Parabolic BMO and the forward-in-time maximal operator

Olli Saari, Aalto University

10th International Conference on Harmonic Analysis and Partial Differential Equations El Escorial, Madrid

June 15, 2016

 A function u ∈ L¹_{loc} is said to be of bounded mean oscillation (u ∈ BMO) if

$$\|u\|_{\mathsf{BMO}} = \sup_{Q} \oint_{Q} |u - u_{Q}| < \infty.$$

The remarkable John-Nirenberg inequality asserts that

$$\sup_{Q} f_{Q} \exp(\epsilon |u - u_{Q}|) < \infty$$

for some positive $\epsilon \lesssim \|u\|_{BMO}^{-1}$.

- BMO is connected to many questions of harmonic analysis. In particular, BMO = {α log w : w ∈ A₂, α ∈ ℝ}.
- There is also an interesting connection between BMO, A₂ and the regularity theory of elliptic PDE of divergence form.

Elliptic PDE

• Let A be a matrix of measurable functions $a_{ij}(x)$ such that

$$\Lambda^{-1}|\xi|^2 \le \xi \cdot A\xi \le \Lambda|\xi|^2$$

for some $\Lambda \in (1, \infty)$ uniformly in *x*.

• If w is a positive weak (super)solution to

$$\operatorname{div}(A\nabla w) = 0 \quad \text{in } \Omega \subset \mathbb{R}^n,$$

then $u = \log w \in BMO(\Omega)$. This is an important observation in Moser's proof of the DeGiorgi–Nash–Moser theorem.

- As a consequence, $w^{\epsilon} \in A_2$. It is also true that $w \in A_1$.
- Recall that $w \in A_p$ if

$$[w]_{\mathcal{A}^p} = \sup_{Q \subset \Omega} \oint_Q w \left(\oint_Q w^{1-p'} \right)^{p-1} < \infty, \quad 1 \le p \le \infty.$$

Parabolic PDE

- BMO arises in an intrinsic manner from elliptic PDE. We would like to see what happens with parabolic ones.
- We consider local solutions to e.g. one of the following

$$u_t - \Delta u = 0,$$

$$u_t - \operatorname{div}(A\nabla u) = 0,$$

$$(u^{p-1})_t - \operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0$$

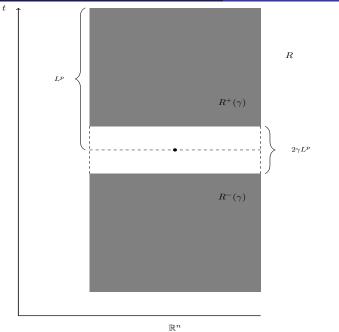
in $\Omega \times (0, T)$. For our purposes, the last one is the most general one, and we will concentrate on it.

• In general, the positive solutions cannot be Muckenhoupt A₂ weights in any obvious way (they can fail to be doubling measures with respect to any reasonable metric). Consequently, parabolic BMO must encode this "non-doubling" feature. I will give a summary of the recent results about parabolic BMO arising from PDE. A part of the work is joint with J. Kinnunen. The rest of the talk consists of

- **1** Notation in the space time \mathbb{R}^{n+1} .
- **2** The definition of parabolic BMO.
- Weights.
- The forward-in-time maximal operator.

- The basic structure of ut Δu = 0 and its generalizations is preserved under translations z → z + h and anisotropic dilations (x, t) → (δx, δ^pt) of the coordinates. (p = 2 for the heat equation)
- These transformations generate parabolic rectangles. We denote

$$egin{aligned} R &= R(x,t,L) = Q(x,L) imes (t-L^p,t+L^p), \ R^+(\gamma) &= Q(x,L) imes (t+\gamma L^p,t+L^p) \quad ext{and} \ R^-(\gamma) &= Q(x,L) imes (t-L^p,t-\gamma L^p). \end{aligned}$$



• It was discovered in the 1960s that the solutions to parabolic equations *f* satisfy

$$\int_{R^+(0)} \int_{R^-(0)} \sqrt{(u(x) - u(y))^+} \, \mathrm{d}x \, \mathrm{d}y < C(n, p)$$

for $u = -\log f$. (Moser, Trudinger)

• The parabolic John-Nirenberg lemma (Moser, Trudinger, Aimar) tells that

$$\int_{R^+(\gamma)} \int_{R^-(\gamma)} \exp(\epsilon(u(x) - u(y))^+) \, \mathrm{d}x \, \mathrm{d}y < C(n, p, \gamma)$$
for any $\gamma \in (0, 1)$.

The definition of PBMO⁻, S. 2014

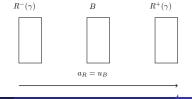
• **Definition**: $u \in \mathsf{PBMO}^-$ if

$$\|u\|_{\mathsf{PBMO}^{-}} := \sup_{R} \inf_{a} \left(\oint_{R^{-}(\frac{1}{2})} (u-a)^{+} + \oint_{R^{+}(\frac{1}{2})} (a-u)^{+} \right) < \infty.$$

• Theorem: It holds that

$$\|u\|_{\mathsf{PBMO}^{-}} \approx_{n,p,\gamma} \sup_{R} \inf_{a} \left(\oint_{R^{-}(\gamma)} (u-a)^{+} + \oint_{R^{+}(\gamma)} (a-u)^{+} \right).$$

• **Corollary**: It is possible to replace the constant *a* of the definition by the mean value in a certain cylinder:



Parabolic BMO

• Recall the (modified) definition of the standard BMO: $u \in \mathsf{BMO}$ if $u \in L^1_{loc}$ and

$$\sup_{R} \oint_{R} |u-u_{R}| < \infty,$$

the supremum being taken over all parabolic rectangles.

• We have BMO = PBMO⁻ ∩ PBMO⁺ and none of the three classes of functions coincide.

• The weights $A_a^+(\gamma)$ corresponding to PBMO⁻ are the ones satisfying

$$\sup_R \oint_{R^-(\gamma)} w\left(\oint_{R^+(\gamma)} w^{1-q'} \right)^{q-1} < \infty, \quad 1 < q < \infty.$$

- As in the case of PBMO⁻, we have that $A_q^+(\gamma) = A_q^+(\gamma')$ for all $\gamma, \gamma' \in (0, 1)$.
- It holds

$$\mathsf{PBMO}^- = \{ \alpha \log w : w \in A^+_q, \alpha \in (0,\infty), q \in (1,\infty) \}.$$

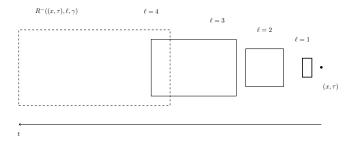
(Kinnunen and S. 2014)

Weights II

• We define the forward-in-time maximal function as

$$M^{\gamma+}f(z):=\sup_{\ell>0}\int_{R^+(z,\ell,\gamma)}|f|.$$

 For q ∈ (1,∞), the operator M^{γ+} : L^q(w) → L^q(w) is bounded if and only if w ∈ A⁺_q(γ) (Kinnunen and S. 2014).



PBMO and forward-in-time maximal function, S. 2016

Theorem

Let $u \in \mathsf{PBMO}^+$ be non-negative. If $M^{\gamma+}u \in L^1_{loc}$, then $M^{\gamma+}u \in \mathsf{PBMO}^+$.

- The theorem holds true in \mathbb{R}^{n+1} and $\Omega \times \mathbb{R}$.
- Nonnegativity is necessary at least in the latter case.