NON-LOCAL SELF-IMPROVING PROPERTIES:
A FUNCTIONAL ANALYTIC APPROACH

PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

ABSTRACT. A functional analytic approach to obtaining self-improving properties of solutions to
linear non-local elliptic equations is presented. It yields conceptually simple and very short proofs of
some previous results due to Kuusi-Mingione—Sire and Bass—Ren. Its flexibility is demonstrated by
new applications to non-autonomous parabolic equations with non-local elliptic part and questions
related to maximal regularity.

1. INTRODUCTION

Recently, there has been a particular interest in linear elliptic integrodifferential equations of type

//RRXRTL A(x,y) (U(fﬂ) — U(y)) . (¢($) — ¢(Z/)) dr dy _ - f(x) md.ﬁ (¢ c CSO(Rn)),

| — y[rt2e
where the kernel A is a measurable function on R” x R™ with bounds
(1.1) 0 <A< ReA(z,y) <|A(z,y)| < \7! (a.e. (z,y) € R" xR")

and « is a number strictly between 0 and 1. See for example [3,5,6,14,15,18]. Such fractional
equations of order 2o exhibit new phenomena that do not have any counterpart in the theory of
second order elliptic equations in divergence form: In [14], building on earlier ideas in [3], it has been
shown that under appropriate integrability assumptions on f, weak solutions w in the corresponding
fractional L2-Sobolev space W*2(R™) self-improve in integrability and in differentiability. Whereas
the former is also known for second-order equations under the name of “Meyers’ estimate” [16], the
improvement in regularity without any further smoothness assumptions on the coefficients is a feature
of non-local equations only [14, p. 59]. We mention that [14] also treats semi-linear variants of the
equation above, but already the linear case is of interest for further applications, for example to the
stability of stable-like processes [3].

Up to now, most approaches are guided by the classical strategy for the second-order case, that
is, they employ fractional Caccioppoli inequalities to establish non-local reverse Holder estimates
and then prove a delicate self-improving property for such inequalities in the spirit of Gehring’s
lemma. The purpose of this note is to present a functional analytic approach which we believe
is of independent interest for several other applications related to partial differential equations of
fractional order as it yields short and conceptually very simple proofs.

Let us outline our strategy that is concisely implemented in Section 3. Writing the fractional
equation in operator form

(1.2) (Laau, @) = (f,8),  (u,0 € W**(R™)),

the left-hand side is associated with a sesquilinear form on the Hilbert space W%2(R") and thanks
to ellipticity (1.1) the Lax-Milgram lemma applies and yields invertibility of 1 + £, 4 onto the dual
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space. Now, the main difference compared with second order elliptic equations is that we can transfer
regularity requirements between u and ¢ without interfering with the coefficients A: Without making
any further assumption we may write

<£mAu,¢>=:[7annA<x40’14x>—14y> O o) g o

T — y’n/2+a+s ’.’IJ _ y|n/2+a—€

which yields boundedness L, 4 : W*TS2(R?) — W S2(R™)*. Then the ubiquitous analytic per-
turbation lemma of Sneiberg [21] allows one to extrapolate invertibility to € > 0 small enough.
Compared to [3,14] we can also work in an LP-setting without hardly any additional difficulties. In
this way, we shall recover some of their results on global weak solutions in Section 4 and discuss some
new and sharpened local self-improvement properties in Section 5.

Finally, in Section 6 we demonstrate the simplicity and flexibility of our approach by proving that
for each f € L%(0,T;L*(R™)) the unique solution v € H'(0,T; W*2(R")*) N L2(0, T; W**(R")) of
the non-autonomous Cauchy problem

u'(t) + Lo awu(t) = f(t),  u(0)=0,

self-improves to the class H'(0, 7; W*~2(R")*) N L2(0, T; W*T*2(R™)) for some ¢ > 0. Here, each
L, a() is a fractional elliptic operator as in (1.2) with unlform upper and lower bounds in ¢ but again
we do not assume any regularity on A(t,z,y) := A(t)(z,y) besides measurability in all variables.
We remark that ¢ = o and W»?(R") := L?(R") would mean maximal regularity, which in general
requires some smoothness of the coefficients in the ¢-variable. See [1] for a recent survey and the
recent paper [12] for related results on regularity of solutions to such fractional heat equations with
smooth coefficients. In this regard, our results reveal a novel phenomenon in the realm of non-
autonomous maximal regularity. Let us remark that recently we have explored related techniques
also for second-order parabolic systems in [2].

