A Problem in Helioseismology:
 determining the interior of the sun from its acoustic spectrum.

William Rundell
Texas A\&M University

Problem: Determine the critical coefficients characterizing the interior of the sun from its "five minute" oscillations.

Problem: Determine the critical coefficients characterizing the interior of the sun from its "five minute" oscillations.

We assume that the sun is spherical and rotationally invariant with unit radius.

We assume that the sun is spherical and rotationally invariant with unit radius.
The acoustic vibrational amplitude is $u(r, \theta, \phi ; t)=\psi(r ; t) Y_{\ell}^{m}(\theta, \phi)$. separating the variables in the \mathbb{R}^{3} Laplacian gives a radial equation of the form

$$
\psi^{\prime \prime}+\left(\frac{\lambda}{c^{2}(r)}-Q(r, \ell, \lambda)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi=0
$$

for the normal modes of vibrations with $\left\{\lambda_{\ell, n}\right\}$ the natural frequencies.

We assume that the sun is spherical and rotationally invariant with unit radius.

The acoustic vibrational amplitude is $u(r, \theta, \phi ; t)=\psi(r ; t) Y_{\ell}^{m}(\theta, \phi)$. separating the variables in the \mathbb{R}^{3} Laplacian gives a radial equation of the form

$$
\psi^{\prime \prime}+\left(\frac{\lambda}{c^{2}(r)}-Q(r, \ell, \lambda)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi=0
$$

for the normal modes of vibrations with $\left\{\lambda_{\ell, n}\right\}$ the natural frequencies.
Two functions of importance; the propagation speed $c(r)$ and the density $\rho(r)$.

$$
Q(r, \ell, \lambda)=Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}
$$

Q_{1} depends only on $\rho(r), \quad Q_{2}$ depends on both $c(r)$ and $\rho(r)$ as well as ℓ.

$$
\begin{aligned}
Q_{1}(r) & =\frac{2 H^{\prime}(r)-1}{4 H^{2}(r)} & H & =\frac{\rho(r)}{\rho^{\prime}(r)} \\
Q_{2}(r, \ell) & =\frac{\ell(\ell+1)}{r^{2}} N^{2}(r), & N & =g\left(1 / H-g / c^{2}\right),
\end{aligned}
$$

We assume that the sun is spherical and rotationally invariant with unit radius.

The acoustic vibrational amplitude is $u(r, \theta, \phi ; t)=\psi(r ; t) Y_{\ell}^{m}(\theta, \phi)$. separating the variables in the \mathbb{R}^{3} Laplacian gives a radial equation of the form

$$
\psi^{\prime \prime}+\left(\frac{\lambda}{c^{2}(r)}-Q(r, \ell, \lambda)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi=0
$$

for the normal modes of vibrations with $\left\{\lambda_{\ell, n}\right\}$ the natural frequencies.
Two functions of importance; the propagation speed $c(r)$ and the density $\rho(r)$.

$$
Q(r, \ell, \lambda)=Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}
$$

Q_{1} depends only on $\rho(r), \quad Q_{2}$ depends on both $c(r)$ and $\rho(r)$ as well as ℓ.

$$
\begin{aligned}
Q_{1}(r) & =\frac{2 H^{\prime}(r)-1}{4 H^{2}(r)} & H & =\frac{\rho(r)}{\rho^{\prime}(r)} \\
Q_{2}(r, \ell) & =\frac{\ell(\ell+1)}{r^{2}} N^{2}(r), & N & =g\left(1 / H-g / c^{2}\right),
\end{aligned}
$$

The most realistic boundary condition is of the form $\psi^{\prime}(1)-h \psi(1)=0$ where the parameter h is also to be determined.

There are enormous amounts of data: GONG (Global Oscillation Network Group) data consists of $\lambda_{\ell, n}$'s with ℓ from 0 to 1,000 and n from 1 to about 50-100. Accuracy is very good in an absolute scale, but poor from a usable standpoint. No other spectral information is readily available.

There are enormous amounts of data: GONG (Global Oscillation Network Group) data consists of $\lambda_{\ell, n}$'s with ℓ from 0 to 1,000 and n from 1 to about $50-100$. Accuracy is very good in an absolute scale, but poor from a usable standpoint. No other spectral information is readily available.

If we use the Liouville transform on

$$
-\psi^{\prime \prime}+\left(Q(r, \lambda)+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\frac{\lambda}{c^{2}(r)} \psi
$$

we can remove the term containing c, modifying the Q, but also modifying the singular term. If we ignore this, then a canonical form might be

$$
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\lambda \psi
$$

There are enormous amounts of data: GONG (Global Oscillation Network Group) data consists of $\lambda_{\ell, n}$'s with ℓ from 0 to 1,000 and n from 1 to about 50-100. Accuracy is very good in an absolute scale, but poor from a usable standpoint. No other spectral information is readily available.

If we use the Liouville transform on

$$
-\psi^{\prime \prime}+\left(Q(r, \lambda)+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\frac{\lambda}{c^{2}(r)} \psi
$$

we can remove the term containing c, modifying the Q, but also modifying the singular term. If we ignore this, then a canonical form might be

$$
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\lambda \psi
$$

If the terms in colour are removed, this is a standard Sturm-Liouville problem:
$q=Q_{1}$ is uniquely determined by the eigenvalues $\left\{\lambda_{0, n}\right\}_{1}^{\infty}$, together with a second sequence: norming constants, end-point values, or a second spectral sequence corresponding to another boundary condition at $r=1$.

There are enormous amounts of data: GONG (Global Oscillation Network Group) data consists of $\lambda_{\ell, n}$'s with ℓ from 0 to 1,000 and n from 1 to about $50-100$. Accuracy is very good in an absolute scale, but poor from a usable standpoint. No other spectral information is readily available.

