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1. Introduction

Elliptic partial differential equations can be thought as of equations de-
scribing steady states or equilibria. A particularly interesting class of

such equations is the one associated with the p-Laplace equation
Apu = div(|VulP2Vu) =0, 1<p < oo,

which is the Euler-Lagrange equation for the minimization problem re-

lated to the integral functional

/ Vu(z)|? d.

In many cases the exact form of the equation is not important, but the
characteristic behaviour of the solutions stems from some of its structural
key properties. For instance, the theory of the p-Laplacian mostly carries

over to equations of the form
div A(z,Vu) =0 (1.0.1)
where A is a suitable function subject to the growth condition
Az, Vu) - Vu = |VulP.

The ellipticity, or the fact that there are no preferred directions is man-
ifested in the symmetries enjoyed by the equations (1.0.1). Both trans-
lations and dilations of the coordinate space leave the class of solutions
invariant. As a consequence, regularity estimates derived in the unit ball
carry over to all balls in a scale and location invariant fashion. In ad-
dition to these obvious symmetries, a certain subclass of quasiconformal
coordinate changes also respects the structure (1.0.1) (see [35]).

The positive solutions to elliptic equations constitute an important sub-
class of Muckenhoupt weights that will be the second motivation for the

theory whose study we are going to embark on. We will hence give a short
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overview of A, classes and their relation to partial differential equations.
The classical paper [71] of Benjamin Muckenhoupt from the 1970s char-
acterized the good weights for the Hardy-Littlewood maximal function
M(e) = s f 1]
Q3zJQ

as the ones satisfying the 4, condition

q—1
sup (][ w) (][ wlq/) <00, qE€(1l,00). (1.0.2)
Q Q Q

More precisely, M : L9(w) — L9(w) boundedly if and only if w € A,. The

original proof consisted of first proving the weak type boundedness
M : LY (w) — LT (w)
and then using a reverse Hélder property to get
M : LT (w) — L9 (w)

whence the result followed by Marcinkiewicz interpolation.

Muckenhoupt’s original paper was motivated by applications to Fourier
series, but the result drew plenty of interest also from other areas, and A,
weights have become a standard part of the theory of Calderén-Zygmund
operators and that of partial differential equations. In addition to the
qualitative one-weight norm inequalities, the study of sharp quantitative
estimates as well as attempts to extend the results to the two weight case
have been very active areas of research in the recent years (see for exam-
ple [40, 41, 51]). We will not review the classical theory, but we refer to
the classical books [22, 27, 32, 33, 84] instead.

The class of Muckenhoupt weights is also connected to the regularity
theory of elliptic equations. It plays a crucial role in Moser’s proof of the
Harnack inequality [68], namely, if u is a positive solution, then there is
¢ > 0 such that

1 1/e 1 —1/e
esssup,eo u(r) S (Q/Qu5> < (@/@u£> S essinfyeq u(x).

The inequality in the middle reads u® € A,, and it is reached by showing
that log u is a function of bounded mean oscillation whence the actual A
property follows by the John—Nirenberg inequality.

There are also other instances of the theory of differential equations
where Muckenhoupt weights arise naturally. For instance, they are used
in the theory of L? solvability of boundary value problems in rough do-

mains (see [46]), and elliptic operators with degeneracy governed by a

10
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suitable Muckenhoupt weight have also been studied. Namely, the ad-
ditional degeneracy of the ellipticity of a linear differential operator of
divergence form does not deteriorate the regularity of solutions to the cor-
responding differential equation if it satisfies a certain Muckenhoupt con-
dition (see [24]).

The theory of elliptic equations and Muckenhoupt weights is well es-
tablished by now, but when it comes to nonlinear parabolic (or time de-
pendent) equations, much less has been done. The aim of this thesis is
to investigate systematically how the similarities of elliptic and parabolic
equations carry over to weights. Our focus is on the parabolic analogues of
the functions of bounded mean oscillation together with related weighted
norm inequalities. In particular, we are interested in a point of view that
is compatible with the standard parabolic regularity theory. With respect
to this kind of parabolic Muckenhoupt theory, the appended publications
III, IV and V make almost all of what is known about the subject.

In what follows, we will give an account of what are the weight classes
generated by the most common parabolic equations, and what is the time-
dependent theory of weighted norm inequalities that degenerates to the
classical theory of Muckenhoupt weights as we move to the time indepen-
dent context. Along the way, we will point out how our theory solves the
long standing open problem of generalizing one-sided weights to n-space

with n > 2.

11
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2. Theory of parabolic Muckenhoupt
weights

2.1 Trudinger’s equation

In the 1960s Jiirgen Moser [69, 70] proved an inequality of Harnack type
for linear parabolic differential equations. At the level of methods, the
linearity was inessential, and the result was generalized to nonlinear
equations of divergence form by Trudinger [85] just a few years later. Fi-
nally, the class of equations for which Moser’s parabolic scale and location
invariant Harnack inequality holds true includes so called Trudinger’s

equation
Or(JulP~%u) — div(|Vu[P~2 - Vu) =0, 1<p < oo, (2.1.1)

together with equations structurally similar to it.
Trudinger’s equation is sometimes called the doubly nonlinear equation,
and the slight generalization to equations with similar structure means

studying equations of the form
Or(|ulP~%u) — div A(z, t, u, Vu) = 0,
where A is a measurable function subject to the growth conditions

A(z,t,u, Vu) - Vu > Co|VulP,
|A(z,t,u, Vu)| < Cy|VulP~t,

where p > 1 is fixed.

Due to the nonlinearity in the time derivative, the model equation enjoys
certain homogeneity. That is, if u is a solution, so is au whenever « is a
real number. Moreover, if this property is destroyed by replacing |u|P~2u
by u in the equation, there will be no scale and location invariant Harnack
inequality (see [21]). On the other hand, as a drawback of the doubly

13



Theory of parabolic Muckenhoupt weights

nonlinear structure, constants cannot be added to solutions, which makes
the regularity theory of Trudinger’s equation different from that of its p-
parabolic cousin.

