Electrostatic Imaging via Conformal Mapping

R. Kress Göttingen

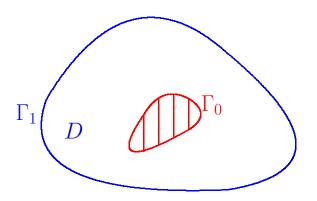
joint work with I. Akduman Istanbul

Or: A new solution method for inverse boundary value problems for the Laplace equation

Determine shape Γ_0 of a

- perfectly conducting or
- nonconducting inclusion or
- inclusion with **different con-ductivity**

from overdetermined Cauchy data on Γ_1



Applications in the field of **nondestructive testing** via **electrostatic imaging** or **thermal imaging**, e.g., **impedance tomography** Here: Perfectly conducting inclusion, i.e., **inverse Dirichlet problem**

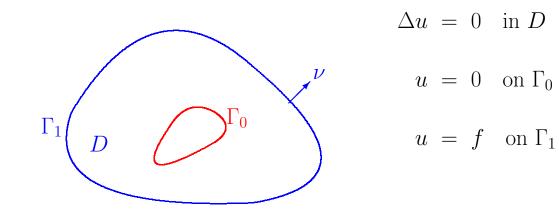
Extensions to other boundary conditions are in preparation

1. Brief survey on other methods (see 2. ed. of Linear Integral Equations)

2. Description of new method

3. Some numerical examples

The inverse problem

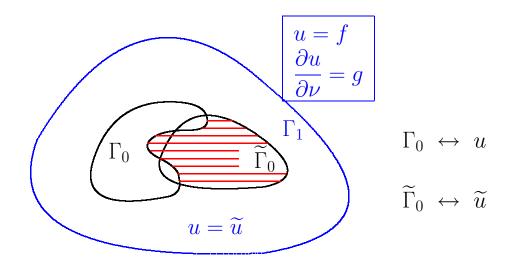


Inverse Problem:

Given
$$g = \frac{\partial u}{\partial \nu}$$
 on Γ_1 (and f), find boundary Γ_0

Uniqueness!!!

Uniqueness!!!

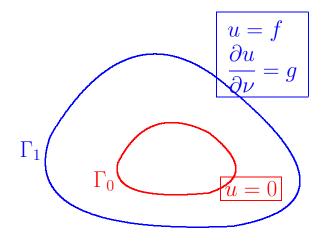


In shaded domain: $\triangle u = 0$ On boundary: u = 0

 $\mathbf{Schiffer} \approx 1960$

Existence???

For inverse boundary value problems, in general, **wrong question** to ask. Would need to characterize Cauchy data on Γ_1 for which the corresponding solution vanishes on a closed surface Γ_0 (or curve) within Γ_1 .



Main Task: Assuming correct data or perturbed correct data,

design method for approximate and stable solution

Separate ill-posedness and nonlinearity

1. Determine *u* from Cauchy data on Γ_1 (for example via potentials and integral equations of the first kind)

Kirsch, K. (1987)

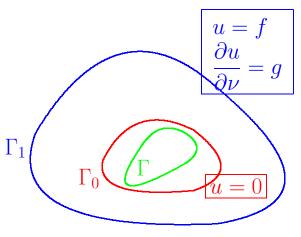
2. Find Γ_0 as location of the zeros of u (in a least squares sense)

Pros:

- Conceptionally simple

Contras:

- No high class reconstructions
- No need for forward solver Gap between theory and numerics
 - Domain for Cauchy problem not known in first step

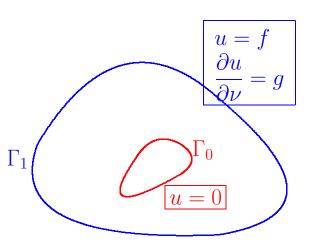


Newton type iterations

1. Interpret inverse problem as operator equation $F(\Gamma_0) = g$ where

$$F: \Gamma_0 \mapsto \left. \frac{\partial u}{\partial \nu} \right|_{\Gamma_1}$$

2. Solve by regularized Newton iterations



Pros:

- Conceptionally simple
- High class reconstructions

Contras:

- Need forward solver
- Need good a priori information
- Convergence analysis difficult

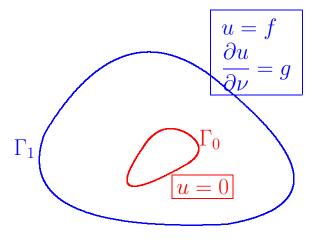
Hohage (1999), **Potthast** (2001)

