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1. Introduction

Elliptic partial differential equations can be thought as of equations de-

scribing steady states or equilibria. A particularly interesting class of

such equations is the one associated with the p-Laplace equation

Δpu := div(|∇u|p−2∇u) = 0, 1 < p < ∞,

which is the Euler-Lagrange equation for the minimization problem re-

lated to the integral functional
∫
|∇u(x)|p dx.

In many cases the exact form of the equation is not important, but the

characteristic behaviour of the solutions stems from some of its structural

key properties. For instance, the theory of the p-Laplacian mostly carries

over to equations of the form

divA(x,∇u) = 0 (1.0.1)

where A is a suitable function subject to the growth condition

A(x,∇u) · ∇u ≈ |∇u|p.

The ellipticity, or the fact that there are no preferred directions is man-

ifested in the symmetries enjoyed by the equations (1.0.1). Both trans-

lations and dilations of the coordinate space leave the class of solutions

invariant. As a consequence, regularity estimates derived in the unit ball

carry over to all balls in a scale and location invariant fashion. In ad-

dition to these obvious symmetries, a certain subclass of quasiconformal

coordinate changes also respects the structure (1.0.1) (see [35]).

The positive solutions to elliptic equations constitute an important sub-

class of Muckenhoupt weights that will be the second motivation for the

theory whose study we are going to embark on. We will hence give a short
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overview of Aq classes and their relation to partial differential equations.

The classical paper [71] of Benjamin Muckenhoupt from the 1970s char-

acterized the good weights for the Hardy-Littlewood maximal function

Mf(x) := sup
Q�x

−
∫

Q
|f |

as the ones satisfying the Aq condition

sup
Q

(
−
∫

Q
w

)(
−
∫

Q
w1−q′

)q−1
< ∞, q ∈ (1,∞). (1.0.2)

More precisely, M : Lq(w) → Lq(w) boundedly if and only if w ∈ Aq. The

original proof consisted of first proving the weak type boundedness

M : Lq(w) −→ Lq,∞(w)

and then using a reverse Hölder property to get

M : Lq−ε(w) −→ Lq−ε,∞(w)

whence the result followed by Marcinkiewicz interpolation.

Muckenhoupt’s original paper was motivated by applications to Fourier

series, but the result drew plenty of interest also from other areas, and Ap

weights have become a standard part of the theory of Calderón-Zygmund

operators and that of partial differential equations. In addition to the

qualitative one-weight norm inequalities, the study of sharp quantitative

estimates as well as attempts to extend the results to the two weight case

have been very active areas of research in the recent years (see for exam-

ple [40, 41, 51]). We will not review the classical theory, but we refer to

the classical books [22, 27, 32, 33, 84] instead.

The class of Muckenhoupt weights is also connected to the regularity

theory of elliptic equations. It plays a crucial role in Moser’s proof of the

Harnack inequality [68], namely, if u is a positive solution, then there is

ε > 0 such that

ess supx∈Q u(x) �
(

1

|Q|

∫

Q
uε
)1/ε

�
(

1

|Q|

∫

Q
u−ε
)−1/ε

� ess infx∈Q u(x).

The inequality in the middle reads uε ∈ A2, and it is reached by showing

that log u is a function of bounded mean oscillation whence the actual A2

property follows by the John–Nirenberg inequality.

There are also other instances of the theory of differential equations

where Muckenhoupt weights arise naturally. For instance, they are used

in the theory of Lp solvability of boundary value problems in rough do-

mains (see [46]), and elliptic operators with degeneracy governed by a

10
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suitable Muckenhoupt weight have also been studied. Namely, the ad-

ditional degeneracy of the ellipticity of a linear differential operator of

divergence form does not deteriorate the regularity of solutions to the cor-

responding differential equation if it satisfies a certain Muckenhoupt con-

dition (see [24]).

The theory of elliptic equations and Muckenhoupt weights is well es-

tablished by now, but when it comes to nonlinear parabolic (or time de-

pendent) equations, much less has been done. The aim of this thesis is

to investigate systematically how the similarities of elliptic and parabolic

equations carry over to weights. Our focus is on the parabolic analogues of

the functions of bounded mean oscillation together with related weighted

norm inequalities. In particular, we are interested in a point of view that

is compatible with the standard parabolic regularity theory. With respect

to this kind of parabolic Muckenhoupt theory, the appended publications

III, IV and V make almost all of what is known about the subject.

In what follows, we will give an account of what are the weight classes

generated by the most common parabolic equations, and what is the time-

dependent theory of weighted norm inequalities that degenerates to the

classical theory of Muckenhoupt weights as we move to the time indepen-

dent context. Along the way, we will point out how our theory solves the

long standing open problem of generalizing one-sided weights to n-space

with n ≥ 2.

11
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2. Theory of parabolic Muckenhoupt
weights

2.1 Trudinger’s equation

In the 1960s Jürgen Moser [69, 70] proved an inequality of Harnack type

for linear parabolic differential equations. At the level of methods, the

linearity was inessential, and the result was generalized to nonlinear

equations of divergence form by Trudinger [85] just a few years later. Fi-

nally, the class of equations for which Moser’s parabolic scale and location

invariant Harnack inequality holds true includes so called Trudinger’s

equation

∂t(|u|p−2u)− div(|∇u|p−2 · ∇u) = 0, 1 < p < ∞, (2.1.1)

together with equations structurally similar to it.

Trudinger’s equation is sometimes called the doubly nonlinear equation,

and the slight generalization to equations with similar structure means

studying equations of the form

∂t(|u|p−2u)− divA(x, t, u,∇u) = 0,

where A is a measurable function subject to the growth conditions

A(x, t, u,∇u) · ∇u ≥ C0|∇u|p,

|A(x, t, u,∇u)| ≤ C1|∇u|p−1,

where p > 1 is fixed.

Due to the nonlinearity in the time derivative, the model equation enjoys

certain homogeneity. That is, if u is a solution, so is αu whenever α is a

real number. Moreover, if this property is destroyed by replacing |u|p−2u
by u in the equation, there will be no scale and location invariant Harnack

inequality (see [21]). On the other hand, as a drawback of the doubly

13
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nonlinear structure, constants cannot be added to solutions, which makes

the regularity theory of Trudinger’s equation different from that of its p-

parabolic cousin.