After all, having weighted norm inequalities in mind, we are lead to re-
gard the doubly nonlinear equation as a natural starting point for study-
ing weight properties of solutions to parabolic equations, since in that
context multiplication by positive constants should not have effect on the
character of weights whereas adding a constant to a weight function is
not so important an operation to be worried about. Note that even if there
are already studies on degeneracies governed by weights (see [13]), those
problems have very little to do with the questions we are going to study.

The proof of the parabolic Harnack inequality follows the same scheme
as Moser’s earlier work on the elliptic Harnack inequality [68], that is,
one first proves two endpoint reverse Holder inequalities and then glues
them together with a condition similar to Muckenhoupt’s As. More briefly,
for a space time cylinder R~ together with its suitable forward-in-time

translate R, one may establish the string of inequalities

1 1/e
esssup,cp- u(z) < (_/ u5>
zER ( |2R | .

1 —1/e
< <2R+| /QR+ u5> S essinf,cp+ u(z).

There is a striking difference between the Harnack inequalities that the

solutions to stationary and evolutionary problems satisfy. Instead of the
full comparability familiar from the theory of elliptic equations, the solu-
tions to parabolic equations satisfy a much weaker condition. Namely, the
values that a positive solution can attain in a cube are controlled by the
values the solution has in the same cube after a waiting time has passed.
This time lag is completely invisible in the stationary case, and it is a real
phenomenon showing up already in the behaviour of the fundamental so-
lution of the heat equation with constant coefficients.

A careful study of Moser’s proof reveals that the origin of the time lag
can be traced back to a condition playing the role that BMO had in the
corresponding elliptic proof. Because of this analogue, the related class
of functions is called parabolic BMO. In addition to parabolic BMO, one
can define parabolic weights, parabolic maximal operators and so forth.
The main difference between them and their elliptic counterparts can be
summarized as that all the inequalities defining classical concepts such as

Muckenhoupt weight or reverse Holder inequality have a reverse that is

14



Theory of parabolic Muckenhoupt weights

universally true: Jensen’s inequality. In the context of partial differential
equations, this is a manifestation of the fact that elliptic equations de-
scribe equilibria of evolutions associated with parabolic ones, and conse-
quently they are invariant under reversion of the direction of time. Once
this symmetry is lost, a horde of completely new phenomena appears.
Whereas the classical BMO of John and Nirenberg [45] has been stud-
ied extensively in the context of harmonic analysis, the knowledge of
parabolic BMO prior to this work (i.e. III and IV) has been limited to
the very few core properties necessary for running the parabolic Moser
iteration, that is, one only knows that a weak oscillation bound improves
itself to a bound of exponential type. This property has many proofs. In
addition to the original paper by Moser [70], there is a simplified proof
for the quadratic growth case [23] and a general approach valid in spaces
of homogeneous type [2]. Before writing down the definition of parabolic
BMO, we will recall the definition of weak solutions to parabolic differen-

tial equations.

2.2 Solutions

Equation (2.1.1) can be studied in various subdomains D C R"*! of the
space-time, but for us the cases of interest will be the cylinders Qp =
Q x (0,T) with Q C R” a domain. In these cases u € L? (0,T; W, "(Q))
is a local solution if it satisfies the equality (2.1.1) after multiplication
by a compactly supported and non-negative test function ¢ € C5°(Qr)
and a formal integration by parts, that is, if it satisfies it in the sense of

distributions. In case the inequality

// (IVuP=2Vu - Vo — |[ulP"?udyp) > 0
Qp

holds instead of an equality, then u is called a supersolution.
Recall that u € L? (0, T; W,"P(Q)) if 2 — u(z,t) is in W,"P(Q) for almost

loc loc loc

every t € (0,7),t+ |u(-,t)||w1»(qy is measurable, and

/I”u('vt)HWl,p(Q/) dt < o0

for every ' that is the interior of some compact subset of Q and for every

closed I C (0,7).

15
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2.3 Geometry

The first n coordinates of R"*! will constitute the space and the last one
is for time. With this convention, it is important to note that the equa-
tion (2.1.1) is not invariant under the standard scaling (z,t) — (az,at)
associated with Euclidean cubes, but the right scaling is (z,¢) — (az, a’t).
In addition to this parabolic scaling, also translations of the time-space
leave the class of solutions invariant. It follows that the class of Euclidean
cubes must be replaced by the class of sets generated by the transforma-
tions described previously in all regularity estimates from the parabolic

Caccioppoli estimate to the ultimate Harnack inequality

eSS SUP,c g (v) U(2) < C(n, p,7) essinf c g+ () u(2). (2.3.1)

Here the parabolic rectangles
R=Qx (t—1(QP,t+1(QF) c R

are based on cubes Q C R"™ with sides parallel to coordinate axes and
sidelengths [(Q). The parameter v € (0,1) quantifies the time lag and
R™(y) =Q x (t = UQ)P,t = ~(Q)P).

Among the properties of parabolic rectangles we use, the most important
one is probably the following. Parabolic rectangles are metric balls with

respect to the translation invariant metric
1
d((, 1), (0,0)) = max{||z|s, §\t|1/p},

which gives the time axis dimension p > 1. This is one of the phenomena
behind the infinite speed of propagation that the heat equation exhibits,
and it will be crucial for the validity of certain self improving properties

we study.

2.4 Parabolic BMO

Recall that a real valued u € L}, (R") is said to be a function of bounded

mean oscillation if its oscillation

A

is uniformly bounded as a function of Euclidean cubes Q C R™. This
means that whatever cube we take, there exists a constant to approximate

u with respect to L' norm in that cube with error proportional to the scale.

