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Problem: Determine the critical coefficients characterizing the interior of the sun
from its “five minute” oscillations.



Problem: Determine the critical coefficients characterizing the interior of the sun
from its “five minute” oscillations.

¢=1, m=0 (equatorial) ¢=3, m=0 (equatorial) ¢=5, m=0 (equatorial)
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We assume that the sun is spherical and rotationally invariant with unit radius.



We assume that the sun is spherical and rotationally invariant with unit radius.

The acoustic vibrational amplitude is u(r, 8, ¢;t) = ¥ (r;t)Y, (0, ¢). separating
the variables in the R® Laplacian gives a radial equation of the form

¢”+( 4 —Q(r,f,A)—€(£+1>)¢:O

c2(r) 72

for the normal modes of vibrations with {\, ,, } the natural frequencies.




We assume that the sun is spherical and rotationally invariant with unit radius.

The acoustic vibrational amplitude is u(r, 8, ¢;t) = ¥ (r;t)Y, (0, ¢). separating
the variables in the R® Laplacian gives a radial equation of the form

¢”+( 4 —Q(T,E,A)—€(£+1>)¢:0

c2(r) 72

for the normal modes of vibrations with {\, ,, } the natural frequencies.

Two functions of importance; the propagation speed ¢(r) and the density p(r).

QU 6.0 = Qu(r) + L

()1 depends only on p(r), @2 depends on both ¢(r) and p(r) as well as £.
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We assume that the sun is spherical and rotationally invariant with unit radius.

The acoustic vibrational amplitude is u(r, 8, ¢;t) = ¥ (r;t)Y, (0, ¢). separating
the variables in the R® Laplacian gives a radial equation of the form

¢”+( 4 —Q(T,E,A)—€(£+1>)¢:0
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for the normal modes of vibrations with {\, ,, } the natural frequencies.

Two functions of importance; the propagation speed ¢(r) and the density p(r).

QU 6.0 = Qu(r) + L

()1 depends only on p(r), @2 depends on both ¢(r) and p(r) as well as £.

2H'(r) 1 o)
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@ 0="N0),  N=eE gD, 9= ' o(s) ds

372

0

The most realistic boundary condition is of the form ’(1) — hy)(1) = 0 where
the parameter h is also to be determined.



There are enormous amounts of data: GONG (Global Oscillation Network Group)
data consists of A\, ,’s with £ from 0 to 1,000 and n from 1 to about 50-100.

Accuracy Is very good in an absolute scale, but poor from a usable standpoint.
No other spectral information is readily available.
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There are enormous amounts of data: GONG (Global Oscillation Network Group)
data consists of A\, ,’s with £ from 0 to 1,000 and n from 1 to about 50-100.

Accuracy Is very good in an absolute scale, but poor from a usable standpoint.
No other spectral information is readily available.

If we use the Liouville transform on
0L+ 1) A
0+ QN + =)o = s

we can remove the term containing ¢, modifying the @), but also modifying the
singular term. If we ignore this, then a canonical form might be

Qa2(r) L(L+1)
P+ (@) + 2+ S g =
If the terms in colour are removed, this is a standard Sturm-Liouville problem:
q = ()1 is uniquely determined by the eigenvalues { )¢ ,, }3°, together with a

second sequence: norming constants, end-point values, or a second spectral
sequence corresponding to another boundary condition at » = 1.
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There are enormous amounts of data: GONG (Global Oscillation Network Group)
data consists of A\, ,’s with £ from 0 to 1,000 and n from 1 to about 50-100.
Accuracy Is very good in an absolute scale, but poor from a usable standpoint.
No other spectral information is readily available.

If we use the Liouville transform on

o (e + T )= 2y

72 c?(r)

we can remove the term containing ¢, modifying the @), but also modifying the
singular term. If we ignore this, then a canonical form might be

"+ (Ql(r) n Q2}\(T) n 6(6:2_ 1))¢ — Ay

If the terms in colour are removed, this is a standard Sturm-Liouville problem:

q = ()1 is uniquely determined by the eigenvalues { ¢ ., }$°, together with a
second sequence: norming constants, end-point values, or a second spectral
sequence corresponding to another boundary condition at » = 1.