After all, having weighted norm inequalities in mind, we are lead to re-

gard the doubly nonlinear equation as a natural starting point for study-

ing weight properties of solutions to parabolic equations, since in that

context multiplication by positive constants should not have effect on the

character of weights whereas adding a constant to a weight function is

not so important an operation to be worried about. Note that even if there

are already studies on degeneracies governed by weights (see [13]), those

problems have very little to do with the questions we are going to study.

The proof of the parabolic Harnack inequality follows the same scheme

as Moser’s earlier work on the elliptic Harnack inequality [68], that is,

one first proves two endpoint reverse Hölder inequalities and then glues

them together with a condition similar to Muckenhoupt’s A2. More briefly,

for a space time cylinder R− together with its suitable forward-in-time

translate R+, one may establish the string of inequalities

ess supz∈R− u(z) �
(

1

|2R−|

∫

2R−
uε
)1/ε

�
(

1

|2R+|

∫

2R+

u−ε
)−1/ε

� ess infz∈R+ u(z).

There is a striking difference between the Harnack inequalities that the

solutions to stationary and evolutionary problems satisfy. Instead of the

full comparability familiar from the theory of elliptic equations, the solu-

tions to parabolic equations satisfy a much weaker condition. Namely, the

values that a positive solution can attain in a cube are controlled by the

values the solution has in the same cube after a waiting time has passed.

This time lag is completely invisible in the stationary case, and it is a real

phenomenon showing up already in the behaviour of the fundamental so-

lution of the heat equation with constant coefficients.

A careful study of Moser’s proof reveals that the origin of the time lag

can be traced back to a condition playing the role that BMO had in the

corresponding elliptic proof. Because of this analogue, the related class

of functions is called parabolic BMO. In addition to parabolic BMO, one

can define parabolic weights, parabolic maximal operators and so forth.

The main difference between them and their elliptic counterparts can be

summarized as that all the inequalities defining classical concepts such as

Muckenhoupt weight or reverse Hölder inequality have a reverse that is

14
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universally true: Jensen’s inequality. In the context of partial differential

equations, this is a manifestation of the fact that elliptic equations de-

scribe equilibria of evolutions associated with parabolic ones, and conse-

quently they are invariant under reversion of the direction of time. Once

this symmetry is lost, a horde of completely new phenomena appears.

Whereas the classical BMO of John and Nirenberg [45] has been stud-

ied extensively in the context of harmonic analysis, the knowledge of

parabolic BMO prior to this work (i.e. III and IV) has been limited to

the very few core properties necessary for running the parabolic Moser

iteration, that is, one only knows that a weak oscillation bound improves

itself to a bound of exponential type. This property has many proofs. In

addition to the original paper by Moser [70], there is a simplified proof

for the quadratic growth case [23] and a general approach valid in spaces

of homogeneous type [2]. Before writing down the definition of parabolic

BMO, we will recall the definition of weak solutions to parabolic differen-

tial equations.

2.2 Solutions

Equation (2.1.1) can be studied in various subdomains D ⊂ Rn+1 of the

space-time, but for us the cases of interest will be the cylinders ΩT =

Ω × (0, T ) with Ω ⊂ Rn a domain. In these cases u ∈ Lp
loc(0, T ;W

1,p
loc (Ω))

is a local solution if it satisfies the equality (2.1.1) after multiplication

by a compactly supported and non-negative test function ϕ ∈ C∞0 (ΩT )

and a formal integration by parts, that is, if it satisfies it in the sense of

distributions. In case the inequality
∫∫

ΩT

(
|∇u|p−2∇u · ∇ϕ− |u|p−2u∂tϕ

)
≥ 0

holds instead of an equality, then u is called a supersolution.

Recall that u ∈ Lp
loc(0, T ;W

1,p
loc (Ω)) if x 
→ u(x, t) is in W 1,p

loc (Ω) for almost

every t ∈ (0, T ), t 
→ ‖u(·, t)‖W 1,p(Ω′) is measurable, and
∫

I
‖u(·, t)‖W 1,p(Ω′) dt < ∞

for every Ω′ that is the interior of some compact subset of Ω and for every

closed I ⊂ (0, T ).
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2.3 Geometry

The first n coordinates of Rn+1 will constitute the space and the last one

is for time. With this convention, it is important to note that the equa-

tion (2.1.1) is not invariant under the standard scaling (x, t) 
→ (ax, at)

associated with Euclidean cubes, but the right scaling is (x, t) 
→ (ax, apt).

In addition to this parabolic scaling, also translations of the time-space

leave the class of solutions invariant. It follows that the class of Euclidean

cubes must be replaced by the class of sets generated by the transforma-

tions described previously in all regularity estimates from the parabolic

Caccioppoli estimate to the ultimate Harnack inequality

ess supz∈R−(γ) u(z) ≤ C(n, p, γ) ess infz∈R+(γ) u(z). (2.3.1)

Here the parabolic rectangles

R = Q× (t− l(Q)p, t+ l(Q)p) ⊂ Rn+1

are based on cubes Q ⊂ Rn with sides parallel to coordinate axes and

sidelengths l(Q). The parameter γ ∈ (0, 1) quantifies the time lag and

R−(γ) = Q× (t− l(Q)p, t− γl(Q)p).

Among the properties of parabolic rectangles we use, the most important

one is probably the following. Parabolic rectangles are metric balls with

respect to the translation invariant metric

d((x, t), (0, 0)) = max{‖x‖∞,
1

2
|t|1/p},

which gives the time axis dimension p > 1. This is one of the phenomena

behind the infinite speed of propagation that the heat equation exhibits,

and it will be crucial for the validity of certain self improving properties

we study.

2.4 Parabolic BMO

Recall that a real valued u ∈ L1
loc(Rn) is said to be a function of bounded

mean oscillation if its oscillation

−
∫

Q
|u− uQ| :=

1

|Q|

∫

Q

∣∣∣∣u− 1

|Q|

∫

Q
u

∣∣∣∣

is uniformly bounded as a function of Euclidean cubes Q ⊂ Rn. This

means that whatever cube we take, there exists a constant to approximate

u with respect to L1 norm in that cube with error proportional to the scale.