Kirsch's factorization method

Characterize unknown domain via spectral data of the Dirichletto-Neumann operator

$$A: u \mapsto \frac{\partial u}{\partial \nu}$$

on Γ_1



Hähner (1999), K. (1999), Kühn (2001) **Brühl, Hanke** (2000)

Pros:

- Elegant mathematics
- Simple implementation
- No a priori information needed Very sensitive to noise

Contras:

- Need a lot of data
- No high class reconstructions

Our method

1. Solve nonlocal nonlinear ordinary differential equation for boundary values of a conformal mapping (by successive iterations)

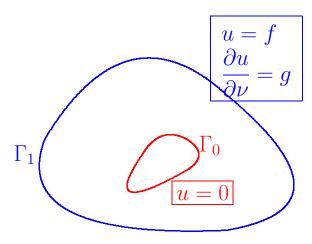
2. Solve Cauchy problem for a holomorphic function in an annulus

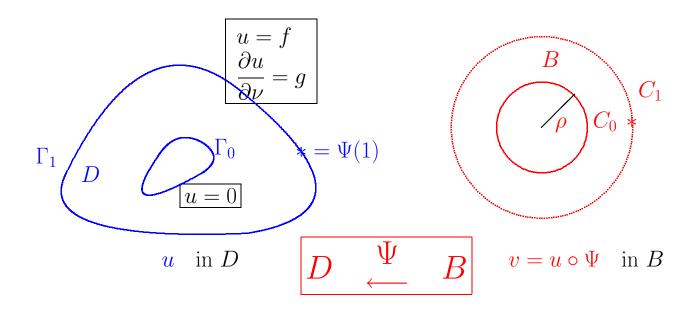
Pros:

- Conceptionally simple
- Satisfactory reconstructions
- Domain for Cauchy problem is known

Contras:

- Restricted to two dimensions
- and to Laplace equation





 $\Gamma_1 = \{\gamma(s) : s \in [0, L]\} \qquad C_1 = \{e^{it} : t \in [0, 2\pi]\}$

 φ : arc length on $C_1 \mapsto$ arc length on Γ_1 $\Psi(e^{it}) = \gamma(\varphi(t))$ knowing φ equivalent to knowing $\Psi|_{C_1}$

 u, \tilde{u} and $v = u \circ \Psi, \tilde{v} = \tilde{u} \circ \Psi$ conjugate harmonics

$$\tilde{v}(t) = \tilde{u}(\varphi(t)) \quad \Rightarrow \quad \frac{\partial \tilde{v}}{\partial t} = \frac{\partial \tilde{u}}{\partial s} \frac{d\varphi}{dt}$$

Cauchy–Riemann equations $\Rightarrow \frac{\partial v}{\partial \nu} = \frac{\partial u}{\partial \nu} \frac{d\varphi}{dt}$

$$\boxed{\frac{d\varphi}{dt} = \frac{A(f \circ \varphi)}{g \circ \varphi}}$$

 $\overset{\circ)}{-} A = \text{Dirichlet-to-Neumann map for } B$

$$u = f, \quad \frac{\partial u}{\partial \nu} = g \quad \text{on } \Gamma_1$$

$$\int_{C_0} \frac{\partial v}{\partial \nu} \, ds = \int_{C_1} \frac{\partial v}{\partial \nu} \, ds = \int_{\Gamma_1} g \, ds$$

$$\int_{C_0} \left\{ \ln |x| \frac{\partial v}{\partial \nu} - v \frac{1}{|x|} \right\} \, ds = \int_{C_1} \left\{ \ln |x| \frac{\partial v}{\partial \nu} - v \frac{1}{|x|} \right\} \, ds$$

$$\ln \rho \int_{C_0} \frac{\partial v}{\partial \nu} \, ds = -\int_{C_1} v \, ds$$

$$\rho = \exp\left(-\frac{\int_0^{2\pi} f \circ \varphi \, dt}{\int_{\Gamma_1} g \, ds}\right)$$

$$\frac{d\varphi}{dt} = \frac{A(f \circ \varphi)}{g \circ \varphi} \qquad A = \text{Dirichlet-to-Neumann map for} \\ B$$

$$L = \int_0^{2\pi} \frac{A(f \circ \varphi)}{g \circ \varphi} \, dt$$

$$\frac{d\varphi}{dt} = \frac{A(f \circ \varphi)}{g \circ \varphi} + \frac{L}{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} \frac{A(f \circ \varphi)}{g \circ \varphi} \, dt$$

