequences �� � ! , �� � !
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