If we use the Liouville transform on

$$
-\psi^{\prime \prime}+\left(Q(r, \lambda)+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\frac{\lambda}{c^{2}(r)} \psi
$$

we can remove the term containing c, modifying the Q, but also modifying the singular term. If we ignore this, then a canonical form might be

$$
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\lambda \psi
$$

If the terms in colour are removed, this is a standard Sturm-Liouville problem:
$q=Q_{1}$ is uniquely determined by the eigenvalues $\left\{\lambda_{0, n}\right\}_{1}^{\infty}$, together with a second sequence: norming constants, end-point values, or a second spectral sequence corresponding to another boundary condition at $r=1$.

The helioseismology application does not allow a change in the boundary values or the measurement of anything other than eigenvalue data.

There are enormous amounts of data: GONG (Global Oscillation Network Group) data consists of $\lambda_{\ell, n}$'s with ℓ from 0 to 1,000 and n from 1 to about $50-100$. Accuracy is very good in an absolute scale, but poor from a usable standpoint. No other spectral information is readily available.

If we use the Liouville transform on

$$
-\psi^{\prime \prime}+\left(Q(r, \lambda)+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\frac{\lambda}{c^{2}(r)} \psi
$$

we can remove the term containing c, modifying the Q, but also modifying the singular term. If we ignore this, then a canonical form might be

$$
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\lambda \psi
$$

What we must do is use the existence of the singular term, and the resulting eigenvalue sequence for different ℓ values to compensate.

There are enormous amounts of data: GONG (Global Oscillation Network Group) data consists of $\lambda_{\ell, n}$'s with ℓ from 0 to 1,000 and n from 1 to about $50-100$. Accuracy is very good in an absolute scale, but poor from a usable standpoint. No other spectral information is readily available.

If we use the Liouville transform on

$$
-\psi^{\prime \prime}+\left(Q(r, \lambda)+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\frac{\lambda}{c^{2}(r)} \psi
$$

we can remove the term containing c, modifying the Q, but also modifying the singular term. If we ignore this, then a canonical form might be

$$
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}+\frac{\ell(\ell+1)}{r^{2}}\right) \psi=\lambda \psi
$$

What we must do is use the existence of the singular term, and the resulting eigenvalue sequence for different ℓ values to compensate.

We can say nothing about the critical question of uniqueness for the full problem.
Break into two simpler problems - each containing only one of the coloured terms.

Optimal Method for the Regular Sturm Liouville Problem

Optimal Method for the Regular Sturm Liouville Problem

$\psi(x)=(I+\mathcal{K}) \sin (\sqrt{ } \lambda t)$
where $\mathcal{K} f=\int_{0}^{x} K(x, t) f(t) d t$

Optimal Method for the Regular Sturm Liouville Problem

$\psi(x)=(I+\mathcal{K}) \sin (\sqrt{ } \lambda t)$
where $\mathcal{K} f=\int_{0}^{x} K(x, t) f(t) d t$

Optimal Method for the Regular Sturm Liouville Problem

$\psi(x)=(I+\mathcal{K}) \sin (\sqrt{ } \lambda t)$
where $\mathcal{K} f=\int_{0}^{x} K(x, t) f(t) d t$

Set λ to be the spectrum from $\psi(1)=0$, and evaluate at $x=1$ to obtain $\int_{0}^{1} K(1, t) \sin (\sqrt{ } \lambda t) d t=-\sin \sqrt{\lambda}$ This equation then gives $K(1, t)$.

Optimal Method for the Regular Sturm Liouville Problem

$\psi(x)=(I+\mathcal{K}) \sin (\sqrt{ } \lambda t)$
where $\mathcal{K} f=\int_{0}^{x} K(x, t) f(t) d t$

Set λ to be the spectrum from $\psi(1)=0$, and evaluate at $x=1$ to obtain $\int_{0}^{1} K(1, t) \sin (\sqrt{ } \lambda t) d t=-\sin \sqrt{\lambda}$ This equation then gives $K(1, t)$.

Use λ from $\psi^{\prime}(1)=0$ to get $K_{x}(1, t)$

Optimal Method for the Regular Sturm Liouville Problem

$\psi(x)=(I+\mathcal{K}) \sin (\sqrt{ } \lambda t)$
where $\mathcal{K} f=\int_{0}^{x} K(x, t) f(t) d t$

Set λ to be the spectrum from $\psi(1)=0$, and evaluate at $x=1$ to obtain $\int_{0}^{1} K(1, t) \sin (\sqrt{ } \lambda t) d t=-\sin \sqrt{\lambda}$ This equation then gives $K(1, t)$.

Use λ from $\psi^{\prime}(1)=0$ to get $K_{x}(1, t)$

Solve Cauchy Problem from $x=1$ using $K(1, t), K_{x}(1, t)$ as "initial data" to determine $K(x, x)$ and hence $q(x)$.

Optimal Method for the Regular Sturm Liouville Problem

$\psi(x)=(I+\mathcal{K}) \sin (\sqrt{ } \lambda t)$
where $\mathcal{K} f=\int_{0}^{x} K(x, t) f(t) d t$

Set λ to be the spectrum from $\psi(1)=0$, and evaluate at $x=1$ to obtain $\int_{0}^{1} K(1, t) \sin (\sqrt{ } \lambda t) d t=-\sin \sqrt{\lambda}$ This equation then gives $K(1, t)$.

Use λ from $\psi^{\prime}(1)=0$ to get $K_{x}(1, t)$

Solve Cauchy Problem from $x=1$ using $K(1, t), K_{x}(1, t)$ as "initial data" to determine $K(x, x)$ and hence $q(x)$.