16
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In the parabolic case, we still require good approximation by constants,
but instead of cubes, we use parabolic rectangles, and instead of the abso-
lute value, we measure upper and lower deviations separately in different

locations: the parabolic oscillation is

inf <][ (u— ag)t + ][ (u— aR)_> , 2.4.1)
arER \J Rt (7) R=()

and if this quantity is bounded uniformly in R, we say that « is of parabolic
bounded mean oscillation, abbreviated PBMO™. Note that the sets R*(~)
appearing in the definition are same as the ones in the Harnack inequality
(2.3.1).

The original definition used in Moser’s work [69] is

sup][ ][ V (u(z) —u(w))t dwdz < co.
R JR+(0)JR-(0)

However, the results in III proved that the definition through (2.4.1) leads
to a more clean picture, and in that sense (2.4.1) is the correct definition.
To improve Moser’s L'/? type estimate to L!, one has to accept that a
time lag appears. That is, functions satisfying Moser’s condition are in
PBMO™. The latter condition, in turn, can be used to get exponential

decay for the integrands, that is,

su explelu —a + exp(e(u —aRr) (0. ¢]
Rp<]{w ple(n—on)) +f  expletu—an) >)<

for some € > 0. At the level of exponential integrability, the counterex-
ample by Moser can be used to see that the time lag is necessary. Some
references for these facts are [69], [23], [2] and [48].

The previous reasoning reveals that one can win integrability at the
cost of inducing a lag, and the dimensional difference between space and
time coordinates makes this lag a qualitative phenomenon, which was
exploited in III and IV in order to prove various self-improving proper-
ties. In particular, by incorporating the time lag in the very definition
of parabolic BMO, one can make sure that the function classes defined
through exponential integrability and larger time gap coincide with the
ones defined by the boundedness of (2.4.1). If the lag is not present in the
definition, it is not clear whether all functions satisfying the correspond-

ing John-Nirenberg inequality also belong to parabolic BMO or not.
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2.5 The direction of time

We will next look at the role of the time variable in the definition of
PBMO™. Parabolic BMO is obviously not a vector space since multipli-
cation by a negative constant does not leave the parabolic oscillation un-
changed. Instead of that, it reverses the direction of time. Indeed, as the
condition (2.4.1) on u measures its upper deviation in future, the same
condition written for —u measures the upper deviation of « in the past.
This motivates the definition of the reflected class PBMO~ = — PBMO™,
which could also be defined as PBMO™ = {u(x, —t) : u(z,t) € PBMO™}.

For each property of PBMO™ there is a corresponding statement about
PBMO™, the only difference being that the direction of time is reversed. It
is also clear that the intersection PBMO™ N PBMO™~ equals a BMO space
of classical type provided that we replace the family of cubes in the def-
inition by the family of parabolic rectangles. Moreover, it is easy to see
that if u(z,t) = u(z) € PBMO™ then u € BMO(R"*! x {7}) so that PBMO™
is a consistent generalization of the classical BMO space. This fits in the
picture where we associate the classical BMO with elliptic partial differ-
ential equations.

Parabolic BMO shares many properties with the classical one. For in-
stance, in space time cylinders the local PBMO™ (testing over rectangles
whose dilates are compactly contained in the domain of definition) coin-
cides with the global one (testing over all rectangles). This is an extension
of a theorem usually attributed to Reimann and Rychener [75], and it was
one of the main results in III. On the other hand, the most remarkable
difference between BMO and PBMO™ that is immediate from the defini-
tion is that functions in the parabolic class can decay arbitrarily fast in
the positive time direction, and fast decay can actually compensate the
violations of the oscillation bounds of stationary type. What is more, the
final result of IV tells that, roughly speaking, this is actually the principal
difference between the two spaces.

From a PDE point of view the result makes sense. Since the evolution
is driven by the deviation from a stationary solution, a function far from
the properties of a stationary solutions must have high rate of change in

the time direction.
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2.6 Parabolic A; classes

In analogy with the classical theory, the good weights of a certain max-
imal operator are tightly connected to parabolic BMO. Indeed, a simple

application of the parabolic John-Nirenberg theorem reveals that
PBMO™ = {—alogw : w € A],a > 0}

where the A;r class is defined through the forward in time Muckenhoupt

sup
R

condition

q—1
][ w) <][ wl_q/> <00, ¢q€(1,00).
R=(v) RT(v)

The importance of this relation, whose classical analogue was found in
[16], lies in the fact that the path to an explicit representation of parabolic
BMO goes through factorization of A(‘;. This, in turn, is a deep property
difficult to prove in any way elementary enough to be a reasonable alter-
native in the parabolic setting (compare to [43]), and for succeeding in
finding a short-cut, some powerful tools from weighted norm inequalities
are needed. In other words, once the celebrated Rubio de Francia algo-
rithm is available, the factorization property will follow from few lines by
clever arguments originally due to Coifman, Jones and Rubio de Francia
[15]. But in order to use Rubio de Francia’s method, one has to prove
that A is sufficient for the L9(w)-boundedness of the related maximal
operator.

There is also another motivation to study A;. Apart from the obvious
fact that the weights w € Al with no dependence on time are exactly the
classical Muckenhoupt weights on R", the weights with no dependence on
space can be identified with the one-sided weights on real line. This is
not as straightforward to see as the previous case (due to the time lag),
but consulting [62] and [63] it is easy to convince oneself that this is in-
deed the case. Hence the class A; arising from Trudinger’s equation con-
tains both one-sided and classical Muckenhoupt weights as special cases.
Many properties shared by those simpler weights come directly from A;,
but there are also questions that remain open. For instance, is there a
satisfactory theory of A% in the parabolic multidimensional case? Some
details of this problem are discussed in V.