16
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In the parabolic case, we still require good approximation by constants,

but instead of cubes, we use parabolic rectangles, and instead of the abso-

lute value, we measure upper and lower deviations separately in different

locations: the parabolic oscillation is

inf
aR∈R

(
−
∫

R+(γ)
(u− aR)

+ +−
∫

R−(γ)
(u− aR)

−
)
, (2.4.1)

and if this quantity is bounded uniformly in R, we say that u is of parabolic

bounded mean oscillation, abbreviated PBMO+. Note that the sets R±(γ)

appearing in the definition are same as the ones in the Harnack inequality

(2.3.1).

The original definition used in Moser’s work [69] is

sup
R

−
∫

R+(0)
−
∫

R−(0)

√
(u(z)− u(w))+ dw dz < ∞.

However, the results in III proved that the definition through (2.4.1) leads

to a more clean picture, and in that sense (2.4.1) is the correct definition.

To improve Moser’s L1/2 type estimate to L1, one has to accept that a

time lag appears. That is, functions satisfying Moser’s condition are in

PBMO+. The latter condition, in turn, can be used to get exponential

decay for the integrands, that is,

sup
R

(
−
∫

R+(γ)
exp(ε(u− aR)

+) +−
∫

R−(γ)
exp(ε(u− aR)

−)

)
< ∞

for some ε > 0. At the level of exponential integrability, the counterex-

ample by Moser can be used to see that the time lag is necessary. Some

references for these facts are [69], [23], [2] and [48].

The previous reasoning reveals that one can win integrability at the

cost of inducing a lag, and the dimensional difference between space and

time coordinates makes this lag a qualitative phenomenon, which was

exploited in III and IV in order to prove various self-improving proper-

ties. In particular, by incorporating the time lag in the very definition

of parabolic BMO, one can make sure that the function classes defined

through exponential integrability and larger time gap coincide with the

ones defined by the boundedness of (2.4.1). If the lag is not present in the

definition, it is not clear whether all functions satisfying the correspond-

ing John-Nirenberg inequality also belong to parabolic BMO or not.
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2.5 The direction of time

We will next look at the role of the time variable in the definition of

PBMO+. Parabolic BMO is obviously not a vector space since multipli-

cation by a negative constant does not leave the parabolic oscillation un-

changed. Instead of that, it reverses the direction of time. Indeed, as the

condition (2.4.1) on u measures its upper deviation in future, the same

condition written for −u measures the upper deviation of u in the past.

This motivates the definition of the reflected class PBMO− = −PBMO+,

which could also be defined as PBMO− = {u(x,−t) : u(x, t) ∈ PBMO+}.

For each property of PBMO+ there is a corresponding statement about

PBMO−, the only difference being that the direction of time is reversed. It

is also clear that the intersection PBMO+ ∩PBMO− equals a BMO space

of classical type provided that we replace the family of cubes in the def-

inition by the family of parabolic rectangles. Moreover, it is easy to see

that if u(x, t) = u(x) ∈ PBMO+ then u ∈ BMO(Rn+1×{τ}) so that PBMO+

is a consistent generalization of the classical BMO space. This fits in the

picture where we associate the classical BMO with elliptic partial differ-

ential equations.

Parabolic BMO shares many properties with the classical one. For in-

stance, in space time cylinders the local PBMO+ (testing over rectangles

whose dilates are compactly contained in the domain of definition) coin-

cides with the global one (testing over all rectangles). This is an extension

of a theorem usually attributed to Reimann and Rychener [75], and it was

one of the main results in III. On the other hand, the most remarkable

difference between BMO and PBMO+ that is immediate from the defini-

tion is that functions in the parabolic class can decay arbitrarily fast in

the positive time direction, and fast decay can actually compensate the

violations of the oscillation bounds of stationary type. What is more, the

final result of IV tells that, roughly speaking, this is actually the principal

difference between the two spaces.

From a PDE point of view the result makes sense. Since the evolution

is driven by the deviation from a stationary solution, a function far from

the properties of a stationary solutions must have high rate of change in

the time direction.
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2.6 Parabolic A+
q classes

In analogy with the classical theory, the good weights of a certain max-

imal operator are tightly connected to parabolic BMO. Indeed, a simple

application of the parabolic John-Nirenberg theorem reveals that

PBMO+ = {−α logw : w ∈ A+
q , α ≥ 0}

where the A+
q class is defined through the forward in time Muckenhoupt

condition

sup
R

(
−
∫

R−(γ)
w

)(
−
∫

R+(γ)
w1−q′

)q−1

< ∞, q ∈ (1,∞).

The importance of this relation, whose classical analogue was found in

[16], lies in the fact that the path to an explicit representation of parabolic

BMO goes through factorization of A+
q . This, in turn, is a deep property

difficult to prove in any way elementary enough to be a reasonable alter-

native in the parabolic setting (compare to [43]), and for succeeding in

finding a short-cut, some powerful tools from weighted norm inequalities

are needed. In other words, once the celebrated Rubio de Francia algo-

rithm is available, the factorization property will follow from few lines by

clever arguments originally due to Coifman, Jones and Rubio de Francia

[15]. But in order to use Rubio de Francia’s method, one has to prove

that A+
q is sufficient for the Lq(w)-boundedness of the related maximal

operator.

There is also another motivation to study A+
q . Apart from the obvious

fact that the weights w ∈ A+
q with no dependence on time are exactly the

classical Muckenhoupt weights on Rn, the weights with no dependence on

space can be identified with the one-sided weights on real line. This is

not as straightforward to see as the previous case (due to the time lag),

but consulting [62] and [63] it is easy to convince oneself that this is in-

deed the case. Hence the class A+
q arising from Trudinger’s equation con-

tains both one-sided and classical Muckenhoupt weights as special cases.

Many properties shared by those simpler weights come directly from A+
q ,

but there are also questions that remain open. For instance, is there a

satisfactory theory of A+
∞ in the parabolic multidimensional case? Some

details of this problem are discussed in V.

