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• “Geometric tomography” (Gardner et al.): how to reconstruct a
body from (finitely many values of) the areas of its projections
(brightness function)/cross-sections

• Nonunique for general objects (Blaschke’s bullet/Reuleaux tri-
angle); we only get the symmetric part of a convex object

• GENERALIZED brightness functions:

1. Shadowing effects, i.e., the object is illuminated and viewed
from different directions (S2 × S2 instead ofS2)

2. Light-scattering effects, i.e., additional weight functions in
the projection integral

• Applications in solar system remote sensing:The resolving
capacity of photometric inversion lies between space tele-
scope and radar, and its range extends from near-Earth to
main-belt asteroids
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Brightness conributiondL of a visible and illuminated surface patchdA:

dL = S(µ, µ0)$dA (1)

whereS and$ are the scattering law (in a simple form here) and the intrinsic brightness of
the surface material;

µ = E · n, µ0 = E0 · n, (2)

whereE andE0 are, respectively, unit vectors towards the observer (Earth) and the Sun, andn

is the surface unit normal. Often$ ≡ 1.
Geometric tomography is restricted toE = E0 andS = µ. In the general case, a typical

form for S is, e.g.,

S = µµ0(
1

µ + µ0
+ c). (3)

For convex bodiesr = r(n). Whenn is given by the polar coordinatesn = n(ϑ, ψ), we
have for the restrictedS2-case

L(E, r) =

∫ ∫
µ≥0

S(µ)G(ϑ, ψ) sinϑ dϑ dψ, (4)

where

G(ϑ, ψ) =
|J(ϑ, ψ)|

sinϑ
, (5)

andJ is the Jacobian
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J(ϑ, ψ) =
∂r

∂ϑ
× ∂r

∂ψ
. (6)

Expanding (L2-function)G as a Laplace series

G(ϑ, ψ) =

∞∑
l=0

l∑
m=−l

glm Y
m
l (ϑ, ψ), (7)

we obtain, with the projection direction given by(θ, ϕ),

L(θ, ϕ) = 2π
∑
lm

kl glm Y
m
l (θ, ϕ), (8)

where, withS = µn,

k
(n)
l =

∫ 1

0

xnPl(x) dx. (9)

For integern, k(n)
l have the recursion relation

k
(n)
l =

n

l + n + 1
k

(n−1)
l−1 , (10)

starting withk(n)
0 = 1

n+1, and for oddl k(0)
l = (−1)(l−1)/2 (l−2)!!

(l+1)!!, while k(0)
l = 0 for evenl > 0.

Thuskl = 0 for odd l > 1 for geometric tomography (n = 1), so the projections contain
information only onglm with evenl. If n = 2, kl = 0 for evenl > 2. Thus the scattering
law must beat least of the general form(3) to hold complete information on convex shape on
S2-data.
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1. General convex case
Ylm are the basis functions of the irreducible representations of SO(3). We can also use the

representations, i.e., the rotation matricesD
(l)
m′m, as our basis for describingS2×S2-data. Now

the generalized brightness function is

L(E,E0, r) =
∑
lm

glm
∑
m′

D
(l)
m′m(κ, ε, δ) Ilm′(α), (11)

where the suitable Euler anglesκ, ε, δ and the solar phase angleα = arccos(E · E0) define a
point onS2 × S2, and

Ilm′(α) =

∫ π

α

∫ π

0

S(µ, µ0, α)Y m′
l (ϑ, ψ) sinψ dϑ dψ. (12)

Due to the orthogonality ofD(l)
m′m, we know that observations at a givenα can indeed be

written as a series inD(l)
m′m(κ, ε, δ). Thus there are always equations directly relating aglm to

an observedD-series coefficientclm′m. There is always anIlm′ 6= 0 for anyl, so information on
all glm is preserved inL whenα 6= 0.

=> S2 × S2-data uniquely determine the curvature of a convex surface.
Minkowski has shown that the curvature of a convex surface uniquely determines its shape

(Minkowski 1903, Nirenberg 1953).
=> S2 × S2-data uniquely determine the shape of a convex surface.

Minkowski problem
Define support function%(ϑ, ψ) = r(ϑ, ψ) · n(ϑ, ψ) (the inverse function forr is

r(ϑ, ψ) = MT (ϑ, ψ)q(ϑ, ψ), (13)

5



whereqT = (%ϑ, %ψ/ sinψ, %), andM is an orthogonal matrix), and the mixed volume of two
bodiesR andS

Ṽ (R, S) =
1

3

∫ 2π

0

∫ π

0

%R(ϑ, ψ)GS(ϑ, ψ) sinϑ dϑ dψ. (14)

Let VR = 1; thenṼ (R, S) reaches its minimum exactly whenR is homothetic withS.
→ minimize< x,g > in Rn, with V (x)=1
<=> maximizeV (x) while staying on the hyperplane< x,g >= const. (now the con-

straint eqn. is linear).x andg are discretized either with Laplace series coeffs. (Lamberg and
Kaasalainen 2001; Newton/steepest descent) or in polytope form with facet distances from the
origin l and facet areasA for chosen facet normal set{nj, j = 1...n} (using theR3-dual space
r′j = nj/lj in polytope construction froml).