Iterate $q_{n+1}=K\left(x, x ; q_{n}\right)$ to recover $q(x)$

Case 1: Including only the singular term $\ell(\ell+1) / r^{2}$

Case 1: Including only the singular term $\ell(\ell+1) / r^{2}$
We consider the eigenvalue problem for $\ell=0,1,2, \ldots$.

$$
\begin{array}{rlrl}
\psi^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi & =0 & 0<r<1 \\
\psi(1)=0 & \psi(r) & =O(r) & r \rightarrow 0 \tag{1}
\end{array}
$$

For fixed ℓ, (1) has a countable sequence of eigenvalues, $\lambda_{\ell, n}, n=1,2, \ldots$.

Case 1: Including only the singular term $\ell(\ell+1) / r^{2}$

We consider the eigenvalue problem for $\ell=0,1,2, \ldots$.

$$
\begin{array}{rlrl}
\psi^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi & =0 & 0<r<1 \\
\psi(1)=0 & \psi(r) & =O(r) & r \rightarrow 0 \tag{1}
\end{array}
$$

For fixed ℓ, (1) has a countable sequence of eigenvalues, $\lambda_{\ell, n}, n=1,2, \ldots$. $\ell=0$ is the classical Inverse Sturm-Liouville problem:

Case 1: Including only the singular term $\ell(\ell+1) / r^{2}$

We consider the eigenvalue problem for $\ell=0,1,2, \ldots$.

$$
\begin{array}{rlrl}
\psi^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi & =0 \quad 0<r<1 \\
\psi(1)=0 \quad \psi(r) & =O(r) & r \rightarrow 0 \tag{1}
\end{array}
$$

For fixed ℓ, (1) has a countable sequence of eigenvalues, $\lambda_{\ell, n}, n=1,2, \ldots$ The goal is to recover $q(r)$ from (some subset of) the spectral data $\left\{\sqrt{\lambda}_{\ell, n}\right\}$. The eigenvalues have the following asymptotic values

$$
\sqrt{\lambda}_{\ell, n}=\left(n+\frac{\ell}{2}\right) \pi+\frac{\int_{0}^{1} q(x) d x-\ell(\ell+1)}{(2 n+\ell) \pi}+\beta_{\ell, n}, \quad \sum_{n=1}^{\infty} n \beta_{\ell, n}^{2}<\infty
$$

Case 1: Including only the singular term $\ell(\ell+1) / r^{2}$

We consider the eigenvalue problem for $\ell=0,1,2, \ldots$.

$$
\begin{align*}
\psi^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi & =0 \quad 0<r<1 \\
\psi(1)=0 \quad \psi(r) & =O(r) \quad r \rightarrow 0 \tag{1}
\end{align*}
$$

For fixed ℓ, (1) has a countable sequence of eigenvalues, $\lambda_{\ell, n}, n=1,2, \ldots$
The goal is to recover $q(r)$ from (some subset of) the spectral data $\left\{\sqrt{\lambda}_{\ell, n}\right\}$. The eigenvalues have the following asymptotic values

$$
\sqrt{\lambda}_{\ell, n}=\left(n+\frac{\ell}{2}\right) \pi+\frac{\int_{0}^{1} q(x) d x-\ell(\ell+1)}{(2 n+\ell) \pi}+\beta_{\ell, n}, \quad \sum_{n=1}^{\infty} n \beta_{\ell, n}^{2}<\infty
$$

It is always instructive to look at the simplest case.

Case 1: Including only the singular term $\ell(\ell+1) / r^{2}$

We consider the eigenvalue problem for $\ell=0,1,2, \ldots$.

$$
\begin{align*}
\psi^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) \psi & =0 \quad 0<r<1 \\
\psi(1)=0 \quad \psi(r) & =O(r) \quad r \rightarrow 0 \tag{1}
\end{align*}
$$

For fixed ℓ, (1) has a countable sequence of eigenvalues, $\lambda_{\ell, n}, n=1,2, \ldots$.

If $q(r)=0$ and we take Dirichlet conditions at $r=1$, then the eigenfunctions are

$$
\psi(r)=r^{\ell+1} j_{\ell}(\sqrt{\lambda} r)
$$

where j_{ℓ} is the spherical Bessel function.
The eigenvalues are the positive roots of $j_{\ell}(\sqrt{\lambda})=0$.
For nonzero q we expect the eigenvalues and eigenfunctions to have similar properties - at least for a sufficiently small $q(r)$.
$\sqrt{\lambda}_{\ell, n}$

$\sqrt{\lambda}_{\ell, n}$

$\sqrt{\lambda}_{\ell, n}$

Problem 1: $\operatorname{Can} q(r)$ be determined from two spectral sequences, namely $\left\{\sqrt{\lambda}_{\ell, n}\right\}_{n=1}^{\infty}$ for $\ell=\ell_{1}, \ell_{2}$?

Problem 1: $\operatorname{Can} q(r)$ be determined from two spectral sequences, namely $\left\{\sqrt{\lambda}_{\ell, n}\right\}_{n=1}^{\infty}$ for $\ell=\ell_{1}, \ell_{2}$?

Carlson and Shubin showed that the set of potentials sharing the same two spectral sequences is locally of finite dimension provided that $\ell_{1}-\ell_{2}$ is an odd integer.

There are positive answers (and reconstructions) for cases with small ℓ :
for example, $\ell=\{0,1\}, \ell=\{0,2\}, \ell=\{1,2\}, \ldots \quad$ (Rundell, Sacks).