As it is easy to guess from the properties of PBMO+, A+
q also has its

reflected counterpart A−q , defined in an obvious way. The class A−q has the

same relation to PBMO− as A+
q has to PBMO+. Moreover, the standard

19



Theory of parabolic Muckenhoupt weights

duality (Ap)
1−p′ = Ap′ takes the form

(A+
q )

1−q′ = A−q′

in the parabolic setting. The reflected classes have an important and non-

trivial role in the theory, and when it comes to problems concerning con-

ditions of A∞ type, some very interesting questions are tightly related to

their essence.

2.7 The results

The main part of this dissertation consists of a systematic study of the

field described previously, and the most important achievements of the

appended research articles can be summarized in the following items:

i. The definition and local-to-global properties of parabolic BMO together

with applications to parabolic partial differential equations are treated

in III. Once parabolic BMO is defined correctly, it makes sense to ask

whether its definition, which is only based on what happens inside a

domain, also tells something about the behaviour up to the boundary.

It is proved that the answer is affirmative and that functions in local

parabolic BMO are globally exponentially integrable. Consequently, pos-

itive supersolutions to doubly nonlinear equation are globally integrable

to some small power.

ii. Parabolic BMO is characterized in the spirit of Coifman and Rochberg

in IV. Each function satisfying the parabolic BMO condition can be writ-

ten as a sum of a forward-in-time maximal function of a Borel mea-

sure, a backward-in-time maximal function of another measure, and a

bounded function. Conversely, all functions defined through a similar

formula are in parabolic BMO. Compared to the classical case, the maxi-

mal operators appearing in this formula are rather tame, but the precise

assumptions made about the Borel measures allow rather rough objects

to be generated.

iii. The theory of one-sided weights is finally extended to n-space with

n ≥ 2 in IV. That is, the characterization of parabolic weights through a

strong type norm inequality in IV is the first fully successful attempt to

define weights in Rn so that the case n = 1 reduces to Sawyer’s original
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one-sided weights, first introduced in 1986 [77].

These three facts together establish a nontrivial theory of weighted norm

inequalities with natural connections to the regularity theory of parabolic

partial differential equations. In the following chapters we will discuss

both the history of the problems as well as the ideas leading to techniques

which are powerful enough to establish the results.
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3. One-sided analysis

3.1 Differentiation bases

The fact that the Hardy-Littlewood maximal function and Aq condition

are written in terms of cubes is not essential, and the boundedness of

maximal functions has also been studied in a setting where the basis con-

sisting of cubes with sides parallel to the coordinate axes are replaced

by more general open sets. For more about this kind of results, see for

instance [42].

For our purposes, theorems about weights for differentiation bases have

one severe drawback. A basis is usually defined to be a collection of open

sets B so that every point x ∈ Rn is associated with sets x ∈ B ∈ B. As a

consequence, all the Muckenhoupt conditions related to these bases look

like (1.0.2) with cubes replaced by some sets B ∈ B. In the context of

parabolic PDE, this is too restrictive since we usually index the halves of

parabolic rectangles according to their exterior points. Consequently the

parabolic Muckenhoupt weights are not included in the general results

for differentiation bases, and in fact, their theory is different.

3.2 One-sided weights on R

As one renounces the definition of a basis discussed previously, completely

new classes of weights and maximal functions appear. One may associate

to a point x a collection of sets so that x is an exterior point (as we will do

with parabolic weights) or that x is a boundary point. The latter case was

studied first.

In his influential paper from 1986 Eric Sawyer [77] studied the bound-

edness of the one-sided maximal function on weighted Lp spaces on the
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real line. The one-sided maximal function is defined as

M+f(x) := sup
h>0

1

h

∫ x+h

x
|f |.

Here each x ∈ R has its collection of intervals {(x, x + h) : h > 0} so that

x is a boundary point. Sawyer managed to characterize the good weights

as the ones satisfying

sup
x∈R
h>0

(
1

h

∫ x

x−h
w

)(
1

h

∫ x+h

x
w1−q′

)q−1
< ∞, q ∈ (1,∞).

A short explanation for the difference between this and the previous con-

dition (1.0.2) is that the values of f on (x, x + h) are seen by M+f only

from the half-line (−∞, x).

The original motivation to study one-sided maximal operator came from

ergodic maximal functions

f∗(x) := sup
k>0

1

k

k∑

i=1

f(T ix),

where f : X → R, X is a probability space and T : X → X is an er-

godic transformation, but the theory of one-sided weights has also some

intrinsic interest.

After Sawyer’s result [77] plenty of papers were written by Francisco

Martín Reyes and many other authors in order to extend the results re-

lated to weighted norm inequalities to the one-sided setting. The exten-

sive theory includes one-sided maximal and minimal operators [8, 18, 19,

20, 54, 59, 60, 61, 63, 65, 66], one-sided BMO+ and A+
∞ [3, 62, 64, 17],

singular integrals with one-sided kernel [4, 79, 73, 76], and commutators

[55, 56]. The results are based on effective use of one-dimensional cov-

ering arguments as well as the simple geometry of the real line, and the

methods do not work in higher dimensions.

3.3 One-sided analysis in higher dimensions

The first attempt to generalize one-sided weights to Rn was in 2005 by

Sheldy Ombrosi [72]. The latter paper defines a dyadic model for a coor-

dinatewise analogue of the one-sided maximal function and characterizes

the weighted weak type (q, q) norm inequality for it.

For a dyadic cube Q = (x1 − h, x1) × · · · × (xn − h, xn) one defines Q+ =

(x1, x1 + h)× · · · × (xn, xn + h), and the related maximal function is given

by

x 
→ sup
Q�x

−
∫

Q+

|f |.
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The good weights are the obvious ones:

sup
Q

(
−
∫

Q
w

)(
−
∫

Q+

w1−q′
)q−1

< ∞. (3.3.1)

The techniques were pushed further in [25], where the one-sided weights

(3.3.1) without restriction to dyadic cubes were shown to be exactly the

ones that support the weighted weak type (q, q) inequality for the one-

sided maximal function in R2. Later on, it was proved in [52] and [7] that

(3.3.1) is sufficient for weighted strong type (q, q) for all maximal opera-

tors {N r+}r∈(0,1) which look at collections formed by

{(x1 + rh, x1 + h)× · · · × (xn + rh, xn + h) : h > 0}.

The bounds are not uniform in r, and it is not known, whether the limiting

case r = 0 is included or not.