The helioseismology application does not allow a change in the boundary
values or the measurement of anything other than eigenvalue data.
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There are enormous amounts of data: GONG (Global Oscillation Network Group)
data consists of A\, ,’s with £ from 0 to 1,000 and n from 1 to about 50-100.

Accuracy Is very good in an absolute scale, but poor from a usable standpoint.
No other spectral information is readily available.

If we use the Liouville transform on

"+ (Q(r, A) +

(l+1)N , A
) B 02(T)¢

we can remove the term containing ¢, modifying the @), but also modifying the

singular term. If we ignore this, then a canonical form might be

Q2(r)  L(£+1)

72

—" 4 (Qu(r) +

What we must do Is use the existence of the singular term, and the
resulting eigenvalue sequence for different £ values to compensate.
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There are enormous amounts of data: GONG (Global Oscillation Network Group)
data consists of A\, ,’s with £ from 0 to 1,000 and n from 1 to about 50-100.
Accuracy Is very good in an absolute scale, but poor from a usable standpoint.
No other spectral information is readily available.

If we use the Liouville transform on
0L+ 1) A
0+ QN + =)o = s

we can remove the term containing ¢, modifying the @), but also modifying the
singular term. If we ignore this, then a canonical form might be

Q2(r)  L(£+1)
A + 72

—" 4 (Qu(r) + ) =

What we must do Is use the existence of the singular term, and the
resulting eigenvalue sequence for different £ values to compensate.

We can say nothing about the critical question of unigueness for the full problem.

Break into two simpler problems - each containing only one of the coloured terms.
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Optimal Method for the Regular Sturm Liouville Problem
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Optimal Method for the Regular Sturm Liouville Problem
Y(x) = (I 4+ K)sin(y/At)
where Kf = [ K(z,t)f(t) dt
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Optimal Method for the Regular Sturm Liouville Problem

W(x) = (I + K)sin(y/\t)
where Kf = [ K(z,t)f(t) dt

t

K(z,z) = %fomq(s)ds

Kit—Kgx + Q(w)K =0

K(z,—x) = —%fomq(s)ds

> I
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Optimal Method for the Regular Sturm Liouville Problem

W(x) = (I + K)sin(y/\t)
where Kf = [ K(z,t)f(t) dt

Set )\ to be the spectrum from (1) = 0,
and evaluate at x =1 to obtain

fol K(1,t)sin(y/At) dt = —sinv/A
This equation then gives K (1,t).

t

K(z,z) = %fomq(s)ds

Kit—Kgx + Q(w)K =0

K(1,¢)

K(z,—x) = —%fomq(s)ds

> I
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Optimal Method for the Regular Sturm Liouville Problem
Y(x) = (I 4+ K)sin(y/At)
where Kf = [ K(z,t)f(t) dt

t

K(z,z) = %fomq(s)ds

Set )\ to be the spectrum from (1) = 0, K(1,1)
and evaluate at z =1 to obtain
Jo K (1,t)sin(y/At) dt = —sinv/X Kz(1,t)
This equation then gives K (1,1¢). Kot — Koy + q(z)K = 0

> @

Use A from ¢'(1) = 0 to get K, (1,¢)

K(z,—x) = —%fomq(s)ds
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Optimal Method for the Regular Sturm Liouville Problem
Y(x) = (I 4+ K)sin(y/At) .

where ICf — fow K(CB, t)f(t) dt K(z,z) = %meQ(S)dS

Set )\ to be the spectrum from (1) = 0, K(1,t)
and evaluate at z =1 to obtain
Jo K (1,t)sin(y/At) dt = —sinv/X Kz(1,t)
This equation then gives K (1,1¢). Kot — Koy + q(z)K = 0

> @

Use A from ¢'(1) = 0 to get K, (1,¢)

Solve Cauchy Problem from z =1 using
K(1,t), K.(1,t) as “initial data” to

determine K (x, x) and hence g(x). )
K(z,—z) = —3% [ "a(s)ds
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Optimal Method for the Regular Sturm Liouville Problem
Y(x) = (I 4+ K)sin(y/At) .
where Kf = [ K(z,t)f(t) dt K(z,2) = 1 [“a(s)ds