The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each value of $\lambda \in \Lambda$ define u to be the solution of

$$
\begin{aligned}
& u^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) u=0 \quad 0<r<1 \\
& \psi(r)=O(r) \quad r \rightarrow 0 \quad \lim _{x \rightarrow 0} \frac{u(x, \lambda, q)}{x^{\ell+1}}=1
\end{aligned}
$$

The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each value of $\lambda \in \Lambda$ define u to be the solution of

$$
\begin{aligned}
& u^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) u=0 \quad 0<r<1 \\
& \psi(r)=O(r) \quad r \rightarrow 0 \quad \lim _{x \rightarrow 0} \frac{u(x, \lambda, q)}{x^{\ell+1}}=1
\end{aligned}
$$

Then define F_{Λ} by

$$
F_{\Lambda}(q)=u(1)
$$

The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each value of $\lambda \in \Lambda$ define u to be the solution of

$$
\begin{aligned}
& u^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) u=0 \quad 0<r<1 \\
& \psi(r)=O(r) \quad r \rightarrow 0 \quad \lim _{x \rightarrow 0} \frac{u(x, \lambda, q)}{x^{\ell+1}}=1
\end{aligned}
$$

Then define F_{Λ} by

$$
F_{\Lambda}(q)=u(1)
$$

The question: if $\Lambda=\left\{\left\{\lambda_{\ell_{1}, n}\right\}_{n=1}^{\infty},\left\{\lambda_{\ell_{2}, n}\right\}_{n=1}^{\infty}\right\}$ for some ℓ_{1}, ℓ_{2}, does the equation

$$
\begin{equation*}
F_{\Lambda}(q)=0 \tag{2}
\end{equation*}
$$

uniquely determine q ?

The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each value of $\lambda \in \Lambda$ define u to be the solution of

$$
\begin{aligned}
& u^{\prime \prime}+\left(\lambda-q(r)-\frac{\ell(\ell+1)}{r^{2}}\right) u=0 \quad 0<r<1 \\
& \psi(r)=O(r) \quad r \rightarrow 0 \quad \lim _{x \rightarrow 0} \frac{u(x, \lambda, q)}{x^{\ell+1}}=1
\end{aligned}
$$

Then define F_{Λ} by

$$
F_{\Lambda}(q)=u(1)
$$

The question: if $\Lambda=\left\{\left\{\lambda_{\ell_{1}, n}\right\}_{n=1}^{\infty},\left\{\lambda_{\ell_{2}, n}\right\}_{n=1}^{\infty}\right\}$ for some ℓ_{1}, ℓ_{2}, does the equation

$$
\begin{equation*}
F_{\Lambda}(q)=0 \tag{2}
\end{equation*}
$$

uniquely determine q ?
It is natural to attempt to solve (2) by some version of Newton's method

$$
\begin{equation*}
q_{n+1}=q_{n}-D_{q} F_{\Lambda}^{-1}\left(q_{n}\right) F_{\Lambda}\left(q_{n}\right) \tag{3}
\end{equation*}
$$

and this requires some insight into the structure of the linearized map $D_{q} F_{\Lambda}(q)$.

Let $\zeta \in C([0,1])$ be a fixed function then
Lemma 1. $\quad D_{q} F_{\Lambda}(q) \zeta=C \int_{0}^{1} \psi^{2}(x, \lambda) \zeta(x) d x$

Let $\zeta \in C([0,1])$ be a fixed function then
Lemma 1. $\quad D_{q} F_{\Lambda}(q) \zeta=C \int_{0}^{1} \psi^{2}(x, \lambda) \zeta(x) d x$
We must show local injectivity of F^{\prime}, that is if $D_{q} F_{\Lambda}(q) \zeta=0$, then $\zeta=0$.

$$
\int_{0}^{1} \psi_{\ell}^{2}(x) \zeta(x) d x=0 \quad \text { for } \quad \ell=\ell_{1}, \ell_{2} \quad \Rightarrow \quad \zeta=0 ? ?
$$

Let $\zeta \in C([0,1])$ be a fixed function then
Lemma 1. $\quad D_{q} F_{\Lambda}(q) \zeta=C \int_{0}^{1} \psi^{2}(x, \lambda) \zeta(x) d x$
We must show local injectivity of F^{\prime}, that is if $D_{q} F_{\Lambda}(q) \zeta=0$, then $\zeta=0$.

$$
\int_{0}^{1} \psi_{\ell}^{2}(x) \zeta(x) d x=0 \quad \text { for } \quad \ell=\ell_{1}, \ell_{2} \quad \Rightarrow \quad \zeta=0 ? ?
$$

Let $\zeta \in C([0,1])$ be a fixed function then
Lemma 1. $\quad D_{q} F_{\Lambda}(q) \zeta=C \int_{0}^{1} \psi^{2}(x, \lambda) \zeta(x) d x$
We must show local injectivity of F^{\prime}, that is if $D_{q} F_{\Lambda}(q) \zeta=0$, then $\zeta=0$.

$$
\int_{0}^{1} \psi_{\ell}^{2}(x) \zeta(x) d x=0 \quad \text { for } \quad \ell=\ell_{1}, \ell_{2} \quad \Rightarrow \quad \zeta=0 ? ?
$$

The mean value $\int_{0}^{1} q(x) d x$ is uniquely determined by the asymptotics of the eigenvalues, for any fixed ℓ.

$$
\sqrt{\lambda}_{\ell, n}=\left(n+\frac{\ell}{2}\right) \pi+\frac{\int_{0}^{1} q(x) d x-\ell(\ell+1)}{(2 n+\ell) \pi}+\beta_{\ell, n},
$$

\Rightarrow by a preliminary calculation we may always assume that $\int_{0}^{1} q(x) d x=0$.
Hence need only consider those $\zeta(=\delta q)$ with $\int_{0}^{1} \zeta=0$.