The multidimensional one-sided setting introduced by Ombrosi is slight-

ly different from what we prefer to work in, and the results cannot just be

transferred from one point of view to another. Our approach has to deal

with many phenomena that are absent from the earlier considerations,

but once the right tools to handle them are constructed, the results we get

are stronger in comparison. Moreover, the parabolic setting is justified by

its tight connection to partial differential equations. On the other hand,

both theories are extensions of the same one-dimensional case, and many

problems together with their solutions have similar flavour. In the next

sections, we will discuss in detail some of the ideas that are useful in

the parabolic setting. In first of them, which is devoted to what we call

Ombrosi’s covering technique, we will describe a modification of the key

argument developed in [72] and [25] whereas the remaining two sections

introduce the cornerstones of the parabolic theory whose discovery in III

and IV resulted in the breakthrough, the proof of the open ended property

of the parabolic weights.

3.4 Ombrosi’s covering technique

The characterization of weighted weak type (q, q) inequality in [72] and

[25] was based on a clever covering argument, whose adaptation to the

parabolic setting we will next briefly sketch next. The maximal operator

related to parabolic weights is

Mγ+f(z) := sup
R

−
∫

R+(γ)
|f |,
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where the supremum is over parabolic rectangles R centred at z, and we

call it parabolic forward in time maximal operator. For expository pur-

poses, we will concentrate on the geometrically simple (but theoretically

inessential) case p = 1 and γ = 0 (the time scales as the space does and

there is no time lag).

In order to prove a weak type estimate for a maximal operator acting on

Lq(w), that is, in order to prove an inequality of the form

w({x ∈ Rn : M0+f > λ}) ≤ C

λq

∫

Rn

|f |qw,

one usually takes advantage of a covering argument. By this we mean

covering the level set on the left hand side by rectangles that have good

properties in terms of the corresponding means of f on these sets and in

terms of their overlap.

In comparison with more classical cases, the one-sided setting is distin-

guished by two main difficulties. Firstly, the maximal operator is very

far from a centred one. More precisely, arguments such as Besicovitch

covering lemma are not applicable to coverings obtained by naïve use of

the definition of the superlevel set. Secondly, the collection used to cover

the level set must preserve its bounded overlap properties when each of

its members is shifted forward in time by its own side length, which will

happen as one applies a one-sided Muckenhoupt condition. Especially the

latter problem is serious. Indeed, it is easy to construct an infinite collec-

tion of pairwise disjoint dyadic cubes so that the intersection of the shifted

family is nonempty.

The scheme that allows us to deal with these problems consists of two

parts. First, in order to live with the fact that the maximal function pro-

duces cubes that cannot be used as a cover, one covers with dilates of

them, keeping the absolute continuity of the integral in mind. Moreover,

since it suffices to consider

{x ∈ Rn : 2λ ≥ M+f > λ},

we have a two-sided bound

−
∫

R+(0)
|f | � λ (3.4.1)

for averages of f . This property is crucial in extracting a subcollection of

the closed, nondilated cubes {R−i (0)} such that the forward-in-time trans-

lates have subsets with bounded overlap but still accommodate a consid-

erable amount of mass of f .
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For the rest of the argument, the idea is as follows. It suffices to esti-

mate the weighted measure of compact subsets of the level set. For such

a compact set, one may get a finite number of cubes, and for each cube a

small ball centred at the center of the face with largest time coordinate

(evaluation point) so that the balls cover the level set. A selection algo-

rithm yields a minimal subcollection of cubes to cover the corresponding

evaluation points.

Using the comparability (3.4.1), one may fix a suitable number of al-

lowed overlaps and design another algorithm to remove parts of the for-

ward in time translates of the cubes in the subcollection that violate this

bound so that the resulting sets still give averages high enough. We will

call them reduced translates. Now certain dilates of the cubes in the min-

imal subcollection cover the balls, and the balls cover the level set. By the

absolute continuity of the integral, it is possible to control the weighted

measure of the dilated cubes by that of non-dilated ones. Moreover, the re-

duced translates give high averages and they have bounded overlap. Now

the reader familiar with the classical theory easily deduces that there will

be no additional problems in the rest of the proof. The detailed argument

can be found in IV.

3.5 Covering through projection

Once the sufficiency of A+
q for the weak type inequality is known, the

proof of the strong type inequality boils down to proving a self-improving

property. In order to improve the A+
q condition to A+

q−ε one has to use a

reverse Hölder inequality, which in the context of parabolic weights looks

like (
−
∫

R−(0)
w1+δ

)1/(1+δ)

� −
∫

R+(0)
w.

The proof of the reverse Hölder estimate reduces to proving a level set

estimate of the form

w(R−(0) ∩ {w > λ}) � λ|R ∩ {w > βλ}|, β ∈ (0, 1).

Strictly speaking this estimate is not useful, but one needs a very special

pair of sets to replace the naive choice (R−(0), R) in the display above.

However, the idea is to perform a Calderón-Zygmund covering for the left

hand side, to apply the A+
q condition (inducing a forward-in-time shift to

the collection), and to collect the pieces together to get the quantity on the

right hand side.
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To succeed in this, one has to design a suitable covering of Calderón-

Zygmund type very carefully. The problems with this part are related to

two main issues: it is easy to find a collection of sets with bounded over-

lap, but preserving this property in a time shift is difficult. Moreover,

there is no obvious way to use dyadic stopping time arguments. The way

to get around these obstacles is to use properties of the spatial and tem-

poral dimensions of the space-time separately. That is, one has to factor

the space-time into the space, which can be equipped with a good dyadic

structure, and into the time, which is one-dimensional.

We will briefly sketch the idea of how to do this. Recall that R−(0) =

Q × (t − lp, t). Take the dyadic subcubes of Q, and extend them into

backwards-halves of parabolic rectangles. This forms a basis of metric

balls. The corresponding non-centred maximal function Mw controls w

almost everywhere. Applying Calderón-Zygmund decomposition at each

time-slice

{(x, t) ∈ Q× {τ} ∩ {Mw > λ}},

we get a family pairwise disjoint collections of metric balls. Putting the

collections corresponding to each of the uncountably many slices together,

separating the scales, applying one-dimensional covering argument at

each scale, and running an additional selection process, we get a cover

that can be used to complete the proof. Again, the full proof is more deli-

cate, and the details are written in IV.

