
Electrostatic Imaging

via Conformal Mapping

R. Kress

Göttingen

joint work with

I. Akduman

Istanbul



Or: A new solution method for inverse boun-

dary value problems for the Laplace equation

Determine shape Γ0 of a

• perfectly conducting or

• nonconducting inclusion or

• inclusion with different con-

ductivity

from overdetermined Cauchy da-

ta on Γ1

D
Γ1

Γ0

Applications in the field of nondestructive testing

via electrostatic imaging or thermal imaging, e.g.,

impedance tomography



Here: Perfectly conducting inclusion, i.e.,

inverse Dirichlet problem

Extensions to other boundary conditions are in prepara-

tion

1. Brief survey on other methods

(see 2. ed. of Linear Integral Equations)

2. Description of new method

3. Some numerical examples



The inverse problem

D

�
��
ν

Γ1
Γ0

∆u = 0 in D

u = 0 on Γ0

u = f on Γ1

Inverse Problem:

Given g =
∂u

∂ν
on Γ1 (and f ), find boundary Γ0

Uniqueness!!!



Uniqueness!!!

Γ1

u = f
∂u

∂ν
= g

Γ0 ↔ u

Γ̃0 ↔ ũ

Γ0 Γ̃0

u = ũ

In shaded domain: 4u = 0

On boundary: u = 0

Schiffer ≈ 1960



Existence???

For inverse boundary value pro-

blems, in general, wrong que-

stion to ask. Would need to cha-

racterize Cauchy data on Γ1 for

which the corresponding solution

vanishes on a closed surface Γ0

(or curve) within Γ1.

u = f
∂u

∂ν
= g

Γ1

u = 0Γ0

Main Task: Assuming correct data or perturbed

correct data,

design method for approximate and stable solution



Separate ill-posedness and nonlinearity

1. Determine u from Cauchy

data on Γ1 (for example via

potentials and integral equations

of the first kind)

Kirsch, K. (1987)

u = f
∂u

∂ν
= g

Γ1

u = 0Γ0
Γ

2. Find Γ0 as location of the zeros

of u (in a least squares sense)

Pros:

• Conceptionally simple

• No need for forward solver

Contras:

• No high class reconstructions

• Gap between theory and numerics

• Domain for Cauchy problem not

known in first step



Newton type iterations

1. Interpret inverse problem as

operator equation F (Γ0) = g

where

F : Γ0 7→
∂u

∂ν

∣∣∣∣
Γ1

u = f
∂u

∂ν
= g

Γ1

u = 0

Γ0

2. Solve by regularized Newton

iterations

Pros:

• Conceptionally simple

• High class reconstructions

Contras:

• Need forward solver

• Need good a priori information

• Convergence analysis difficult

Hohage (1999), Potthast (2001)



Kirsch’s factorization method

Characterize unknown domain

via spectral data of the Dirichlet-

to-Neumann operator

A : u 7→ ∂u

∂ν

on Γ1

u = f
∂u

∂ν
= g

Γ1

u = 0

Γ0

Hähner (1999), K. (1999), Kühn (2001)

Brühl, Hanke (2000)

Pros:

• Elegant mathematics

• Simple implementation

• No a priori information needed

Contras:

• Need a lot of data

• No high class reconstructions

• Very sensitive to noise



Our method

1. Solve nonlocal nonlinear

ordinary differential equation for

boundary values of a conformal

mapping (by successive iterati-

ons)

u = f
∂u

∂ν
= g

Γ1

u = 0

Γ0

2. Solve Cauchy problem for a

holomorphic function in an annu-

lus

Pros:

• Conceptionally simple

• Satisfactory reconstructions

• Domain for Cauchy problem is

known

Contras:

• Restricted to two dimensions

• and to Laplace equation



u = f
∂u

∂ν
= g

u = 0

D Ψ
←− B

Γ0Γ1
∗ = Ψ(1)

D

B

C1

∗C0ρ�
�
�

u in D v = u ◦ Ψ in B

Γ1 = {γ(s) : s ∈ [0, L]} C1 = {eit : t ∈ [0, 2π]}

ϕ : arc length on C1 7→ arc length on Γ1

Ψ(eit) = γ(ϕ(t)) knowing ϕ equivalent to knowing Ψ|C1



u = f
∂u

∂ν
= g

u = 0

Γ0Γ1
D

B

C1

C0ρ�
�
�

←− Ψ, ϕ

u, ũ and v = u ◦ Ψ, ṽ = ũ ◦ Ψ conjugate harmonics

ṽ(t) = ũ(ϕ(t)) ⇒ ∂ṽ

∂t
=
∂ũ

∂s

dϕ

dt

Cauchy–Riemann equations ⇒ ∂v

∂ν
=
∂u

∂ν

dϕ

dt

dϕ

dt
=
A(f ◦ ϕ)