Let $\zeta \in C([0,1])$ be a fixed function then
Lemma 1. $\quad D_{q} F_{\Lambda}(q) \zeta=C \int_{0}^{1} \psi^{2}(x, \lambda) \zeta(x) d x$
We must show local injectivity of F^{\prime}, that is if $D_{q} F_{\Lambda}(q) \zeta=0$, then $\zeta=0$.

$$
\int_{0}^{1} \psi_{\ell}^{2}(x) \zeta(x) d x=0 \quad \text { for } \quad \ell=\ell_{1}, \ell_{2} \quad \Rightarrow \quad \zeta=0 ? ?
$$

Note that if $\ell=0, \sqrt{ } \lambda_{\ell, n}^{0}=n \pi$, then this becomes

$$
D_{q} F_{\Lambda}(0) \zeta=\left.C \int_{0}^{1} \sin ^{2}\left(\sqrt{ } \lambda_{\ell, n}^{0} x\right) \zeta(x) d x\right|_{n \in \Lambda}
$$

or

$$
D_{q} F_{\Lambda_{o}}(0) \zeta=-\int_{0}^{1} \cos (2 n \pi x) \zeta(x) d x, \quad n=1,2, \ldots
$$

Let $\zeta \in C([0,1])$ be a fixed function then
Lemma 1. $\quad D_{q} F_{\Lambda}(q) \zeta=C \int_{0}^{1} \psi^{2}(x, \lambda) \zeta(x) d x$
We must show local injectivity of F^{\prime}, that is if $D_{q} F_{\Lambda}(q) \zeta=0$, then $\zeta=0$.

$$
\int_{0}^{1} \psi_{\ell}^{2}(x) \zeta(x) d x=0 \quad \text { for } \quad \ell=\ell_{1}, \ell_{2} \quad \Rightarrow \quad \zeta=0 ? ?
$$

Note that if $\ell=0, \sqrt{ } \lambda_{\ell, n}^{0}=n \pi$, then this becomes

$$
D_{q} F_{\Lambda}(0) \zeta=\left.C \int_{0}^{1} \sin ^{2}\left(\sqrt{ } \lambda_{\ell, n}^{0} x\right) \zeta(x) d x\right|_{n \in \Lambda}
$$

or

$$
D_{q} F_{\Lambda_{o}}(0) \zeta=-\int_{0}^{1} \cos (2 n \pi x) \zeta(x) d x, \quad n=1,2, \ldots
$$

Thus $D_{q} F_{\Lambda_{o}}(0) \zeta=0$ implies ζ is odd.

Lemma 2. For each positive integer ℓ, define $S_{\ell}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
S_{\ell}[f](x)=f(x)-4 \ell x^{2 \ell-1} \int_{x}^{1} \frac{f(s)}{s^{2 \ell}} d s .
$$

Then S_{ℓ} is bounded and one to one on $L^{2}(0,1)$, The function $\left\{x^{2 \ell}\right\}$ is the only element in the nullspace of S_{ℓ}^{*} and $\psi_{\ell}^{2}=-S_{\ell}^{*}\left[\psi_{\ell-1}^{2}\right]$.

Lemma 2. For each positive integer ℓ, define $S_{\ell}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
S_{\ell}[f](x)=f(x)-4 \ell x^{2 \ell-1} \int_{x}^{1} \frac{f(s)}{s^{2 \ell}} d s .
$$

Then S_{ℓ} is bounded and one to one on $L^{2}(0,1)$, The function $\left\{x^{2 \ell}\right\}$ is the only element in the nullspace of S_{ℓ}^{*} and $\psi_{\ell}^{2}=-S_{\ell}^{*}\left[\psi_{\ell-1}^{2}\right]$.

We can chain these step operators together,

Lemma 2. For each positive integer ℓ, define $S_{\ell}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
S_{\ell}[f](x)=f(x)-4 \ell x^{2 \ell-1} \int_{x}^{1} \frac{f(s)}{s^{2 \ell}} d s
$$

Then S_{ℓ} is bounded and one to one on $L^{2}(0,1)$, The function $\left\{x^{2 \ell}\right\}$ is the only element in the nullspace of S_{ℓ}^{*} and $\psi_{\ell}^{2}=-S_{\ell}^{*}\left[\psi_{\ell-1}^{2}\right]$.

We can chain these step operators together,
Lemma 3. For each $\ell=1,2, \ldots$ define the operators T_{ℓ} by

$$
T_{\ell}=(-1)^{\ell-1} S_{\ell} S_{\ell-1} \ldots S_{1} .
$$

Then for any $\zeta \in L^{2}(0,1)$ with $\int_{0}^{1} \zeta d x=0$ and $\lambda \geq 0$,

$$
2 \int_{0}^{1} \psi_{\ell}^{2}(\sqrt{\lambda} x) \zeta(x) d x=\int_{0}^{1} \cos (2 \sqrt{\lambda} x) T_{\ell}[\zeta](x) d x
$$

Lemma 2. For each positive integer ℓ, define $S_{\ell}: L^{2}(0,1) \rightarrow L^{2}(0,1)$ by

$$
S_{\ell}[f](x)=f(x)-4 \ell x^{2 \ell-1} \int_{x}^{1} \frac{f(s)}{s^{2 \ell}} d s
$$

Then S_{ℓ} is bounded and one to one on $L^{2}(0,1)$, The function $\left\{x^{2 \ell}\right\}$ is the only element in the nullspace of S_{ℓ}^{*} and $\psi_{\ell}^{2}=-S_{\ell}^{*}\left[\psi_{\ell-1}^{2}\right]$.

We can chain these step operators together,
Lemma 3. For each $\ell=1,2, \ldots$ define the operators T_{ℓ} by

$$
T_{\ell}=(-1)^{\ell-1} S_{\ell} S_{\ell-1} \ldots S_{1} .
$$

Then for any $\zeta \in L^{2}(0,1)$ with $\int_{0}^{1} \zeta d x=0$ and $\lambda \geq 0$,

$$
2 \int_{0}^{1} \psi_{\ell}^{2}(\sqrt{\lambda} x) \zeta(x) d x=\int_{0}^{1} \cos (2 \sqrt{\lambda} x) T_{\ell}[\zeta](x) d x
$$

This leads to
Lemma 4. If $\sqrt{\lambda} \approx n \pi, n=1,2, \ldots$ then $F^{\prime}[0] \zeta=0$ implies

$$
T_{\ell}[\zeta]=0 \quad \text { for } \quad \ell=\ell_{1}, \ell_{2}
$$

This would actually be enough to conclude that $\zeta=0$, but in fact $\sqrt{\lambda} \approx\left(n+\frac{1}{2} \ell\right) \pi$ and so we are missing the frequencies below $\frac{1}{2} \ell$.