3.6 The lag

In the previous two sections we have not paid much attention to the time

lag. Up to this point, the lag has only been an annoying additional tech-

nicality, but once we try to compose a theorem characterizing the good

weights, it becomes important. More precisely, we can push the non-

lagged theory to the point where weak type norm inequalities are char-

acterized by the non-lagged conditions of Muckenhoupt type. However, in

order to prove that weak type inequalities imply the validity of strong type

norm inequalities, some self-improving property is needed. This amounts

to establishing that membership to a parabolic Muckenhoupt class im-

plies that to a more restrictive one. It is exactly this point which proves

that the way of thinking we have chosen is the correct one.

Roughly speaking, the phenomenon ruining the validity of the elliptic

Harnack inequality in the parabolic case is also present in the context

28



One-sided analysis

of weights. Techniques that usually lead to gain in integrability cause

a certain temporal shift in the geometry of estimates, which often pre-

cludes further applications. The new approach of IV takes the creation of

time lag into account from the very beginning, and a careful study of the

properties of the lagged weight classes shows that in the case relevant to

parabolic differential equations, all self-worsening properties turn out to

be delusive.

A first hint of the time-lag phenomenon for weights was visible already

in the paper [52] of Lerner and Ombrosi: the weights that do not have a

lag in their definition are good for maximal operators that do have. More-

over, the proof of a generalization of their result given by Berkovits in [7]

reformulated this as follows: if a weight satisfies a one-sided Aq condi-

tion, then the same weight has to belong to a one-sided Aq−ε class with a

lag. Careful investigation of the proof in [7] also reveals that the weight

classes defined with respect to a given lag are good for maximal operators

defined with respect to an even longer waiting time. However, since these

results were considered in a geometry without parabolic scaling, it was

not apparent how to address the problems caused by the lag.

As mentioned earlier, the appearance of the lag is a qualitative phe-

nomenon in the parabolic theory, and exactly this allows us to prove a

Muckenhoupt theorem for parabolic weights. A detailed discussion of this

last ingredient of the proof is postponed until the next chapter, which is

devoted to geometric aspects of the theory. In fact, the lag is handled

by the same tools that are used in studying local-to-global properties for

spaces of BMO type.
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4. Geometric aspects

4.1 Metric spaces

Even if analysis in metric spaces has been a motivation and a source of

inspiration for many of the results discussed in what follows, we will stick

to Euclidean notation for the rest of the chapter. We hope that this will

clarify some points in the exposition. We will, however, devote this first

section to describing the set up of metric spaces, since especially I and II

are about extending results known in Rn to more general spaces by com-

posing new proofs that do not use the special structure of the Euclidean

space. Moreover, the generality at which results can be proved usually

hints at what is their true nature.

A triple (X, d, μ) consisting of a set X, a metric d and a Borel regular

doubling measure μ is called a metric measure space with doubling mea-

sure. The doubling condition means that for all metric balls B(x, r) :=

{y ∈ X : d(x, y) < r}, x ∈ X and r ∈ (0,∞) it holds

0 < μ(B(x, 2r)) ≤ cμμ(B(x, r)) < ∞

for an absolute constant cμ > 1.

It is quite standard to add some more assumptions to those mentioned

above, such as completeness, local compactness and validity of a Poincaré

inequality. Other ways to restrict the class of spaces studied are assump-

tions on existence of paths realizing the distance as their length (geodesic

spaces) or requirements on the shape of balls (chain conditions to be dis-

cussed). In all cases one usually tries to keep some model examples like

Euclidean spaces, Heisenberg groups, and Carnot groups included. As

general references on the subject we mention [34] and [9].
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4.2 Local-to-global theorems

To describe the class of geometric phenomena leading to the theorems we

prove, we return to the Euclidean setting. We will start by giving a re-

view of local-to-global theorems. The basic question they usually address

is simple: given an open and connected set, i.e. a domain, Ω ⊂ Rn and

a function u : Ω → R that is assumed to satisfy some local property in

Ω, for instance u ∈ L1
loc(Ω), is it true that the same property holds glob-

ally? In general this kind of claims are highly nontrivial, the simplest

example being the failure of global integrability of x−1 on (0, 1). However,

especially in the context of BMO functions, local-to-global phenomena are

ubiquitous. Apart from the fact that this kind of results are interesting as

such, the techniques used in their proofs have proved to be invaluable in

the study of parabolic weights.

Recall that if Ω ⊂ Rn is a domain, we say that u ∈ L1
loc(Ω) is in local

BMO if

‖u‖BMO := sup
2Q⊂Ω

−
∫

Q
|u− uQ| < ∞.

A theorem of Reimann, Rychener and Staples ([75] and [81]) says that

this implies a global BMO condition, that is, if the quantity in the display

above is finite, then the corresponding quantity with 2Q replaced by Q

is finite too. Moreover, a theorem of Smith, Stegenga and Hurri-Syrjänen

([80] and [38]) tells that if Ω satisfies an additional quasihyperbolic bound-

ary condition to be discussed later, then we have a global John-Nirenberg

inequality

|Ω ∩ {|u− uΩ| > λ}| ≤ C1|Ω|e−
C2

‖u‖BMO
λ
.

These results were applied by Lindqvist [53] to prove that positive su-

persolutions to

div(|∇u|p−2∇u) = 0, 1 < p < ∞

raised to some small power ε > 0, are globally integrable. This means

that even if the boundary values are rough and create singularities, the

property of being a local solution ensures that the singularities are not

worse that power-like up to the boundary. Before Lindqvist’s nonlinear

result, the global integrability of superharmonic functions had also been

an active area of research, see [1, 5, 30, 57, 58, 67, 82, 83].

Another class of local-to-global results arises from a less known space

JNp defined by John and Nirenberg in their celebrated paper [45]. We say
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that u ∈ JNp(Ω) with 1 < p < ∞ if

Kp(Ω) := sup
W

∑

Q∈W
|Q|
(
−
∫

Q
|u− uQ|

)p

< ∞,

where W is a pairwise disjoint collection of cubes 2Q ⊂ Ω so that the

collection {2Q : Q ∈ W} has bounded overlap. Instead of exponential

integrability, this condition implies embedding into Lp,∞ at every subcube

with 2Q ⊂ Ω.