Set )\ to be the spectrum from (1) = 0,
and evaluate at x =1 to obtain

fol K(1,t)sin(y/At) dt = —sinv/A
This equation then gives K (1,t). Koo Koo+ q(@)K = 0

K(1,¢)

Kz(1,¢)

Use A from ¢'(1) = 0 to get K, (1,¢)

Solve Cauchy Problem from z =1 using
K(1,t), K.(1,t) as “initial data” to

determine K (x, x) and hence g(x). )
K(z,—z) = —3% [ "a(s)ds

Iterate ¢,.1 = K(z,x;q,) torecover q(x)

> I
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Case 1: Including only thesingular term £4(£ + 1) /r?
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Case 1: Including only thesingular term £4(£ + 1) /r?

We consider the eigenvalue problem for/ =10,1,2,.. ..

w"—l-()\—q(r)—g(z:;l))wzo 0<r<l1

p(1) =0 (r)=0(r) =0

For fixed ¢, (1) has a countable sequence of eigenvalues, Ay ,, n =1,2,. ...
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Case 1: Including only thesingular term £4(£ + 1) /r?

We consider the eigenvalue problem for/ =10,1,2,.. ..

w"—l-()\—q(r)—g(z:;l))wzo 0<r<l1

p(1) =0 (r)=0(r) =0

For fixed ¢, (1) has a countable sequence of eigenvalues, Ay ,, n =1,2,. ...

£=20 1s the classical Inverse Sturm-Liouville problem:

(1)
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Case 1: Including only thesingular term £4(£ + 1) /r?

We consider the eigenvalue problem for/ =10,1,2,.. ..

w"—l-()\—q(r)—g(z:;l))wzo 0<r<l1

S1)=0  $(r)=0(r) -0 L)

For fixed ¢, (1) has a countable sequence of eigenvalues, Ay ,, n =1,2,. ...

The goal is to recover g(r) from (some subset of) the spectral data {v/),.,.}.
The eigenvalues have the following asymptotic values

B fo z)dr — L(£+1) =
\/Xﬂ,n — (n‘|‘2 (27’L—|—€) -+ ﬁﬁ,?% ;nﬁﬂ,n < 00.
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Case 1: Including only thesingular term £4(£ + 1) /r?

We consider the eigenvalue problem for/ =10,1,2,.. ..

w"—l-()\—q(r)—g(z:;l))wzo 0<r<l1

S1)=0  $(r)=0(r) -0 L)

For fixed ¢, (1) has a countable sequence of eigenvalues, Ay ,, n =1,2,. ...

The goal is to recover g(r) from (some subset of) the spectral data {v/),.,.}.

The eigenvalues have the following asymptotic values

B fo z)dr — L(£+1) =
\/Xﬂ,n — (n‘|‘2 (27’L—|—€) -+ ﬁﬁ,?% ;nﬁﬂ,n < 00.

It is always instructive to look at the simplest case.

D 1=¢



Case 1: Including only thesingular term £4(£ + 1) /r?

We consider the eigenvalue problem for/ =10,1,2,.. ..

¢,,+()\_q(r)_€(£r—|2—1))wzo 0<r<l1

S1)=0  $(r)=0(r) -0 L)

For fixed ¢, (1) has a countable sequence of eigenvalues, Ay ,, n =1,2,. ...

If g(r) = 0 and we take Dirichlet conditions at = 1, then the eigenfunctions are

W(r) = r* T (VAr)
where j, 1S the spherical Bessel function.

The eigenvalues are the positive roots of j,(v/A) =0.

For nonzero g we expect the eigenvalues and eigenfunctions to have similar proper-
ties - at least for a sufficiently small g(r).

29A
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¢1,5(x)

0.2 ~___~0.4

1.0
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¢5,6(x)
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$50,41(x)

0.2

0.4

0.6

1.0
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Problem 1: Can ¢(r) be determined from two spectral sequences, namely {v/ X, , }52_,
for ¢ =41, £57?
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Problem 1: Can ¢(r) be determined from two spectral sequences, namely {v/ X, , }52_,
for £ =141, 057

Carlson and Shubin showed that the set of potentials sharing the same two spectral
sequences Is locally of finite dimension provided that /; — 45 IS an odd integer.