g ◦ ϕ
A = Dirichlet-to-Neumann map forB



u = f,
∂u

∂ν
= g on Γ1∫

C0

∂v

∂ν
ds =

∫
C1

∂v

∂ν
ds =

∫
Γ1

g ds

B

C1

C0ρ�
�
�

∫
C0

{
ln |x| ∂v

∂ν
− v 1

|x|

}
ds =

∫
C1

{
ln |x| ∂v

∂ν
− v 1

|x|

}
ds

ln ρ

∫
C0

∂v

∂ν
ds = −

∫
C1

v ds

ρ = exp

(
−
∫ 2π

0 f ◦ ϕdt∫
Γ1
g ds

)



dϕ

dt
=
A(f ◦ ϕ)

g ◦ ϕ
A = Dirichlet-to-Neumann map for

B

L =

∫ 2π

0

A(f ◦ ϕ)

g ◦ ϕ
dt

dϕ

dt
=
A(f ◦ ϕ)

g ◦ ϕ
+
L

2π
− 1

2π

∫ 2π

0

A(f ◦ ϕ)

g ◦ ϕ
dt

Makes sure that

ϕ(2π) = L

throughout the iteration



ρ = exp

(
−
∫ 2π

0 f ◦ ϕdt∫
Γ1
g ds

)

dϕ

dt
=
A(f ◦ ϕ)

g ◦ ϕ
+
L

2π
− 1

2π

∫ 2π

0

A(f ◦ ϕ)

g ◦ ϕ
dt



ρn = exp

(
−
∫ 2π

0 f ◦ ϕn dt∫
Γ1
g ds

)

dϕn+1

dt
=
An(f ◦ ϕn)

g ◦ ϕn
+
L

2π
− 1

2π

∫ 2π

0

An(f ◦ ϕn)

g ◦ ϕn
dt

ϕ0(t) =
L

2π
t, correct if D annulus

Theorem Under appropriate assumptions on D and f

the successive approximations converge in H1[0, 2π].



dϕn+1

dt
=
An(f ◦ ϕn)

g ◦ ϕn
+
L

2π
− 1

2π

∫ 2π

0

An(f ◦ ϕn)

g ◦ ϕn
dt

Numerical implementation:

ϕn(t) ≈ L

2π
t + αn,0 +

N∑
k=1

[αn,k cos kt + βn,k sin kt]

Ln :=
1

2π

∫ 2π

0

An(f ◦ ϕn)

g ◦ ϕn
dt− L

2π

(g ◦ ϕn)(tj) {ϕ′n+1(tj) + Ln} − An(f ◦ ϕn)(tj) = 0,

j = 1, . . . , J

Solve by least squares to update coefficients

Use trigonometric interpolation for f ◦ ϕ and g ◦ ϕ



Now, we know the radius ρ and

Ψ = γ ◦ϕ on the outer circle C1,

i.e., Fourier series
B

C1

C0ρ�
�
�

γ(ϕ(t)) =

∞∑
k=−∞

bke
ikt

Solve Cauchy problem for Ψ

in B via Laurent expansion

Ψ(z) =

∞∑
k=−∞

bkz
k, ρ ≤ |z| ≤ 1

and obtain unknown boundary by

Γ0 = Ψ(C0) ≈

{
M∑

k=−M

ρkbke
ikt, 0 ≤ t ≤ 2π

}
Need to truncate because of exponential ill-posedness.



Our method

1. Solve nonlocal nonlinear

ordinary differential equation for

boundary values of a conformal

mapping (by successive iterati-

ons)

u = f
∂u

∂ν
= g

Γ1

u = 0

Γ0

2. Solve Cauchy problem for a

holomorphic function in an annu-

lus



For numerical examples Γ1 unit circle

f (t) = 3 + 2 cos2 t

N = 6 . . . 8, M = 6 . . . 8, n = 32

Between 6 to 10 iterations
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Exact         
Reconstruction



Exact         
Reconstruction



Remarks:

• Idemen, Akduman (1988)

f = f0 = const ⇒ dϕ

dt
= − 1

ln ρ

f0

g ◦ ϕ

• Nonconstant f required for extensions to other boun-

dary conditions. However, no flux
∫

Γ0
g ds = 0 has to be

observed

• Inverse Problems 18, 1659–1672 (2002)



Cracks!!!

u = f
∂u

∂ν
= g

u = 0

D Ψ
←− B

Γ0Γ1
D

B

C1

C0ρ�
�
�



Cracks!!!

u = f
∂u

∂ν
= g

D Ψ
←− B

Γ0Γ1
D

B

C1

C0ρ�
�
�

Try Γ0 ≈ Ψ(C̃0) with radius ρ(1 + λ) for C̃0







Open problems:

• Other boundary conditions

• Incomplete data

• Satisfactory analysis for cracks

• Other regularizations in second step