2. NOTATION

Any Banach space X under consideration is taken over the complex numbers and we shall denote
by X* the anti-dual space of conjugate linear functionals X — C. In particular, all function spaces
are implicitly assumed to consist of complex valued functions. Throughout, we assume the dimension
of the underlying Euclidean space to be n > 2.

Given s € (0,1) and p € (1,00), the fractional Sobolev space W*P(R™) consists of all u € LP(R")

with finite semi-norm
lu(@) ~ u()l? N
(//]Rann |g; _ ‘n—f—sp £ y) < 00.

It becomes a Banach space for the norm | - [|s, := (|| - [|5 + [ - ]gvp)l/p, where here and throughout
| - ||, denotes the norm on LP(R™). Moreover, W*?(R") is a Hilbert space for the inner product

._ rony (u(z) — u(y)) - (v(z) —v(Y))
(u,v) := /nu(ac) v(x) dx+//RnXRn [ — g2 dz dy.

Every so often, it will be more convenient to view W*P(R™) within the scale of Besov spaces. More
precisely, taking ¢ € S(R™) with Fourier transform F¢ : R™ — [0, 1] such that F¢(§) =1 for |{] < 1
and Fo(&) = 0 for || > 2 and defining ¢ := ¢ and (F¢;)(€) := Fp(277¢) — Fp(27ITLE) for £ € R®
and j > 1, the Besov space B, ,(R") is the collection of all u € LP(R") with finite norm

o 1/p
21) Jullng ey o= (o277l xull) < .
=0

Different choices of ¢ yield equivalent norms on Bj ,(R™). Moreover, the Schwartz class S(R"), and
thus also the space of smooth compactly supported functions C3°(R"), is dense in any of these spaces,
see [22, Sec. 2.3.3]. Finally, W*P(R") = B ,(R") up to equivalent norms [22, Sec. 2.5.12].



NON-LOCAL SELF-IMPROVING PROPERTIES 3

3. ANALYSIS OF THE DIRICHLET FORM

In this section, we carefully analyze the mapping properties of the Dirichlet form

(3.1) Ea,a(u,v) = //ann Az, y) (u(z) = Tx(y—))ylfg(;? —v(y) dz dy,

which we define here for u,v € W*?(R"). Starting from now, a € (0,1) is fixed and 4 : R* xR" — C
denotes a measurable kernel that satisfies the accretivity condition (1.1). This entails boundedness

Ea,a(u,0)] < A ula2[v]a2 < A7yl

,2 ‘U| ,2

and quasi-coercivity
(3.2) Re Ea,a(u,u) 2 Muld o 2 Aull3 o — [lul3:

Together with the sesquilinear form &, 4 comes the associated operator L, 4 : W*%(R") — W®2(R")*
defined through

(La,au, v) := Eq,a(u,v),

where (-, -) denotes the sesquilinear duality between W*?(R") and its anti-dual, extending the inner
product on L2(R").
As an immediate consequence of the Lax-Milgram lemma we can record

Lemma 3.1. The operator 1+ Lo 4 : WU2(R?) — W*2(R™)* is bounded and invertible. Its norm
and the norm of its inverse do not exceed A\~ !.

The key step in our argument will be to obtain the analogous result on ‘nearby’ fractional Sobolev
spaces W*P(R"™). We begin with boundedness, which of course is the easy part.

Lemma 3.2. Let s, € (0,1) and p,p’ € (1,00) satisfy s+ = 2« and 1/p+ 1/p’ = 1. Then
1+ Lo a extends from C(R™) by density to a bounded operator W*P(R™) — WP (R")* denoted
also by 14+ Ly 4, and

[(u+ Laau,v)] < [Jullpllvlly + A7 ulsplv]s
for all w € W*P(R™) and all v € WP (R™).
Proof. Given u,v € W*2(R") we split n+2a = (n/p+s) + (n/p’ + ') and apply Hélder’s inequality
with exponents 1 = 1/co+ 1/p+ 1/p’ to give

_ (u(z) — u(y)) - (v(x) — v(y)) -
(Lo au, v)| = ‘//RWW A(z,y) T dady| < A u)sp[v]sp

Again by Holder’s inequality |{u,v)| < ||ullp||vl,, yielding the required estimate for u,v € W*2(R™).
Since Ci°(R™) is a common dense subspace of all fractional Sobolev spaces under consideration here
(see Section 2) this precisely means that 1+ L, 4 extends to a bounded operator from W*?(R") into

the anti-dual space of W*'#' (R"). O

Remark 3.3. It follows from Fatou’s lemma that for v and v as in Lemma 3.2 we still have
(Lo au,v) = Eq a(u,v) with the right-hand side given by (3.1).