There are positive answers (and reconstructions) for cases with small Z:
forexample, /=10, 1}, /=10,2}, /={1,2}, ... (Rundell, Sacks).

24



The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each
value of A € A define u to be the solution of

1
u”+<)\—q(’r)—€(£+ >)u:O 0<r<l1

2
Y(r)=0(r) r—=0 lim uz, A, q)

x—0 :CE"'l

= 1.

QK



The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each
value of A € A define u to be the solution of

u' + ()\—q(r) - €(£+1>)u20

5 O<r<l
r

Y(r)=0(r) r—0 lim u(z, A, q) = 1.

x—0 :CE"'l

Then define F, by
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The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each
value of A € A define u to be the solution of

1
u”+<)\—q(’r)—€(£:2_ >)u:O 0<r<l1
u(x, A, q)

P(r)=0(r) r—0 lim i =1.
Then define F, by
Fa(q) = u(l).
The question: if A = {{ ¢, n}521, {\es,n 132, } fOr some ¢4, £5, does the equation
Fa(q) =0 (2)

uniquely determine ¢?
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The forward map.

We formulate the inverse spectral problem as a nonlinear operator equation; for each
value of A € A define u to be the solution of

1
u”+<)\—q(’r)—€(£:2_ >)u:O 0<r<l1
u(x, A, q)

P(r)=0(r) r—0 lim i =1.
Then define F, by
Fa(q) = u(l).
The question: if A = {{ ¢, n}521, {\es,n 132, } fOr some ¢4, £5, does the equation
Fa(q) =0 (2)

uniquely determine ¢?

It is natural to attempt to solve (2) by some version of Newton’s method

Int1 = Gn — DgF i (an) Fa(qn) (3)
and this requires some insight into the structure of the linearized map D ,Fx(q).
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Let { € C([0,1]) be a fixed function then

1
Lemmal D Fy(g)¢ = C / V2 (2, N () da
0
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Let { € C([0,1]) be a fixed function then
1
Lemmal D Fy(g)¢ = C / V2 (2, N () da
0
We must show local injectivity of F’, that is if D,Fx(q)¢ = 0, then { = 0.

1
/¢§($)C(x)dxzo for £=141,45 = (=077
0
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Let { € C([0,1]) be a fixed function then
1
Lemmal D Fy(g)¢ = C / V2 (2, N () da
0
We must show local injectivity of F’, that is if D,Fx(q)¢ = 0, then { = 0.

1
/¢§($)C(x)dxzo for £=141,45 = (=077
0
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Let { € C([0,1]) be a fixed function then
1
Lemmal D Fy(g)¢ = C / V2 (2, N () da
0
We must show local injectivity of F’, that is if D,Fx(q)¢ = 0, then { = 0.

1
/?ﬁzg(x)C(az)d:p:O for £=141,45 = (=077

The mean value fo x) dx 1S uniquely determined by the asymptotics of the eigen-
values, for any fixed 6

fo z)dx — L(£+1)
(2n—|—€)

\/Xf,n — (n_l_ 2) + 65,?’”

=- Dby a preliminary calculation we may always assume that fol g(x)dz = 0.

Hence need only consider those (= dg) with f01 (=
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Let { € C([0,1]) be a fixed function then

1
Lemmal D Fy(g)¢ = C / V2 (2, N () da
0
We must show local injectivity of F’, that is if D,Fx(q)¢ = 0, then { = 0.

1
/?ﬁg(x)C(x)d:ﬁ:O for £=141,45 = (=077
0

Note that if £ = 0, VA} ,, = n, then this becomes

1

DyFA(0)C = C / SIN2(VA? ) C() da

0

neA

or
1

D,F,(0)¢ = —/0 cos(2nmz) ((x)dx, n=1,2,...
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Let { € C([0,1]) be a fixed function then
1
Lemmal D Fy(g)¢ = C / V2 (2, N () da
0
We must show local injectivity of F’, that is if D,Fx(q)¢ = 0, then { = 0.

1
/ﬁ(x)C(x)dx:O for £=141,45 = (=077
0

Note that if £ = 0, VA} ,, = n, then this becomes

1

DyFA(0)C = C / SIN2(VA? ) C() da

0

neA

or
1

D,F,(0)¢ = —/0 cos(2nmz) ((x)dx, n=1,2,...