As it is easy to guess from the properties of PBMO™, AJ also has its
reflected counterpart A, defined in an obvious way. The class A, has the

same relation to PBMO™ as A;IF has to PBMO™. Moreover, the standard
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duality (4,)' 7" = A, takes the form
1—¢' _ 4-
(A — Ay

in the parabolic setting. The reflected classes have an important and non-
trivial role in the theory, and when it comes to problems concerning con-
ditions of A, type, some very interesting questions are tightly related to

their essence.

2.7 The results

The main part of this dissertation consists of a systematic study of the
field described previously, and the most important achievements of the

appended research articles can be summarized in the following items:

i. The definition and local-to-global properties of parabolic BMO together
with applications to parabolic partial differential equations are treated
in III. Once parabolic BMO is defined correctly, it makes sense to ask
whether its definition, which is only based on what happens inside a
domain, also tells something about the behaviour up to the boundary.
It is proved that the answer is affirmative and that functions in local
parabolic BMO are globally exponentially integrable. Consequently, pos-
itive supersolutions to doubly nonlinear equation are globally integrable

to some small power.

ii. Parabolic BMO is characterized in the spirit of Coifman and Rochberg
in IV. Each function satisfying the parabolic BMO condition can be writ-
ten as a sum of a forward-in-time maximal function of a Borel mea-
sure, a backward-in-time maximal function of another measure, and a
bounded function. Conversely, all functions defined through a similar
formula are in parabolic BMO. Compared to the classical case, the maxi-
mal operators appearing in this formula are rather tame, but the precise
assumptions made about the Borel measures allow rather rough objects

to be generated.

iii. The theory of one-sided weights is finally extended to n-space with
n > 2in IV. That is, the characterization of parabolic weights through a
strong type norm inequality in IV is the first fully successful attempt to

define weights in R™ so that the case n = 1 reduces to Sawyer’s original
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one-sided weights, first introduced in 1986 [77].

These three facts together establish a nontrivial theory of weighted norm
inequalities with natural connections to the regularity theory of parabolic
partial differential equations. In the following chapters we will discuss
both the history of the problems as well as the ideas leading to techniques

which are powerful enough to establish the results.
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3. One-sided analysis

3.1 Differentiation bases

The fact that the Hardy-Littlewood maximal function and A, condition
are written in terms of cubes is not essential, and the boundedness of
maximal functions has also been studied in a setting where the basis con-
sisting of cubes with sides parallel to the coordinate axes are replaced
by more general open sets. For more about this kind of results, see for
instance [42].

For our purposes, theorems about weights for differentiation bases have
one severe drawback. A basis is usually defined to be a collection of open
sets B so that every point x € R" is associated with sets x € B € B. As a
consequence, all the Muckenhoupt conditions related to these bases look
like (1.0.2) with cubes replaced by some sets B € B. In the context of
parabolic PDE, this is too restrictive since we usually index the halves of
parabolic rectangles according to their exterior points. Consequently the
parabolic Muckenhoupt weights are not included in the general results

for differentiation bases, and in fact, their theory is different.

3.2 One-sided weights on R

As one renounces the definition of a basis discussed previously, completely
new classes of weights and maximal functions appear. One may associate
to a point z a collection of sets so that « is an exterior point (as we will do
with parabolic weights) or that x is a boundary point. The latter case was
studied first.

In his influential paper from 1986 Eric Sawyer [77] studied the bound-

edness of the one-sided maximal function on weighted LP spaces on the

23



One-sided analysis

real line. The one-sided maximal function is defined as

z+h
M*f(z) = sup - / £l

h
h>0
Here each = € R has its collection of intervals {(z,z + h) : h > 0} so that

x is a boundary point. Sawyer managed to characterize the good weights

as the ones satisfying
1

1 [z 1 z+h , qa-
sup (/ w> </ wl_q> <00, g€ (1,00).
pe e AR
A short explanation for the difference between this and the previous con-
dition (1.0.2) is that the values of f on (z,z + h) are seen by M ™ f only
from the half-line (—o0, ).

The original motivation to study one-sided maximal operator came from

ergodic maximal functions
x 1 g i
P =g 3 AT)
where f : X — R, X is a probability space and 7" : X — X is an er-
godic transformation, but the theory of one-sided weights has also some
intrinsic interest.

After Sawyer’s result [77] plenty of papers were written by Francisco
Martin Reyes and many other authors in order to extend the results re-
lated to weighted norm inequalities to the one-sided setting. The exten-
sive theory includes one-sided maximal and minimal operators [8, 18, 19,
20, 54, 59, 60, 61, 63, 65, 66], one-sided BMO* and A% [3, 62, 64, 17],
singular integrals with one-sided kernel [4, 79, 73, 76], and commutators
[55, 56]. The results are based on effective use of one-dimensional cov-
ering arguments as well as the simple geometry of the real line, and the

methods do not work in higher dimensions.

3.3 One-sided analysis in higher dimensions

The first attempt to generalize one-sided weights to R™ was in 2005 by
Sheldy Ombrosi [72]. The latter paper defines a dyadic model for a coor-
dinatewise analogue of the one-sided maximal function and characterizes
the weighted weak type (g, ¢) norm inequality for it.

For a dyadic cube Q = (z1 — h,x1) X -+ X (2, — h,1,,) one defines Q" =
(x1,21 + h) X -+ X (2, z,, + h), and the related maximal function is given
by

T sup][ |1l
Q3zJQT
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The good weights are the obvious ones:

-1
sup <][ w) <][ wl_q,>q < 00. (3.3.1)
Q Q Qt

The techniques were pushed further in [25], where the one-sided weights
(3.3.1) without restriction to dyadic cubes were shown to be exactly the
ones that support the weighted weak type (¢,¢) inequality for the one-
sided maximal function in R?. Later on, it was proved in [52] and [7] that
(3.3.1) is sufficient for weighted strong type (¢, ¢) for all maximal opera-

tors {N"*},¢(0,1) which look at collections formed by
{(x1 +rh,z1 +h) x -+ X (xp +rh, 2y + h) : h > 0}.