This would actually be enough to conclude that $\zeta=0$, but in fact $\sqrt{\lambda} \approx\left(n+\frac{1}{2} \ell\right) \pi$ and so we are missing the frequencies below $\frac{1}{2} \ell$.
Here is what we get in the case of $\ell=1,2$.

$$
\begin{aligned}
& T_{1}[\zeta]=\chi_{e}(x)+\epsilon_{1} \cos \pi x \\
& T_{2}[\zeta]=\chi_{o}(x)+\epsilon_{0}+\epsilon_{2} \cos (2 \pi x)
\end{aligned}
$$

where $\chi_{e}(x)=\chi_{e}(1-x), \chi_{o}(x)=-\chi_{o}(1-x),\left(\epsilon_{i} \in R\right)$.

$$
\mathbf{T}_{1}[f]=f(x)-4 x \int_{x}^{1} \frac{f(s)}{s^{2}} d s \quad \mathbf{T}_{2}[f]=-f(x)-12 x \int_{x}^{1} \frac{f(t)}{t^{2}} d t+24 x^{3} \int_{x}^{1} \frac{f(t)}{t^{4}} d t
$$

This would actually be enough to conclude that $\zeta=0$, but in fact $\sqrt{\lambda} \approx\left(n+\frac{1}{2} \ell\right) \pi$ and so we are missing the frequencies below $\frac{1}{2} \ell$.
Here is what we get in the case of $\ell=1,2$.

$$
\begin{aligned}
& T_{1}[\zeta]=\chi_{e}(x)+\epsilon_{1} \cos \pi x \\
& T_{2}[\zeta]=\chi_{o}(x)+\epsilon_{0}+\epsilon_{2} \cos (2 \pi x)
\end{aligned}
$$

where $\chi_{e}(x)=\chi_{e}(1-x), \chi_{o}(x)=-\chi_{o}(1-x),\left(\epsilon_{i} \in R\right)$.

$$
\mathbf{T}_{1}[f]=f(x)-4 x \int_{x}^{1} \frac{f(s)}{s^{2}} d s \quad \mathbf{T}_{2}[f]=-f(x)-12 x \int_{x}^{1} \frac{f(t)}{t^{2}} d t+24 x^{3} \int_{x}^{1} \frac{f(t)}{t^{4}} d t
$$

Next step is to use the conditions $\left\{x^{2}, \ldots, x^{2 \ell}\right\} \in \mathcal{N}\left(T_{\ell}\right)$ to show that the three constants $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}$ are zero.

This would actually be enough to conclude that $\zeta=0$, but in fact $\sqrt{\lambda} \approx\left(n+\frac{1}{2} \ell\right) \pi$ and so we are missing the frequencies below $\frac{1}{2} \ell$.
Here is what we get in the case of $\ell=1,2$.

$$
\begin{aligned}
& T_{1}[\zeta]=\chi_{e}(x)+\epsilon_{1} \cos \pi x \\
& T_{2}[\zeta]=\chi_{o}(x)+\epsilon_{0}+\epsilon_{2} \cos (2 \pi x)
\end{aligned}
$$

where $\chi_{e}(x)=\chi_{e}(1-x), \chi_{o}(x)=-\chi_{o}(1-x),\left(\epsilon_{i} \in R\right)$.

$$
\mathbf{T}_{1}[f]=f(x)-4 x \int_{x}^{1} \frac{f(s)}{s^{2}} d s \quad \mathbf{T}_{2}[f]=-f(x)-12 x \int_{x}^{1} \frac{f(t)}{t^{2}} d t+24 x^{3} \int_{x}^{1} \frac{f(t)}{t^{4}} d t
$$

Next step is to use the conditions $\left\{x^{2}, \ldots, x^{2 \ell}\right\} \in \mathcal{N}\left(T_{\ell}\right)$ to show that the three constants $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}$ are zero.

Finally, we show that $\mathcal{O} T_{1}[\zeta]=0$ and $\mathcal{E} T_{2}[\zeta]=0$, where \mathcal{E} and \mathcal{O} are the even and odd operators on $[0,1]$, implies $\zeta=0$.

This would actually be enough to conclude that $\zeta=0$, but in fact $\sqrt{\lambda} \approx\left(n+\frac{1}{2} \ell\right) \pi$ and so we are missing the frequencies below $\frac{1}{2} \ell$.
Here is what we get in the case of $\ell=1,2$.

$$
\begin{aligned}
& T_{1}[\zeta]=\chi_{e}(x)+\epsilon_{1} \cos \pi x \\
& T_{2}[\zeta]=\chi_{o}(x)+\epsilon_{0}+\epsilon_{2} \cos (2 \pi x)
\end{aligned}
$$

where $\chi_{e}(x)=\chi_{e}(1-x), \chi_{o}(x)=-\chi_{o}(1-x),\left(\epsilon_{i} \in R\right)$.

$$
\mathbf{T}_{1}[f]=f(x)-4 x \int_{x}^{1} \frac{f(s)}{s^{2}} d s \quad \mathbf{T}_{2}[f]=-f(x)-12 x \int_{x}^{1} \frac{f(t)}{t^{2}} d t+24 x^{3} \int_{x}^{1} \frac{f(t)}{t^{4}} d t
$$

Next step is to use the conditions $\left\{x^{2}, \ldots, x^{2 \ell}\right\} \in \mathcal{N}\left(T_{\ell}\right)$ to show that the three constants $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}$ are zero.

Finally, we show that $\mathcal{O} T_{1}[\zeta]=0$ and $\mathcal{E} T_{2}[\zeta]=0$, where \mathcal{E} and \mathcal{O} are the even and odd operators on $[0,1]$, implies $\zeta=0$.