Thus D, F,_ (0)¢ = 0 implies ¢ is odd.
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Lemma 2. For each positive integer £, define S, : L?(0,1) — L?(0,1) by
1)

52t

Selfl(x) = f(z) — 40z

T

S.

Then S, is bounded and one to one on L2(0, 1), The function {z2} is the only
element in the nullspace of S} and ¢ = —S}[¥; ,].
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Lemma 2. For each positive integer £, define S, : L?(0,1) — L?(0,1) by
1)

S.
52t

Se[fl(z) = f(z) — 4z

T

Then S, is bounded and one to one on L2(0, 1), The function {z2} is the only
element in the nullspace of S} and ¢ = —S}[¥; ,].

We can chain these step operators together,
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Lemma 2. For each positive integer £, define S, : L?(0,1) — L?(0,1) by
1)

S.
52t

Se[fl(z) = f(z) — 4z

T

Then S, is bounded and one to one on L2(0, 1), The function {z2} is the only
element in the nullspace of S} and ¢ = —S}[¥; ,].

We can chain these step operators together,

Lemma3. Foreach/ =1, 2, ... define the operators T} by
Ty = (—1)£_1Sg5g_1 09T,
Then for any ¢ € L?(0, 1) with f01 (dr =0and A > 0,

2 [ UHVR) C(e)da = [ cos(2v/Aa) Tulcla) do
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Lemma 2. For each positive integer £, define S, : L?(0,1) — L?(0,1) by
i)

S.
20

Se[fl(x) = f(z) — 4z

T

Then S, is bounded and one to one on L2(0, 1), The function {x2} is the only
element in the nullspace of S} and ¢ = —S;[¢¥; ,].

We can chain these step operators together,

Lemma3. Foreach/ =1, 2, ... define the operators T} by
Ty = (—1)£_1Sg5g_1 097,
Then for any ¢ € L?(0,1) with f01 (dr =0and \ > 0,

) /0 V(o) () da = /O cos(2vz) To[C](z) da

This leads to
Lemmad. IfvAxnmn=1,2, ... then F’[0]¢ = 0 implies
Tg[d =0 for /= 61, 62

AR



This would actually be enough to conclude that ( = 0,
but in fact vV ~ (n + %f)w and so we are missing the frequencies below %E.

40



This would actually be enough to conclude that ( = 0,
but in fact vV ~ (n + %f)w and so we are missing the frequencies below %E.

Here is what we get in the case of / =1, 2.

T1[¢] = xe(x) + €1 cos Tx
T5[C¢] = xo(x) + €0 + €2 cos (2mx)
where Xe(x) — Xe(l_x)’ Xo(x) — _Xo(l_x)’ (62' S R)

Tl[f]=f(:v)—4a:/ %ds Tg[f]=—f(at)—12a:/ %dt+24x3/ %dt
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This would actually be enough to conclude that ( = 0,
but in fact vV ~ (n + %f)w and so we are missing the frequencies below %E.

Here is what we get in the case of / =1, 2.

T1[¢] = xe(x) + €1 cos Tx
T5[C¢] = xo(x) + €0 + €2 cos (2mx)
where Xe(x) — Xe(l_x)’ Xo(x) — _Xo(l_x)’ (62' S R)

Tl[f]=f(x)—4:v/ %ds T2[f]=—f(x)—12x/ %dt+24x3/ %dt

Next step is to use the conditions {z2, ... , 2%} € N (T}) to show that the three
constants eg, €1, €2 are zero.
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This would actually be enough to conclude that ( = 0,
but in fact vV ~ (n + %f)w and so we are missing the frequencies below %E.

Here is what we get in the case of / =1, 2.

T1[C] = xe(x) + €1 cos Tz
T5[C¢] = xo(x) + €0 + €2 cos (2mx)

where Xe(x) — Xe(l_x)’ Xo(x) — _Xo(l_x)’ (62' S R)

Tl[f]=f(x)—4:v/ %ds T2[f]=—f(x)—12x/ %dt+24x3/ %dt

Next step is to use the conditions {z2, ... , 2%} € N (T}) to show that the three
constants eg, €1, €2 are zero.