The bounds are not uniform in r, and it is not known, whether the limiting
case r = 0 is included or not.

The multidimensional one-sided setting introduced by Ombrosi is slight-
ly different from what we prefer to work in, and the results cannot just be
transferred from one point of view to another. Our approach has to deal
with many phenomena that are absent from the earlier considerations,
but once the right tools to handle them are constructed, the results we get
are stronger in comparison. Moreover, the parabolic setting is justified by
its tight connection to partial differential equations. On the other hand,
both theories are extensions of the same one-dimensional case, and many
problems together with their solutions have similar flavour. In the next
sections, we will discuss in detail some of the ideas that are useful in
the parabolic setting. In first of them, which is devoted to what we call
Ombrosi’s covering technique, we will describe a modification of the key
argument developed in [72] and [25] whereas the remaining two sections
introduce the cornerstones of the parabolic theory whose discovery in III
and IV resulted in the breakthrough, the proof of the open ended property
of the parabolic weights.

3.4 Ombrosi’s covering technique

The characterization of weighted weak type (g, q) inequality in [72] and
[25] was based on a clever covering argument, whose adaptation to the
parabolic setting we will next briefly sketch next. The maximal operator
related to parabolic weights is

MYt f(2) :==su ,
s =swf 1

R
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where the supremum is over parabolic rectangles R centred at z, and we
call it parabolic forward in time maximal operator. For expository pur-
poses, we will concentrate on the geometrically simple (but theoretically
inessential) case p = 1 and v = 0 (the time scales as the space does and
there is no time lag).

In order to prove a weak type estimate for a maximal operator acting on
L%(w), that is, in order to prove an inequality of the form

w(fe e R M > < 5 I,
A Jgn
one usually takes advantage of a covering argument. By this we mean
covering the level set on the left hand side by rectangles that have good
properties in terms of the corresponding means of f on these sets and in
terms of their overlap.

In comparison with more classical cases, the one-sided setting is distin-
guished by two main difficulties. Firstly, the maximal operator is very
far from a centred one. More precisely, arguments such as Besicovitch
covering lemma are not applicable to coverings obtained by naive use of
the definition of the superlevel set. Secondly, the collection used to cover
the level set must preserve its bounded overlap properties when each of
its members is shifted forward in time by its own side length, which will
happen as one applies a one-sided Muckenhoupt condition. Especially the
latter problem is serious. Indeed, it is easy to construct an infinite collec-
tion of pairwise disjoint dyadic cubes so that the intersection of the shifted
family is nonempty.

The scheme that allows us to deal with these problems consists of two
parts. First, in order to live with the fact that the maximal function pro-
duces cubes that cannot be used as a cover, one covers with dilates of
them, keeping the absolute continuity of the integral in mind. Moreover,

since it suffices to consider
{x €R™:2A> MTf > )},

we have a two-sided bound

][ Ifl= A (8.4.1)
R+(0)

for averages of f. This property is crucial in extracting a subcollection of
the closed, nondilated cubes {R; (0)} such that the forward-in-time trans-
lates have subsets with bounded overlap but still accommodate a consid-

erable amount of mass of f.
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For the rest of the argument, the idea is as follows. It suffices to esti-
mate the weighted measure of compact subsets of the level set. For such
a compact set, one may get a finite number of cubes, and for each cube a
small ball centred at the center of the face with largest time coordinate
(evaluation point) so that the balls cover the level set. A selection algo-
rithm yields a minimal subcollection of cubes to cover the corresponding
evaluation points.

Using the comparability (3.4.1), one may fix a suitable number of al-
lowed overlaps and design another algorithm to remove parts of the for-
ward in time translates of the cubes in the subcollection that violate this
bound so that the resulting sets still give averages high enough. We will
call them reduced translates. Now certain dilates of the cubes in the min-
imal subcollection cover the balls, and the balls cover the level set. By the
absolute continuity of the integral, it is possible to control the weighted
measure of the dilated cubes by that of non-dilated ones. Moreover, the re-
duced translates give high averages and they have bounded overlap. Now
the reader familiar with the classical theory easily deduces that there will
be no additional problems in the rest of the proof. The detailed argument

can be found in IV.

3.5 Covering through projection

Once the sufficiency of A; for the weak type inequality is known, the
proof of the strong type inequality boils down to proving a self-improving
property. In order to improve the A/ condition to A('][e one has to use a

reverse Holder inequality, which in the context of parabolic weights looks

like
1/(1+6)
][ whto < ][ w.
R—(0) ~ Jr+(0)

The proof of the reverse Holder estimate reduces to proving a level set

estimate of the form
w(R™(0) N{w > A}) SARN{w > BA}, B€(0,1).

Strictly speaking this estimate is not useful, but one needs a very special
pair of sets to replace the naive choice (R~ (0), R) in the display above.
However, the idea is to perform a Calderén-Zygmund covering for the left
hand side, to apply the A} condition (inducing a forward-in-time shift to
the collection), and to collect the pieces together to get the quantity on the

right hand side.
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To succeed in this, one has to design a suitable covering of Calderén-
Zygmund type very carefully. The problems with this part are related to
two main issues: it is easy to find a collection of sets with bounded over-
lap, but preserving this property in a time shift is difficult. Moreover,
there is no obvious way to use dyadic stopping time arguments. The way
to get around these obstacles is to use properties of the spatial and tem-
poral dimensions of the space-time separately. That is, one has to factor
the space-time into the space, which can be equipped with a good dyadic
structure, and into the time, which is one-dimensional.