Makes sure that

$$\varphi(2\pi) = L$$

throughout the iteration

$$\rho = \exp\left(-\frac{\int_0^{2\pi} f \circ \varphi \, dt}{\int_{\Gamma_1} g \, ds}\right)$$
$$\frac{d\varphi}{dt} = \frac{A(f \circ \varphi)}{g \circ \varphi} + \frac{L}{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} \frac{A(f \circ \varphi)}{g \circ \varphi} \, dt$$

$$\rho_{n} = \exp\left(-\frac{\int_{0}^{2\pi} f \circ \varphi_{n} dt}{\int_{\Gamma_{1}} g ds}\right)$$
$$\frac{d\varphi_{n+1}}{dt} = \frac{A_{n}(f \circ \varphi_{n})}{g \circ \varphi_{n}} + \frac{L}{2\pi} - \frac{1}{2\pi} \int_{0}^{2\pi} \frac{A_{n}(f \circ \varphi_{n})}{g \circ \varphi_{n}} dt$$

$$\varphi_0(t) = \frac{L}{2\pi} t$$
, correct if *D* annulus

Theorem Under appropriate assumptions on D and f the successive approximations converge in $H^1[0, 2\pi]$.

$$\frac{d\varphi_{n+1}}{dt} = \frac{A_n(f \circ \varphi_n)}{g \circ \varphi_n} + \frac{L}{2\pi} - \frac{1}{2\pi} \int_0^{2\pi} \frac{A_n(f \circ \varphi_n)}{g \circ \varphi_n} dt$$

Numerical implementation:

$$\varphi_{\mathbf{n}}(t) \approx \frac{L}{2\pi} t + \alpha_{n,0} + \sum_{k=1}^{N} \left[\alpha_{n,k} \cos kt + \beta_{n,k} \sin kt \right]$$

$$L_{\mathbf{n}} := \frac{1}{2\pi} \int_{0}^{2\pi} \frac{A_{\mathbf{n}}(f \circ \varphi_{\mathbf{n}})}{g \circ \varphi_{\mathbf{n}}} dt - \frac{L}{2\pi}$$

$$(g \circ \varphi_{\mathbf{n}})(t_j) \{\varphi_{\mathbf{n+1}}'(t_j) + L_{\mathbf{n}}\} - A_{\mathbf{n}}(f \circ \varphi_{\mathbf{n}})(t_j) = 0,$$

$$j = 1, \dots, J$$

Solve by least squares to update coefficients Use trigonometric interpolation for $f\circ\varphi$ and $g\circ\varphi$

Now, we know the radius ρ and $\Psi = \gamma \circ \varphi$ on the outer circle C_1 , Bi.e., Fourier series $\gamma(\varphi(t)) = \sum_{k=-\infty}^{\infty} b_k e^{ikt}$ Solve **Cauchy problem** for Ψ

in B via Laurent expansion

$$\Psi(z) = \sum_{k=-\infty}^{\infty} b_k z^k, \quad \rho \le |z| \le 1$$

and obtain unknown boundary by

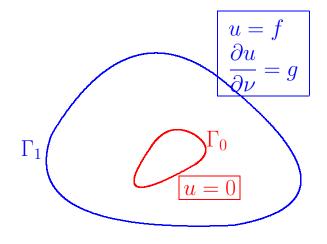
$$\Gamma_0 = \Psi(C_0) \approx \left\{ \sum_{k=-M}^M \rho^k b_k e^{ikt}, \quad 0 \le t \le 2\pi \right\}$$

Need to truncate because of **exponential ill-posedness**.

Our method

1. Solve nonlocal nonlinear ordinary differential equation for boundary values of a conformal mapping (by successive iterations)