Finally, we show that OT;[(] = 0 and £T5[(] = 0, where £ and O are the even and
odd operators on [0, 1], implies ¢ = 0.
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This would actually be enough to conclude that ( = 0,
but in fact vV ~ (n + %f)w and so we are missing the frequencies below %E.

Here is what we get in the case of / =1, 2.

T1[C] = xe(x) + €1 cos Tz
T5[C¢] = xo(x) + €0 + €2 cos (2mx)

where Xe(x) — Xe(l_x)’ Xo(x) — _Xo(l_x)’ (62' S R)

Tl[f]=f(:v)—4:v/ %ds T2[f]=—f(x)—12x/ %dt+24x3/ %dt

Next step is to use the conditions {z2, ... , 2%} € N (T}) to show that the three
constants eg, €1, €2 are zero.

Finally, we show that OT;[(] = 0 and £T5[(] = 0, where £ and O are the even and
odd operators on [0, 1], implies ¢ = 0.

We have accomplished this for several pairs of £ values - (0, 1), (1, 2), (0,2), (1, 3)
and can show that the restriction of ¢; — ¢ odd can be removed.

=42}



Reconstructionswith 5% error in 3, ¢
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Thiscaseisfar from complete
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Thiscaseisfar from complete

e We still have to show that the there is no finite dimensional set of ¢’s with the
same two spectra for larger values of /.
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Thiscaseisfar from complete

e We still have to show that the there is no finite dimensional set of ¢’s with the
same two spectra for larger values of /.

e \We must extend the uniqueness result to be global rather than local.
It would be nice to use the conversion to an overposed hyperbolic problem as in
the regular case, or a similar “clean” technique.
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Thiscaseisfar from complete

e We still have to show that the there is no finite dimensional set of ¢’s with the
same two spectra for larger values of /.

e \We must extend the uniqueness result to be global rather than local.

It would be nice to use the conversion to an overposed hyperbolic problem as in
the regular case, or a similar “clean” technique.

L(0+1) A
qp —
r2 c(r)

both gand ¢? Do we need 3, 4, or an infinite number of different ¢ values?

e For the equation —%" + q(r) + 9 is it possible to recover
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Thiscaseisfar from complete

e We still have to show that the there is no finite dimensional set of ¢’s with the
same two spectra for larger values of /.

e \We must extend the uniqueness result to be global rather than local.
It would be nice to use the conversion to an overposed hyperbolic problem as in
the regular case, or a similar “clean” technique.

L(0+1) A
qp —
r2 c(r)

both gand ¢? Do we need 3, 4, or an infinite number of different ¢ values?

e For the equation —%" + q(r) + 9 is it possible to recover

e Not all spectral sequences { )\, , }°2; for different £ values carry the same infor-
mation content about ¢ (we would prefer small £). It is certainly the case that
the error in the spectra also varies with £. If we use more data than is necessary,
how do take all of this into account?
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Case 2. Omitting the singular term, but two potentials
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Case 2. Omitting the singular term, but two potentials

We consider the eigenvalue problem

_¢// 4+ (Ql("") 4+ QQ)\(T))w _ )\¢ (4)

with, say, the boundary condition ¢(0) = 0, normalized with ¢'(0) = 1, and ask
whether it is possible to recover both ), and ()s.
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Case 2. Omitting the singular term, but two potentials

We consider the eigenvalue problem

_¢// 4+ (Ql("") 4+ QQ)\(T))¢ _ )‘¢ (4)

with, say, the boundary condition ¢(0) = 0, normalized with ¢'(0) = 1, and ask
whether it is possible to recover both )1 and ().

Since we no longer have different £ values, we generate two spectra by changing
the boundary conditions at » = 1: {)\,} corresponding to ¢(1) = 0 and {\,} to

P'(1) = 0.
Is it possible that the pair {\,,, S\n} determines the pair {Q1, Q2}?
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Case 2. Omitting the singular term, but two potentials

We consider the eigenvalue problem

"+ (@u(r) + Ly = oy (1)

with, say, the boundary condition ¢(0) = 0, normalized with ¢’(0) = 1, and ask
whether it is possible to recover both )1 and ().