We turn to the study of invertibility by means of a powerful analytic perturbation argument
going back to éneTberg [21]. In essence, the only supplementary piece of information needed for this
approach is that the function spaces for boundedness obtained above form a complex interpolation
scale.

We denote by [Xo, X1]p, 0 < 8 < 1, the scale of complex interpolation spaces between two Banach
spaces Xg, X7 that are both included in the tempered distributions S’'(R"). Background information
can be found in [4] and [22], but for the understanding of this paper we do not require any further
knowledge on this theory except for the identity

(33) [ WO (R™), WA ()], = W (R
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for po,p1 € (1,00), so,s1 € (0,1), with p, s given by

1 1-6 0

N + —
p Po p1
and the analogous identity for the anti-dual spaces. Equality (3.3) is in the sense of Banach spaces
with equivalent norms and the equivalence constants are uniform for s;, p;, 8 within compact subsets
of the respective parameter intervals. This uniformity is implicit in most proofs and we provide
references where they are either stated or can be read off particularly easily: This is [22, Sec. 2.5.12]
to identify W*P(R"™) = B; ,(R") up to equivalent norms, [4, Thm. 6.4.5(6)] for the interpolation and
[4, Cor. 4.5.2] for the (anti-) dual spaces.

, s=(1-0)sp+ 0sy,

Proposition 3.4. Let s,s' € (0,1) and p,p’ € (1,00) satisfy s+ s’ =2a and 1/p+1/p' = 1. There

exists € > 0, such that if |3 — %| <eand|s—al <e, then

1 + Eoc,A . Ws,p(Rn) N Wsl’pl(Rn)*

is invertible and the inverse agrees with the one obtained for s = a, p = 2 on their common domain
of definition. Moreover, € and the norms of the inverses depend only on A\, n, and «.

Proof. Consider the spaces W*P(R™) and W*#? (R")* as being arranged in the (s, 1/p)-plane, where
p € (1,00) but to make sense of our assumption we only consider parameters s such that additionally
s’ =2a—s€(0,1). By Lemma 3.2 we have boundedness

1+ Ly : WP(R?) — WP (R™)*
at every such (s,1/p) and Lemma 3.1 provides invertibility at («,1/2).

Now, consider any line in the (s, 1/p)-plane passing through («, 1/2) and take (so, 1/po), (s1,1/p1)
on opposite sides of (a, 1/2). Then (3.3) precisely says that the scale of complex interpolation spaces
between W*P0(R™) and W*1"P1(R"™) corresponds (up to uniformly controlled equivalence constants)
to the connecting line segment. The same applies to W00 (R™)* and W*1'*1(R")* on the segment
connecting (s(, 1/pp) and (s},1/p}) through («,1/2).

According to Sneiberg’s result, invertibility at the interior point (o, 1/2) of this segment implies
invertibility on an open surrounding interval whose radius around (a,1/2) depends only on upper
and lower bounds at the center and the constants of norm equivalence, see [21] or [11, Thm. 1.3.25]
for a quantitative version. In particular, we can pick the same interval on every line segment as
above and obtain € > 0 with the required property. Finally, consistency of the inverses with the one
computed at («,1/2) is a general feature of complex interpolation [13, Thm. 8.1]. O

4. WEAK SOLUTIONS TO ELLIPTIC NON-LOCAL PROBLEMS

We are ready to use the abstract results obtained so far, to establish higher differentiability and
integrability results for weak solutions u € WO"Q(R") to elliptic non-local problems of the form

(4.1) Loau=Lgpg+ [.

Here, L, 4 is associated with the form &, 4 in (3.1). In the same way, L3 p is associated with

Er(00) = [ Blay WSO Z0D g, g,

|z — y‘n+25

where starting from now, we fix 8 € (0,1) and B € L*°(R™ x R™). Just like before, this guarantees
that £ p is a bounded sesquilinear form on W#2(R") and hence that £ p is bounded from W#2(R")
into its anti-dual. However, we carefully note that we do neither assume a lower bound on B nor
any relation between « and S. In particular, 5 > « is allowed.

In the most general setup that is needed here, weak solutions are defined as follows.

Definition 4.1. Let f € L} .(R") and g € L{.(R") such that s p(g,#) converges absolutely for
every ¢ € C(R™). A function u € W*2(R") is called weak solution to (4.1) if

Ean(1,0) = Enlg.0)+ [ [-3ds (9 CFRY))
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Suppose now that we are given a weak solution u € W2 (R™). In order to invoke Proposition 3.4,
we write (4.1) in the form
(1 + ﬁa,A)“ = L’g,Bg + f+u.