We have accomplished this for several pairs of ℓ values $-(0,1),(1,2),(0,2),(1,3)$ and can show that the restriction of $\ell_{1}-\ell_{2}$ odd can be removed.

Reconstructions with 5\% error in $\beta_{n, \ell}$

This case is far from complete

This case is far from complete

- We still have to show that the there is no finite dimensional set of q 's with the same two spectra for larger values of ℓ.

This case is far from complete

- We still have to show that the there is no finite dimensional set of q 's with the same two spectra for larger values of ℓ.
- We must extend the uniqueness result to be global rather than local. It would be nice to use the conversion to an overposed hyperbolic problem as in the regular case, or a similar "clean" technique.

This case is far from complete

- We still have to show that the there is no finite dimensional set of q 's with the same two spectra for larger values of ℓ.
- We must extend the uniqueness result to be global rather than local. It would be nice to use the conversion to an overposed hyperbolic problem as in the regular case, or a similar "clean" technique.
- For the equation $-\psi^{\prime \prime}+q(r)+\frac{\ell(\ell+1)}{r^{2}} \psi=\frac{\lambda}{c^{2}(r)} \psi$ is it possible to recover both q and c ? Do we need 3,4 , or an infinite number of different ℓ values?

This case is far from complete

- We still have to show that the there is no finite dimensional set of q 's with the same two spectra for larger values of ℓ.
- We must extend the uniqueness result to be global rather than local. It would be nice to use the conversion to an overposed hyperbolic problem as in the regular case, or a similar "clean" technique.
- For the equation $-\psi^{\prime \prime}+q(r)+\frac{\ell(\ell+1)}{r^{2}} \psi=\frac{\lambda}{c^{2}(r)} \psi$ is it possible to recover both q and c ? Do we need 3,4 , or an infinite number of different ℓ values?
- Not all spectral sequences $\left\{\lambda_{\ell, n}\right\}_{n=1}^{\infty}$ for different ℓ values carry the same information content about q (we would prefer small ℓ). It is certainly the case that the error in the spectra also varies with ℓ. If we use more data than is necessary, how do take all of this into account?

Case 2: Omitting the singular term, but two potentials

Case 2: Omitting the singular term, but two potentials

We consider the eigenvalue problem

$$
\begin{equation*}
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}\right) \psi=\lambda \psi \tag{4}
\end{equation*}
$$

with, say, the boundary condition $\psi(0)=0$, normalized with $\psi^{\prime}(0)=1$, and ask whether it is possible to recover both Q_{1} and Q_{2}.

Case 2: Omitting the singular term, but two potentials

We consider the eigenvalue problem

$$
\begin{equation*}
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}\right) \psi=\lambda \psi \tag{4}
\end{equation*}
$$

with, say, the boundary condition $\psi(0)=0$, normalized with $\psi^{\prime}(0)=1$, and ask whether it is possible to recover both Q_{1} and Q_{2}.

Since we no longer have different ℓ values, we generate two spectra by changing the boundary conditions at $r=1:\left\{\lambda_{n}\right\}$ corresponding to $\psi(1)=0$ and $\left\{\tilde{\lambda}_{n}\right\}$ to $\psi^{\prime}(1)=0$.
Is it possible that the pair $\left\{\lambda_{n}, \tilde{\lambda}_{n}\right\}$ determines the pair $\left\{Q_{1}, Q_{2}\right\}$?

Case 2: Omitting the singular term, but two potentials

We consider the eigenvalue problem

$$
\begin{equation*}
-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}\right) \psi=\lambda \psi \tag{4}
\end{equation*}
$$

with, say, the boundary condition $\psi(0)=0$, normalized with $\psi^{\prime}(0)=1$, and ask whether it is possible to recover both Q_{1} and Q_{2}.

Since we no longer have different ℓ values, we generate two spectra by changing the boundary conditions at $r=1:\left\{\lambda_{n}\right\}$ corresponding to $\psi(1)=0$ and $\left\{\tilde{\lambda}_{n}\right\}$ to $\psi^{\prime}(1)=0$.
Is it possible that the pair $\left\{\lambda_{n}, \tilde{\lambda}_{n}\right\}$ determines the pair $\left\{Q_{1}, Q_{2}\right\}$?
We can write (4) in the form of a quadratic eigenvalue problem:

$$
\left(\lambda^{2} \mathcal{A}+\lambda \mathcal{B}+\mathcal{C}\right) \psi=0
$$

where $\mathcal{A}=I, \mathcal{B}=-D^{2}+Q_{1}(x) I, \mathcal{C}=-Q_{2}(x) I$. These are all self-adjoint, and provided $Q_{1}(x) \geq 0, Q_{2}(x)<0$, are also positive operators. Under these conditions the spectrum is real, positive, and consists of two sequences $\left\{\mu_{n}\right\},\left\{\eta_{n}\right\}$ with $\mu_{1}<\mu_{2}<\mu_{3}<\ldots, \mu_{n} \rightarrow \infty$ and $\mu_{1}>\eta_{1}>\eta_{2}>\eta_{3}>\ldots, \eta_{n} \rightarrow 0$.