Since we no longer have different £ values, we generate two spectra by changing
the boundary conditions at » = 1: {)\,} corresponding to (1) = 0 and {\,} to

¥/(1) = 0.
Is it possible that the pair {)\,,, A, } determines the pair {Q1, Q2}?

We can write (4) in the form of a quadratic eigenvalue problem:
NA+IB+C)p =0

where A = I, B = —D? + Q1(x)I, C = —Q2(x)I. These are all self-adjoint,
and provided @Q1(z) > 0, Q2(z) < 0, are also positive operators. Under these
conditions the spectrum is real, positive, and consists of two sequences { ., }, {7}
With gy < po < puz < ... ,pp oo and pu; >ny >mn2 >n3> ... , N, — O.
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For our particular operators these sequences have the asymptotic form

fo Q1(s)ds N

2n nm

L

Mp = N+

O(n™>) g =-—+0(n), L:= [;VQs(s)ds
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For our particular operators these sequences have the asymptotic form

Un = N+ Jo Q1(5) d8+0(n_2) N = £+O(n_2), L= fol\/@(s) ds

2n nm

Suppose we are given the two pairs of sequences A := {{tin, 7n o1, {fin; Tn fre1 }
arising from Dirichlet and Neumann conditions at » = 1.

Represent )1, Q- as finite term Fourier series Q(r) = ag + ZfN a,CoS(nmr),
and for a given set A, define the map Fy : L?[0,1] x L?[0,1] — R* by

_“,(11) ]
[gﬂ B Z((l))
| /(1) _

where u, v, @, ¥ are the solutionsof  —¢" + (Q1(r) + Q2(T))¢ =), ¥(0) =
corresponding to \,, = { ., 7 } and boundary conditions (1) = 0, (1) = 0
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For our particular operators these sequences have the asymptotic form

Un = N+ Jo Q1(5) d8+0(n_2) N = £+O(n_2), L= fol\/@(s) ds

2n nm

Suppose we are given the two pairs of sequences A := {{tin, 7n o1, {fin; Tn fre1 }
arising from Dirichlet and Neumann conditions at » = 1.

Represent )1, Q- as finite term Fourier series Q(r) = ag + ZfN a,CoS(nmr),
and for a given set A, define the map Fy : L?[0,1] x L?[0,1] — R* by

e
[Ql} _ Y@
Q2 u(1)
| §°(1) _
where u, v, @, ¥ are the solutionsof  —¢" + (Q1(r) + Q2(T))¢ =\, ¥(0) =0

A
corresponding to A\, = {un, 7, } and boundary conditions (1) =0, ¥'(1) = 0.

Theorem. Forany N > 1 the map F4[0] is injective.
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For our particular operators these sequences have the asymptotic form
L

fo Q1(s) ds O(n‘2) Nr = —+O(n_2)a L= fol\/@(s) ds

2n nm

Mp = N+

Suppose we are given the two pairs of sequences A := {{tin, 7n o1, {fin; Tn fre1 }
arising from Dirichlet and Neumann conditions at » = 1.

Represent )1, Q- as finite term Fourier series Q(r) = ag + ZfN a,CoS(nmr),
and for a given set A, define the map Fy : L?[0,1] x L?[0,1] — R* by

e
[Ql} _ Y@
Q2 u(1)
| §°(1) _
where u, v, @, ¥ are the solutionsof  —¢" + (Q1(r) + Q2(T))¢ =\, ¥(0) =0

A
corresponding to A\, = {un, 7, } and boundary conditions (1) =0, ¥'(1) = 0.

Theorem. Forany N > 1 the map F4[0] is injective.

Proof: Use the asymptotic expansions to show that the block matrix representation
of £ is diagonally dominant.
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Thiscaseisalso far from complete
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Thiscaseisalso far from complete
e It would be nice to extend the uniqueness result to be global rather than local.

| see no means of using the prefered technology for the regular inverse Sturm
Liouville problem.
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Thiscaseisalso far from complete

e It would be nice to extend the uniqueness result to be global rather than local.
| see no means of using the prefered technology for the regular inverse Sturm

Liouville problem.

e Of course, we have to include the singular potential “f;” and use different ¢
values instead of different boundary conditions at r =1.
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