We will briefly sketch the idea of how to do this. Recall that R~(0) =
Q x (t — P ;t). Take the dyadic subcubes of (), and extend them into
backwards-halves of parabolic rectangles. This forms a basis of metric
balls. The corresponding non-centred maximal function Mw controls w
almost everywhere. Applying Calderén-Zygmund decomposition at each
time-slice

{(z,t) € Q@ x {7} N {Mw > A} },

we get a family pairwise disjoint collections of metric balls. Putting the
collections corresponding to each of the uncountably many slices together,
separating the scales, applying one-dimensional covering argument at
each scale, and running an additional selection process, we get a cover
that can be used to complete the proof. Again, the full proof is more deli-

cate, and the details are written in IV.

3.6 Thelag

In the previous two sections we have not paid much attention to the time
lag. Up to this point, the lag has only been an annoying additional tech-
nicality, but once we try to compose a theorem characterizing the good
weights, it becomes important. More precisely, we can push the non-
lagged theory to the point where weak type norm inequalities are char-
acterized by the non-lagged conditions of Muckenhoupt type. However, in
order to prove that weak type inequalities imply the validity of strong type
norm inequalities, some self-improving property is needed. This amounts
to establishing that membership to a parabolic Muckenhoupt class im-
plies that to a more restrictive one. It is exactly this point which proves
that the way of thinking we have chosen is the correct one.

Roughly speaking, the phenomenon ruining the validity of the elliptic

Harnack inequality in the parabolic case is also present in the context
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of weights. Techniques that usually lead to gain in integrability cause
a certain temporal shift in the geometry of estimates, which often pre-
cludes further applications. The new approach of IV takes the creation of
time lag into account from the very beginning, and a careful study of the
properties of the lagged weight classes shows that in the case relevant to
parabolic differential equations, all self-worsening properties turn out to
be delusive.

A first hint of the time-lag phenomenon for weights was visible already
in the paper [52] of Lerner and Ombrosi: the weights that do not have a
lag in their definition are good for maximal operators that do have. More-
over, the proof of a generalization of their result given by Berkovits in [7]
reformulated this as follows: if a weight satisfies a one-sided A, condi-
tion, then the same weight has to belong to a one-sided A, class with a
lag. Careful investigation of the proof in [7] also reveals that the weight
classes defined with respect to a given lag are good for maximal operators
defined with respect to an even longer waiting time. However, since these
results were considered in a geometry without parabolic scaling, it was
not apparent how to address the problems caused by the lag.

As mentioned earlier, the appearance of the lag is a qualitative phe-
nomenon in the parabolic theory, and exactly this allows us to prove a
Muckenhoupt theorem for parabolic weights. A detailed discussion of this
last ingredient of the proof is postponed until the next chapter, which is
devoted to geometric aspects of the theory. In fact, the lag is handled
by the same tools that are used in studying local-to-global properties for

spaces of BMO type.
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4. Geometric aspects

4.1 Metric spaces

Even if analysis in metric spaces has been a motivation and a source of
inspiration for many of the results discussed in what follows, we will stick
to Euclidean notation for the rest of the chapter. We hope that this will
clarify some points in the exposition. We will, however, devote this first
section to describing the set up of metric spaces, since especially I and II
are about extending results known in R” to more general spaces by com-
posing new proofs that do not use the special structure of the Euclidean
space. Moreover, the generality at which results can be proved usually
hints at what is their true nature.

A triple (X,d, ) consisting of a set X, a metric d and a Borel regular
doubling measure p is called a metric measure space with doubling mea-
sure. The doubling condition means that for all metric balls B(z,r) :=
{ye X :d(xz,y) <r},z € X and r € (0,00) it holds

0 < pu(B(z,2r)) < cyu(B(z,r)) < 00

for an absolute constant ¢, > 1.

It is quite standard to add some more assumptions to those mentioned
above, such as completeness, local compactness and validity of a Poincaré
inequality. Other ways to restrict the class of spaces studied are assump-
tions on existence of paths realizing the distance as their length (geodesic
spaces) or requirements on the shape of balls (chain conditions to be dis-
cussed). In all cases one usually tries to keep some model examples like
Euclidean spaces, Heisenberg groups, and Carnot groups included. As

general references on the subject we mention [34] and [9].
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4.2 Local-to-global theorems

To describe the class of geometric phenomena leading to the theorems we
prove, we return to the Euclidean setting. We will start by giving a re-
view of local-to-global theorems. The basic question they usually address
is simple: given an open and connected set, i.e. a domain, 2 C R" and

a function v : © — R that is assumed to satisfy some local property in

1

Q, for instance v € L,

(Q), is it true that the same property holds glob-
ally? In general this kind of claims are highly nontrivial, the simplest
example being the failure of global integrability of ! on (0, 1). However,
especially in the context of BMO functions, local-to-global phenomena are
ubiquitous. Apart from the fact that this kind of results are interesting as
such, the techniques used in their proofs have proved to be invaluable in
the study of parabolic weights.

Recall that if Q@ C R” is a domain, we say that v € L] (Q) is in local

loc
BMO if
|lullBMO := sup ][ lu —ug| < oo.
2QCQJQ

A theorem of Reimann, Rychener and Staples ([75] and [81]) says that
this implies a global BMO condition, that is, if the quantity in the display
above is finite, then the corresponding quantity with 2Q) replaced by @
is finite too. Moreover, a theorem of Smith, Stegenga and Hurri-Syrjanen
([80] and [38]) tells that if 2 satisfies an additional quasihyperbolic bound-
ary condition to be discussed later, then we have a global John-Nirenberg
inequality

G2
190 {Ju— ual > A} < C1[)e” Wik,

These results were applied by Lindqvist [53] to prove that positive su-
persolutions to

div(|VuP™2Vu) =0, 1<p<oo

raised to some small power ¢ > 0, are globally integrable. This means
that even if the boundary values are rough and create singularities, the
property of being a local solution ensures that the singularities are not
worse that power-like up to the boundary. Before Lindqvist’s nonlinear
result, the global integrability of superharmonic functions had also been
an active area of research, see [1, 5, 30, 57, 58, 67, 82, 83].