For our particular operators these sequences have the asymptotic form
$\mu_{n}=n \pi+\frac{\int_{0}^{1} Q_{1}(s) d s}{2 n}+O\left(n^{-2}\right) \quad \eta_{n}=\frac{L}{n \pi}+O\left(n^{-2}\right), \quad L:=\int_{0}^{1} \sqrt{Q_{2}}(s) d s$

For our particular operators these sequences have the asymptotic form
$\mu_{n}=n \pi+\frac{\int_{0}^{1} Q_{1}(s) d s}{2 n}+O\left(n^{-2}\right) \quad \eta_{n}=\frac{L}{n \pi}+O\left(n^{-2}\right), \quad L:=\int_{0}^{1} \sqrt{Q_{2}}(s) d s$
Suppose we are given the two pairs of sequences $\Lambda:=\left\{\left\{\mu_{n}, \eta_{n}\right\}_{n=1}^{N},\left\{\tilde{\mu}_{n}, \tilde{\eta}_{n}\right\}_{n=1}^{N}\right\}$ arising from Dirichlet and Neumann conditions at $r=1$.
Represent Q_{1}, Q_{2} as finite term Fourier series $\quad Q(r)=a_{0}+\sum_{1}^{2 N} a_{n} \cos (n \pi r)$, and for a given set Λ, define the map $F_{\Lambda}: L^{2}[0,1] \times L^{2}[0,1] \rightarrow \mathbb{R}^{4 N}$ by

$$
F_{\Lambda}\left[\begin{array}{c}
Q_{1} \\
Q_{2}
\end{array}\right]=\left[\begin{array}{c}
u(1) \\
v^{\prime}(1) \\
\tilde{u}(1) \\
\tilde{v}^{\prime}(1)
\end{array}\right]
$$

where $u, v, \tilde{u}, \tilde{v}$ are the solutions of $-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}\right) \psi=\lambda \psi, \psi(0)=0$ corresponding to $\lambda_{n}=\left\{\mu_{n}, \eta_{n}\right\}$ and boundary conditions $\psi(1)=0, \tilde{\psi}^{\prime}(1)=0$.

For our particular operators these sequences have the asymptotic form
$\mu_{n}=n \pi+\frac{\int_{0}^{1} Q_{1}(s) d s}{2 n}+O\left(n^{-2}\right) \quad \eta_{n}=\frac{L}{n \pi}+O\left(n^{-2}\right), \quad L:=\int_{0}^{1} \sqrt{Q_{2}}(s) d s$
Suppose we are given the two pairs of sequences $\Lambda:=\left\{\left\{\mu_{n}, \eta_{n}\right\}_{n=1}^{N},\left\{\tilde{\mu}_{n}, \tilde{\eta}_{n}\right\}_{n=1}^{N}\right\}$ arising from Dirichlet and Neumann conditions at $r=1$.
Represent Q_{1}, Q_{2} as finite term Fourier series $\quad Q(r)=a_{0}+\sum_{1}^{2 N} a_{n} \cos (n \pi r)$, and for a given set Λ, define the map $F_{\Lambda}: L^{2}[0,1] \times L^{2}[0,1] \rightarrow \mathbb{R}^{4 N}$ by

$$
F_{\Lambda}\left[\begin{array}{c}
Q_{1} \\
Q_{2}
\end{array}\right]=\left[\begin{array}{c}
u(1) \\
v^{\prime}(1) \\
\tilde{u}(1) \\
\tilde{v}^{\prime}(1)
\end{array}\right]
$$

where $u, v, \tilde{u}, \tilde{v}$ are the solutions of $\quad-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}\right) \psi=\lambda \psi, \psi(0)=0$ corresponding to $\lambda_{n}=\left\{\mu_{n}, \eta_{n}\right\}$ and boundary conditions $\psi(1)=0, \tilde{\psi}^{\prime}(1)=0$.
Theorem. For any $N \geq 1$ the map $F_{\Lambda}^{\prime}[0]$ is injective.

For our particular operators these sequences have the asymptotic form
$\mu_{n}=n \pi+\frac{\int_{0}^{1} Q_{1}(s) d s}{2 n}+O\left(n^{-2}\right) \quad \eta_{n}=\frac{L}{n \pi}+O\left(n^{-2}\right), \quad L:=\int_{0}^{1} \sqrt{Q_{2}}(s) d s$
Suppose we are given the two pairs of sequences $\Lambda:=\left\{\left\{\mu_{n}, \eta_{n}\right\}_{n=1}^{N},\left\{\tilde{\mu}_{n}, \tilde{\eta}_{n}\right\}_{n=1}^{N}\right\}$ arising from Dirichlet and Neumann conditions at $r=1$.
Represent Q_{1}, Q_{2} as finite term Fourier series $\quad Q(r)=a_{0}+\sum_{1}^{2 N} a_{n} \cos (n \pi r)$, and for a given set Λ, define the map $F_{\Lambda}: L^{2}[0,1] \times L^{2}[0,1] \rightarrow \mathbb{R}^{4 N}$ by

$$
F_{\Lambda}\left[\begin{array}{c}
Q_{1} \\
Q_{2}
\end{array}\right]=\left[\begin{array}{c}
u(1) \\
v^{\prime}(1) \\
\tilde{u}(1) \\
\tilde{v}^{\prime}(1)
\end{array}\right]
$$

where $u, v, \tilde{u}, \tilde{v}$ are the solutions of $\quad-\psi^{\prime \prime}+\left(Q_{1}(r)+\frac{Q_{2}(r)}{\lambda}\right) \psi=\lambda \psi, \psi(0)=0$ corresponding to $\lambda_{n}=\left\{\mu_{n}, \eta_{n}\right\}$ and boundary conditions $\psi(1)=0, \tilde{\psi}^{\prime}(1)=0$.

Theorem. For any $N \geq 1$ the map $F_{\Lambda}^{\prime}[0]$ is injective.
Proof: Use the asymptotic expansions to show that the block matrix representation of F^{\prime} is diagonally dominant.

This case is also far from complete

This case is also far from complete

- It would be nice to extend the uniqueness result to be global rather than local. I see no means of using the prefered technology for the regular inverse Sturm Liouville problem.

This case is also far from complete

- It would be nice to extend the uniqueness result to be global rather than local. I see no means of using the prefered technology for the regular inverse Sturm Liouville problem.
- Of course, we have to include the singular potential $\frac{\ell(\ell+1}{r^{2}}$ and use different ℓ values instead of different boundary conditions at $r=1$.