A result by Hurri-Syrjänen et al. [39] tells that also in this case the

requirement 2Q ⊂ Ω can be dropped and that the embedding into weak

Lp holds globally in John domains Ω. By suitable definitions and use of

clever arguments from [26] and [14], the local-to-global results for JNp

were generalized to a wide class of metric spaces in II.

4.3 Classical chaining techniques

The proofs that local spaces of BMO type coincide with the global ones

usually need no assumption on the domain. This is due to the fact that

one may proceed via reducing the estimation to a cube, which makes the

actual domain invisible. When it comes to proving global inequalities of

John-Nirenberg type, the domain becomes more visible again. This will

be the subject of this section, and as general references for the classical

techniques we mention [81] and [10].

A proof of a global inequality is usually implemented as follows: take a

domain Ω, choose a reference cube Q0 ⊂ Ω, form a suitable decomposition

of Whitney type, connect each Whitney cube to the reference cube by a

curve avoiding the boundary, form a chain of cubes along it, and estimate

|Q∩{|u− cQ0 | > λ}| ≤ |Q∩{|u− cQ| >
λ

2
}|+ |Q∩{|cQ− cQ0 | >

λ

2
}| (4.3.1)

by using the known local inequality for the first term and by using the

properties of the chain, the function, and the domain for the second term.

That is, the result is achieved by patching the local estimates together by

studying how difficult it is to access the reference cube from each one of

the Whitney cubes.

We will next clarify the meaning of this. Given a starting point x1 ∈ Ω

and an endpoint x∗ ∈ Ω, we look at the line integral
∫

γx1x∗

dl(y)

d(y,Ωc)

33



Geometric aspects

along a curve γx1x∗ connecting the points. A curve to minimize the integral

above is called a quasihyperbolic geodesic, and the value of the integral

along a minimizing curve is the quasihyperbolic distance

kΩ(x1, x∗) := inf
γx1x∗

∫

γx1x∗

dl(y)

d(y,Ωc)
.

Let β ∈ (0, 1). If we define

r(x) :=
2√
n
βd(x,Ωc)

and denote by Q(x, l) the cube with sidelength l and center x, we may con-

struct a collection of cubes {Qi}ki=1 by taking Q1 = Q(x1, r(x1)), choosing a

quasihyperbolic geodesic connecting x1 to x∗, and defining Qi+1 to be the

cube centred at the point xi+1 where the quasihyperbolic geodesic exits

Qi (or x∗ in case x∗ ∈ Qi) with sidelength r(xi+1). This chain will always

have the properties

(i) Q1 � x1 and Qk � x∗

(ii) 1
βQi ⊂ Ω for all i ∈ {1, . . . , k}

(iii) |Qi ∩Qi+1| � max{|Qi|, |Qi+1|} for all i ∈ {1, . . . , k − 1}

(iv) k � kΩ(x1, x∗).

It immediately follows from the properties above that

|uQ1 − uQk
| ≤

k−1∑

i=1

|uQi − uQi+1 | � (k − 1)‖u‖BMO.

This inequality controls the second term in (4.3.1) by the distribution of

the quasihyperbolic metric kΩ, which makes it possible to use estimates

coming from the geometry of the domain Ω. The paper [81] was among

the first ones to realize the importance of this phenomenon.

An interesting feature of the behaviour of BMO functions on a domain is

also revealed: it can always be controlled by the behaviour of the quasihy-

perbolic metric. More specifically, if the quasihyperbolic distance to a fixed

point is exponentially integrable, so are the functions in BMO. Moreover,

this is a characterization. Namely, it is not very difficult to prove that

kΩ(·, x∗) ∈ BMO(Ω).

The domains in which quasihyperbolic metric happens to be exponen-
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tially integrable are exactly those with

kΩ(x, x∗) ≤ K

(
log

1

d(x,Ωc)
+ 1

)

for some constant K. This is called the quasihyperbolic boundary condi-

tion and the domains satisfying it are sometimes called Hölder domains,

see [28] and [80]. We remark that the class of domains satisfying the

quasihyperbolic boundary condition is rather large. It includes all the

domains in the classes John, Uniform, NTA and Lipschitz.

The chaining technique using quasihyperbolic metric is very convenient

when dealing with BMO, but in the case of JNp, the situation is differ-

ent. No simple connection between JNp and the quasihyperbolic metric

is known, and consequently the current results on local-to-global results

of JNp are proved under different assumptions. At the moment the most

general class of domains for which JNp is known to embed into Lp,∞ is the

class of John domains.

John domains Ω can be characterized [11] through the existence of a

collection of balls F and constants C2 > C1 > 1, λ > 1 such that

(a) Ω = ∪B∈FC1B = ∪B∈FC2B.

(b) {C2B : B ∈ F} has bounded overlap.

(c) Each ball C1B1 with B1 ∈ F can be connected to the prescribed central

ball B∗ ∈ F by a chain similar to that described in (i), (ii) and (iii) so

that cubes are replaced by balls C1B where B ∈ F .

(d) If V is in the chain connecting B to center, then λV ⊃ B.

This characterization is usually called the Boman chain condition (see

[12]), and the property that distinguishes between John domains and

Hölder domains is (d). And it is exactly this property that makes Boman

chains so easy to use when dealing with JNp or some more general spaces.

One may control all the chains simultaneously instead of estimating them

one-by-one using the quasihyperbolic metric; see II.
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4.4 Parabolic chains

The classical chaining techniques do not work as such for parabolic BMO

and designing a substitute for them was the main achievement of III. We

will briefly discuss the parabolic chains, and this will also be the final

ingredient needed for the completion of the parabolic theory of weights

reported in IV.

The first thing one has to understand when dealing with parabolic BMO

is that once a reference point is chosen, a lot of information is lost about a

certain half-space. That is, if we take (x, t) ∈ Ω×R and u ∈ PBMO+(Ω×R),

we should only try to control the positive part of u in Ω × (t,∞) and the

negative part in Ω× (−∞, t).