Another class of local-to-global results arises from a less known space

JN, defined by John and Nirenberg in their celebrated paper [45]. We say
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that u € JN,(Q) with 1 < p < oo if

K@) = > (@) (]Qu—qu)p <o,

QEW

where WV is a pairwise disjoint collection of cubes 2Q) C € so that the
collection {2Q) : @ € W} has bounded overlap. Instead of exponential
integrability, this condition implies embedding into L”*° at every subcube
with 2Q C Q.

A result by Hurri-Syrjanen et al. [39] tells that also in this case the
requirement 2Q C 2 can be dropped and that the embedding into weak
L? holds globally in John domains 2. By suitable definitions and use of
clever arguments from [26] and [14], the local-to-global results for JN,

were generalized to a wide class of metric spaces in II.

4.3 Classical chaining techniques

The proofs that local spaces of BMO type coincide with the global ones
usually need no assumption on the domain. This is due to the fact that
one may proceed via reducing the estimation to a cube, which makes the
actual domain invisible. When it comes to proving global inequalities of
John-Nirenberg type, the domain becomes more visible again. This will
be the subject of this section, and as general references for the classical
techniques we mention [81] and [10].

A proof of a global inequality is usually implemented as follows: take a
domain €2, choose a reference cube @y C 2, form a suitable decomposition
of Whitney type, connect each Whitney cube to the reference cube by a

curve avoiding the boundary, form a chain of cubes along it, and estimate
A A
@0 {lu—cool > A} < [@N{Ju—col > 5} +1@N{]eq — cqol > S} (4.3.1)

by using the known local inequality for the first term and by using the
properties of the chain, the function, and the domain for the second term.
That is, the result is achieved by patching the local estimates together by
studying how difficult it is to access the reference cube from each one of
the Whitney cubes.

We will next clarify the meaning of this. Given a starting point x; € Q

and an endpoint z, € (2, we look at the line integral

/ di(y)
Yoran Ay, )
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along a curve v, ,, connecting the points. A curve to minimize the integral
above is called a quasihyperbolic geodesic, and the value of the integral

along a minimizing curve is the quasihyperbolic distance

. dl(y)
Fa(wy,@.) = vgllaf:* Lxlz* d(y,Qe)’

Let 5 € (0,1). If we define

r(x) = jﬁﬁd(m, Q°)

and denote by Q(z,!) the cube with sidelength [ and center z, we may con-
struct a collection of cubes {Q;}%_, by taking Q1 = Q(z1,7 (1)), choosing a
quasihyperbolic geodesic connecting z; to x., and defining Q;11 to be the
cube centred at the point x;.1 where the quasihyperbolic geodesic exits
Q; (or z, in case z, € Q;) with sidelength r(z;;+1). This chain will always

have the properties

(i) Q1> 21 and Qy > x4

(ii) %Qi cQforallie{1,... k}

(iii) |Qi N Qit+1| 2 max{|Qil, |Qi+1|} foralli € {1,... k — 1}
(iv) k < ka(z1, x4).

It immediately follows from the properties above that

k—1
‘qu - qu| < Z‘UCL - uQi+1| S (k= DlulBmo-
i=1

This inequality controls the second term in (4.3.1) by the distribution of
the quasihyperbolic metric kg, which makes it possible to use estimates
coming from the geometry of the domain 2. The paper [81] was among
the first ones to realize the importance of this phenomenon.

An interesting feature of the behaviour of BMO functions on a domain is
also revealed: it can always be controlled by the behaviour of the quasihy-
perbolic metric. More specifically, if the quasihyperbolic distance to a fixed
point is exponentially integrable, so are the functions in BMO. Moreover,
this is a characterization. Namely, it is not very difficult to prove that
ka(,.) € BMO(Q).

The domains in which quasihyperbolic metric happens to be exponen-
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tially integrable are exactly those with

1
ko(r, ) < K <log (.5 + 1)

for some constant K. This is called the quasihyperbolic boundary condi-
tion and the domains satisfying it are sometimes called Hoélder domains,
see [28] and [80]. We remark that the class of domains satisfying the
quasihyperbolic boundary condition is rather large. It includes all the
domains in the classes John, Uniform, NTA and Lipschitz.

The chaining technique using quasihyperbolic metric is very convenient
when dealing with BMO, but in the case of JNN, the situation is differ-
ent. No simple connection between JN, and the quasihyperbolic metric
is known, and consequently the current results on local-to-global results
of JN, are proved under different assumptions. At the moment the most
general class of domains for which J N, is known to embed into LP**° is the
class of John domains.

John domains ) can be characterized [11] through the existence of a

collection of balls F and constants Cy > C; > 1, A > 1 such that
(a) Q =UpecrC1B =UpcrCyB.
(b) {C2B : B € F} has bounded overlap.

(c) Each ball C; B, with By € F can be connected to the prescribed central
ball B, € F by a chain similar to that described in (i), (ii) and (iii) so
that cubes are replaced by balls C1 B where B € F.

(d) If V is in the chain connecting B to center, then \V D B.

This characterization is usually called the Boman chain condition (see
[12]), and the property that distinguishes between John domains and
Hoélder domains is (d). And it is exactly this property that makes Boman
chains so easy to use when dealing with JV,, or some more general spaces.
One may control all the chains simultaneously instead of estimating them

one-by-one using the quasihyperbolic metric; see II.
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4.4 Parabolic chains

The classical chaining techniques do not work as such for parabolic BMO
and designing a substitute for them was the main achievement of I1I. We
will briefly discuss the parabolic chains, and this will also be the final
ingredient needed for the completion of the parabolic theory of weights
reported in IV.

The first thing one has to understand when dealing with parabolic BMO
is that once a reference point is chosen, a lot of information is lost about a
certain half-space. That is, if we take (z,t) € QxR and u € PBMO'(QxR),
we should only try to control the positive part of v in Q x (¢,00) and the
negative part in Q x (—oo,t).