Using a Laplace series representation for%, we have

Ṽ (R, S) =
∑
lm

%
(R)
lm a

(S)
lm , (15)

where

a
(S)
lm =

1

3

∫ 2π

0

∫ π

0

GS(ϑ, ψ)Y m
l (ϑ, ψ) sinϑ dϑ dψ. (16)

In polytope representation, we have

Ṽ (R, S) =
1

3

n∑
j=1

l
(R)
j A

(S)
j . (17)

Brunn-Minkowski theorem: the set{l(R)
j |Ṽ (R,R) ≥ 1} in Rn is convex, so a local minimum

of Ṽ (R, S) is the global one.
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→ demonstrably converging iteration procedure (Lamberg 1993).

Removing ill-posedness via (nonlinear) positive definiteness
The convex inverse problem can be cast in the form

L = Mg. (18)

Linear least-squares solution is ill-posed since it allows negative curvature or facet areas (but
note that the integralskl andIlm′ decrease fast with increasingl → high-order shape details
affectL very little).

Stable result is obtained by making the curvature (or areas) positive definite by nonlinear
minimization of

χ2 = ||L−Mg||2 (19)

with gj = Aj = exp(aj) (conjugate gradients), or using

G(ϑ, ψ) = exp
(∑

lm

almY
m
l (ϑ, ψ)

)
(20)

and Levenberg-Marquardt. Defining positivity is considerably more robust than, e.g., barrier
functions – no additional reg. fns. are needed.

Similarly, any other parameters to be assigned to an interval]a, b[ are mapped by

a < x < b => x = a + (b− a)
exp(y)

1 + exp(y)
, −∞ < y <∞ (21)

Indication of variegation of the intrinsic darkness of surface:∑
j

njAj 6= 0. (22)

This can also be used as a regularization function.
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2. Nonconvex original→ convex model
• This is where we have to leave analytic proofs because of nonconvexity

• Usually convex inversion produces a good approximation of the convex hull of the origi-
nating body

• The information content of brightness functions is strong: also the spin state of the body
can be obtained (the rotation parameters that define the vectorsE andE0 in the body’s
coordinate system)

• Minkowski stability: solution is stable against noise and insufficient knowledge of the
scattering law

• Statistical properties of fractal/Gaussian/other surfaces at smaller scales thanr-resolution?
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3. Nonconvex→ nonconvex
• Optimizer directly with ray-tracing algorithms

Conjecture:
Generalized brightness functions determine the shape (and spin state) of a nonconvex body,

with some possible constraints such as the difference between the viewing and illumination
directions, the length scale for the reconstructed nonconvex details, and the coordinate system
for the shape representation (but a class larger than star bodies is allowed).

Inversion is not ill-posed, either!
Left: 2002 vertices, 4000 facets
Right: Laplace series,l = 6,m = 6 (258 vertices, 512 facets)
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Asteroid examples:
• Increasing irregularity as size decreases, but even large bodies may have irregular features

• Albedo variegation weak or moderate

• Possible large contact binaries (Nysa, Daphne, Hector)
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• The smallest ones have widely varying shapes; often sharp, collision-fragment like features

• Despite the high solar phase angles, so far only implicit indications of large nonconvexities
(scattering law not known accurately, so impossible to get nonconvex details→ convex
inversion converges better)

1580 Betulia

1980 Tezcatlipoca
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Lightcurves of 1580 Betulia:
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Multidatainversion with complementary data

• Main sources of asteroid data:

1. Photometry(many targets, long range)

2. In situobservations (very few targets)

3. Delay-Doppler radar (relatively few targets, limited range)

4. (Spectroscopy + astrometry)

• Complementary data:

1. CW radar (Doppler only)

2. Interferometry (Hubble Space Telescope/FGS, speckle)

3. ‘Snapshots’: HST, adaptive optics

4. Stellar occultations

5. Thermal IR

6. Ultraprecise astrometry/photocentre offset (GAIA etc.)

7. Polarimetry

• Simultaneous optimization

– χ2
tot = χ2 +

∑
i λiχ

2
i

– Rough data, smallλi: constraints (binaries)

– Accurate data, largeλi: details (nonconvexities)
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