Once this is clear, a hint about the actual form of the chains to be used

has already been given: the chains come from one time direction and end

at (x, t). That is, recalling the definition

sup
R

(
−
∫

R+(γ)
(u− aR)

+ +−
∫

R−(γ)
(u− aR)

−
)

< ∞,

we see that given a chain {Ri}ki=1 (and the constants aRi = ai), the best

we can do is (for some sets Ci)

(u− ak)
+ ≤ (u− a1)

+ +

k−1∑

i=1

(ai − ai+1)
+

= (u− a1)
+ +

k−1∑

i=1

−
∫

Ci

(ai − ai+1)
+

≤ (u− a1)
+ +

k−1∑

i=1

−
∫

Ci

((ai − u)+ + (u− ai+1)
+),

and the choice suggested by the definition of parabolic BMO is

Ci ⊂ R−i (γ) ∩R+
i+1(γ).

Hence the rough idea is to first construct a classical chain in Ω, as de-

scribed in the previous section, and then choose the correct time coordi-

nates to make it a chain in space time respecting the requirement Ci ⊂
R−i (γ) ∩R+

i+1(γ).

The construction sketched above gives each chain constructed in space

a length in time. It is, however, very important to be able to construct

arbitrarily long chains in space with controlled length in time. This final

problem is solved by using the fact that parabolic rectangles have the

scaling (l, lp). Hence, forcing an upper bound α � 1 on the sidelength of
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the rectangles used in a chain, we can impose a flat shape on them. This

upper bound l ≤ α appears as lp ≤ αp in the time axis, and hence the time

needed to travel along a chain can be controlled by as small a number as

we wish.

A variant of this chaining technique was used together with the forward

in time doubling property of parabolic weights in IV in order to prove that

if w ∈ A+
q (γ) with some γ ∈ (0, 1), then w ∈ A+

q (γ
′) for all (0, 1), which

opened the doors for using a lagged reverse Hölder inequality to improve

the index q of parabolic Muckenhoupt conditions.

The forward in time doubling of parabolic weights w ∈ A+
q means that if

R is a parabolic rectangle and E ⊂ R+(γ) a measurable set, then

w(R−(γ)) �
( |R+(γ)|

|E|

)q

w(E).

A similar backwards in time doubling property holds for w1−q′ ∈ A−q .

These inequalities allow us to control quantities like w(R−(γ)) by w(E)

where E is any set that is connected to R−(γ) by a forward in time chain.

The proof of the qualitative nature of the time lag boils down to cutting a

rectangle under study into small pieces and transporting the pieces face

to face. Due to the scaling difference of time and space the small pieces

will have larger relative Euclidean distance than the original ones, which

completes the proof.

4.5 Quasiconformal mappings

The last topic we study is the invariance of BMO under coordinate changes

or composition operators. The meaning and applications of this category

of results are still very unclear in the parabolic case. Moreover, there is a

rather famous open question already in the context of classical BMO. The

class of quasiconformal mappings will take a decisive role in these consid-

erations. In addition to the fact that they preserve solutions to equations

of type (1.0.1) with p = n; see again [35]), their good properties are also

visible in the realm of harmonic analysis related to rougher objects.

Given a homeomorphism f : Rn → Rn, we would like to know when the

operator

Cfu = u ◦ f

is bounded on BMO. On the real line the answer is simple. The operator

Cf preserves BMO if and only if f is an increasing function with f ′ ∈ A∞.

This is due to Peter Jones [44]. There is also a corresponding result in
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Euclidean spaces with higher dimension. Reimann [74] proved that if f is

quasiconformal, then Cf is bounded. Conversely, if Cf is bounded, and f

is differentiable as well as absolutely continuous on lines; then f is qua-

siconformal. A suitable localization procedure due to Astala [6] allows a

characterization through quasiconformality without additional assump-

tions. However, the question whether

‖u‖BMO � ‖Cfu‖BMO

implies quasiconformality remains open.

Before going further, we recall some definitions. A homeomorphism is

quasiconformal if the ratio of maximal stretching and contracting remains

bounded at infinitesimal scales, that is, there is a finite H ≥ 1 such that

lim sup
r→0

max{|f(x)− f(y)| : y ∈ B(x, r)}
min{|f(x)− f(y)| : y ∈ Rn \B(x, r)} ≤ H

for all x ∈ Rn. This is the metric definition. It is equivalent to the so called

geometric definition through conformal modulus of families of curves, and

to the analytic definition given through the Jacobian and the differential.

The standard reference for quasiconformal mappings on Euclidean spaces

is [88].

The theory of quasiconformal mappings can be established in very gen-

eral metric spaces; see [36, 37, 49], and the Publication I gives a new proof

of Reimann’s theorem that applies to so called Carnot groups, of which the

Euclidean space and the Heisenberg groups are the most well-known ex-

amples. The proof is based on Gotoh’s measure density characterization

of BMO self maps [31], which was extended to metric spaces in [47]. This

result of Reimann type complements the earlier results of [87], which gen-

eralized Astala’s theorem to metric spaces.

In order to explain how the Carnot group structure is used in the proof,

we will briefly outline the procedure in the first Heisenberg group. Recall

that the first Heisenberg group can be realized as R3 endowed with the

group operation

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + yx′ − xy′).

In addition to translations defined through action of group elements, it is

possible to define dilations (x, y, t) 
→ (δx, δy, δ2t), δ > 0, that are compati-

ble with the standard metric structure. A homomorphism that commutes

with both translations and dilations is said to be homogeneous. In the

Euclidean space Rn the notion of homogeneous homomorphism coincides
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with that of a linear mapping, and in more general contexts it is used

whenever differentiability is needed.

The fact that quasiconformal mappings preserve BMO is fairly easy to

prove once we know that the pull-back of the volume measure under qua-

sisymmetric maps |f(·)| is A∞ related to the original volume. The con-

verse direction is, however, more difficult and it is not known whether it

can be proved without any group structure on the underlying space o. In

case the underlying space is a Carnot group and the homeomorphism is

assumed to be differentiable, one may approximate it by a homogeneous

homomorphism and verify that the measure density characterization of

BMO self maps implies quasiconformality in its metric form. The use of

the measure density characterization was the key novelty in Publication

I.
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