Once this is clear, a hint about the actual form of the chains to be used
has already been given: the chains come from one time direction and end
at (z,t). That is, recalling the definition

sup (f (u—aR)++][ (u—aR)> < 00,
R R*(v) R=(v)

we see that given a chain {R;}*_, (and the constants ap, = a;), the best

we can do is (for some sets C;)

(u—ap)t < (u—ay) —0—2 a; — ai41)"
=(u—a)" + ;][C (a; — aip1) ™
k—1
<@-a)+ X £ (o= 4 (= o)),

and the choice suggested by the definition of parabolic BMO is
C; C Ry (v) N RE(7)-

Hence the rough idea is to first construct a classical chain in (2, as de-
scribed in the previous section, and then choose the correct time coordi-
nates to make it a chain in space time respecting the requirement C; C
Ry () N R} (7).

The construction sketched above gives each chain constructed in space
a length in time. It is, however, very important to be able to construct
arbitrarily long chains in space with controlled length in time. This final
problem is solved by using the fact that parabolic rectangles have the
scaling (I,17). Hence, forcing an upper bound o < 1 on the sidelength of
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the rectangles used in a chain, we can impose a flat shape on them. This
upper bound ! < « appears as [P < o” in the time axis, and hence the time
needed to travel along a chain can be controlled by as small a number as
we wish.

A variant of this chaining technique was used together with the forward
in time doubling property of parabolic weights in IV in order to prove that
if w e A (y) with some v € (0,1), then w € A} (v') for all (0,1), which
opened the doors for using a lagged reverse Hélder inequality to improve
the index ¢ of parabolic Muckenhoupt conditions.

The forward in time doubling of parabolic weights w € A} means that if

R is a parabolic rectangle and £ C R"(v) a measurable set, then

w(R™ (7)) < ('R;f’”') w(E).

A similar backwards in time doubling property holds for w!'~? € Ay
These inequalities allow us to control quantities like w(R™ (7)) by w(E)
where F is any set that is connected to R~ (y) by a forward in time chain.
The proof of the qualitative nature of the time lag boils down to cutting a
rectangle under study into small pieces and transporting the pieces face
to face. Due to the scaling difference of time and space the small pieces
will have larger relative Euclidean distance than the original ones, which

completes the proof.

4.5 Quasiconformal mappings

The last topic we study is the invariance of BMO under coordinate changes
or composition operators. The meaning and applications of this category
of results are still very unclear in the parabolic case. Moreover, there is a
rather famous open question already in the context of classical BMO. The
class of quasiconformal mappings will take a decisive role in these consid-
erations. In addition to the fact that they preserve solutions to equations
of type (1.0.1) with p = n; see again [35]), their good properties are also
visible in the realm of harmonic analysis related to rougher objects.

Given a homeomorphism f : R — R", we would like to know when the
operator

Cru=wuof

is bounded on BMO. On the real line the answer is simple. The operator
Cy preserves BMO if and only if f is an increasing function with f’ € A.

This is due to Peter Jones [44]. There is also a corresponding result in

37



Geometric aspects

Euclidean spaces with higher dimension. Reimann [74] proved that if f is
quasiconformal, then C; is bounded. Conversely, if C; is bounded, and f
is differentiable as well as absolutely continuous on lines; then f is qua-
siconformal. A suitable localization procedure due to Astala [6] allows a
characterization through quasiconformality without additional assump-

tions. However, the question whether
[ullemo = [[CrullBmo

implies quasiconformality remains open.

Before going further, we recall some definitions. A homeomorphism is

quasiconformal if the ratio of maximal stretching and contracting remains
bounded at infinitesimal scales, that is, there is a finite H > 1 such that
s (1S @) = F)] € Blar)}

ro0 min{[f(z) — f(y)| : y € R"\ B(,7)}

for all x € R™. This is the metric definition. It is equivalent to the so called

<H

geometric definition through conformal modulus of families of curves, and
to the analytic definition given through the Jacobian and the differential.
The standard reference for quasiconformal mappings on Euclidean spaces
is [88].

The theory of quasiconformal mappings can be established in very gen-
eral metric spaces; see [36, 37, 49], and the Publication I gives a new proof
of Reimann’s theorem that applies to so called Carnot groups, of which the
Euclidean space and the Heisenberg groups are the most well-known ex-
amples. The proof is based on Gotoh’s measure density characterization
of BMO self maps [31], which was extended to metric spaces in [47]. This
result of Reimann type complements the earlier results of [87], which gen-
eralized Astala’s theorem to metric spaces.

In order to explain how the Carnot group structure is used in the proof,
we will briefly outline the procedure in the first Heisenberg group. Recall
that the first Heisenberg group can be realized as R? endowed with the

group operation
(z,y,t) x (', ) = (x + 2",y + ¢/, t + 1/ +ya’ — zy)).

In addition to translations defined through action of group elements, it is
possible to define dilations (z,y,t) — (dx,dy,d°t),§ > 0, that are compati-
ble with the standard metric structure. A homomorphism that commutes
with both translations and dilations is said to be homogeneous. In the

Euclidean space R™ the notion of homogeneous homomorphism coincides
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with that of a linear mapping, and in more general contexts it is used
whenever differentiability is needed.

The fact that quasiconformal mappings preserve BMO is fairly easy to
prove once we know that the pull-back of the volume measure under qua-
sisymmetric maps |f(-)| is A related to the original volume. The con-
verse direction is, however, more difficult and it is not known whether it
can be proved without any group structure on the underlying space o. In
case the underlying space is a Carnot group and the homeomorphism is
assumed to be differentiable, one may approximate it by a homogeneous
homomorphism and verify that the measure density characterization of
BMO self maps implies quasiconformality in its metric form. The use of

the measure density characterization was the key novelty in Publication
L
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