2. Solve Cauchy problem for a holomorphic function in an annulus

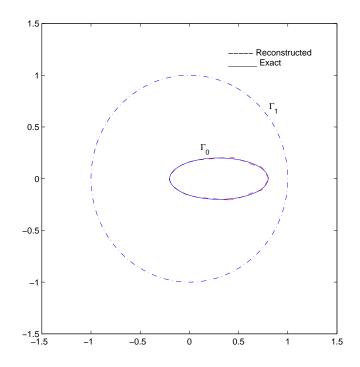


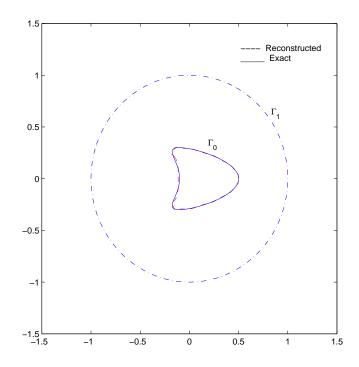
For numerical examples Γ_1 unit circle

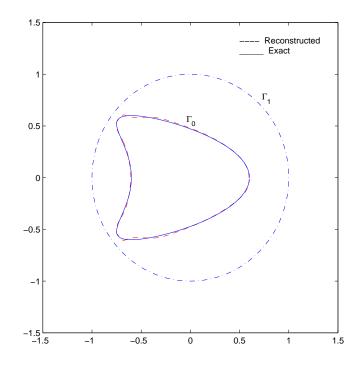
$$f(t) = 3 + 2\cos^2 t$$

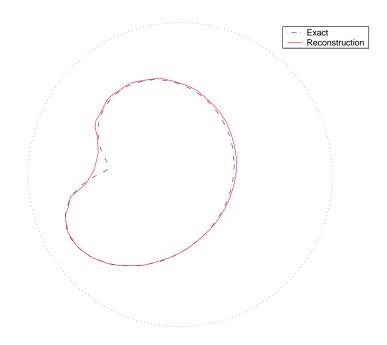
$$N = 6\dots 8, \quad M = 6\dots 8, \quad n = 32$$

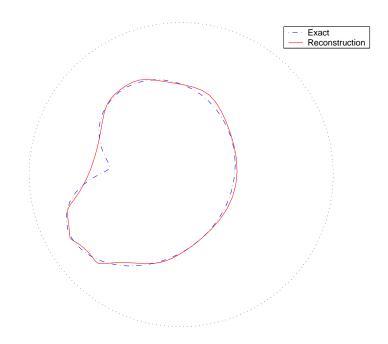
Between 6 to 10 iterations











Remarks:

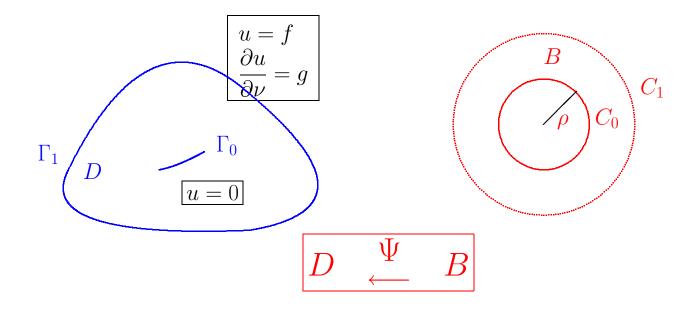
• Idemen, Akduman (1988)

$$f = f_0 = \text{const} \quad \Rightarrow \quad \frac{d\varphi}{dt} = -\frac{1}{\ln \rho} \frac{f_0}{g \circ \varphi}$$

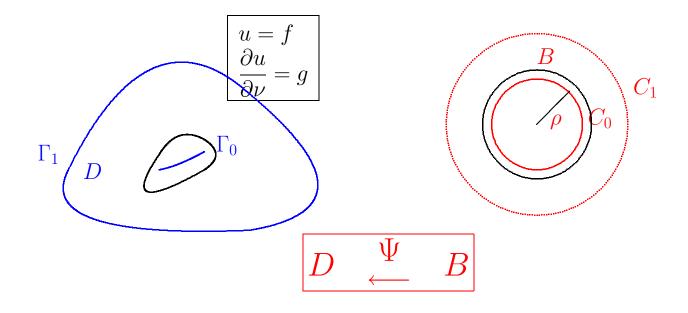
• Nonconstant f required for extensions to other boundary conditions. However, no flux $\int_{\Gamma_0} g\,ds=0$ has to be observed

• Inverse Problems 18, 1659–1672 (2002)

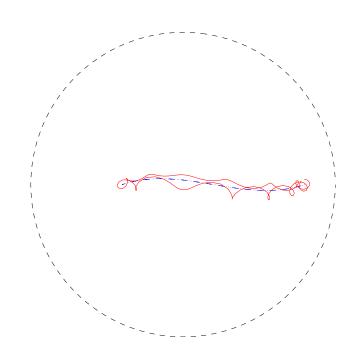
Cracks!!!

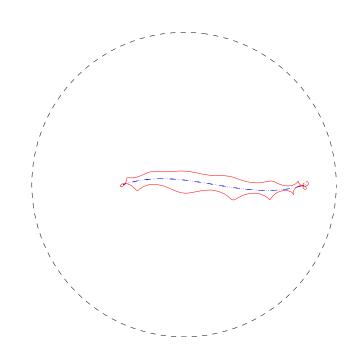


Cracks!!!



Try $\Gamma_0 \approx \Psi(\widetilde{C}_0)$ with radius $\rho(1 + \lambda)$ for \widetilde{C}_0





Open problems:

- Other boundary conditions
- Incomplete data
- Satisfactory analysis for cracks
- Other regularizations in second step