Hence, we see that higher differentiability and integrability for u, that is u € W*P(R"™) for some

s > a and p > 2, follows at once provided we can show Lg g+ f+u € WP (R™)* with s’ < a and
p’ < 2 as in Proposition 3.4. So, for the moment, our task is to work out the compatibility conditions
on u, f, and g to run this argument.

4.1. Compatibility conditions for the right-hand side. The standing assumptions for all results
in this section are s’ € (0,1), p € (1,00) and 1/p+1/p' = 1.
We begin by recalling the fractional Sobolev inequality, which will already take care of v and f.

Lemma 4.2 ([10, Thm. 6.5]). Suppose s'p’ < n and put 1/p"™* :=1/p' — s'/n. Then

[ollp+ S [vlerp (v € WHP(RT)).
In particular, WP (R") c LP"(R™) and LP<(R™) ¢ W** (R™)* with continuous inclusions, where
1/pe:=1/p+$/n.

As for g, a dichotomy between the cases 28 > a and 28 < a occurs. This reflects a dichotomy for
the parameter s’, which typically is close to «. In the first case, 23 > «, we shall rely on

Lemma 4.3. If 28 — s € (0,1) and g € W?#~5'P(R"), then
[(£s,89,v)| < |Blloc[gl2p-s plv]sp (v € WWP(RY)).
Proof. Write n+ 28 = (n/p+28 — ')+ (n/p’ + ') and note that

(g < [[, A o) || @ )

o — o725 || — g+
The claim follows from Holder’s inequality. O

|B(z,y)| dz dy.

The second case, 28 < a, is slightly more complicated as we need the following embedding related
to the fractional Laplacian (—A)?, see [17,22]. For the reader’s convenience and later reference we
give a direct argument.

Lemma 4.4. Suppose s > 2[3, s'p’ < n, and put % = % - S/_Tw Then

Proof. Let v € W*? (R") and put 1/p/* := 1/p/ — s'/n as in Lemma 4.2, so that
1 2 =261 1 1
2 dew 1

q - s'p! s pl* T 7,71 ro
Note that our assumptions guarantee p™*, 71,79 € (1,00). Denote by M the Hardy-Littlewood maxi-
mal operator defined for f € Ll (R") via

M(x) = %gg‘;, [1rwlay @ ern),

where the supremum runs over all balls B C R" that contain x. We claim that it suffices to prove

v(z) — v v(z) — v(y)|” 1/m ,
(4.2) /R (@) = vl 4, < (/R |()(y)|dy> Mo@)"™/" (ae. z€R").

no o=yt T Y U -y

Indeed, temporarily assuming (4.2), we can take L%-norms in the z-variable and apply Holder’s
inequality on the integral in x with exponents 1/¢' = 1/r1 + 1/r to deduce

1/¢

q/
v(z) —v(y " _—
</n </R" Wdy) d.%') S [Q}]Z{pllquHp/*p/ 1
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The claim follows since we have || Mv||+ < ||v]|p+ S [v]sp by the maximal theorem and Lemma 4.2.

Now, in order to establish (4.2) we split the integral at |z — y| = h(x), with h(z) to be chosen
later. Since 28 — s’ < 0 by assumption, we can write n+ 28 =n/p' +s +n/p+ (28 — s') and apply
Hoélder’s inequality to give

— , o p/ 1/pl
/ o) = 0W)] gy < pay-20 ( / [ole) — vy dy)
la—y|<h(z) [T — Y| le—y|<h(z) |z —y["TP

< h(x)s/%( /R [v(z) — ()" dy)l/”/‘

o T — g

(4.3)

The remaining integral is bounded by

[v(z) —v(y)| |v()] v(y)|
7dy§/ 7dy+/ s dy,
/|x—y|>h(x) |z — y[n 2P lo—yl>h(z) [T — y|" T2 lo—yl>h(a) | — y|" T2

where the first term equals c|v(z)|h(x)~2% for some dimensional constant c¢. Next, on writing

1 _/00 n+26 dr
|$_y|n+25_ o—y| T rl+28

and changing the order of integration, the second term above becomes

o0 1 dr
2 = dy ) ——
(n+29) [ N ( / e V) y) o

and thus can be controlled by C,, sMv(z)h(x)~25. Since |v| < Mv almost everywhere, we obtain in
conclusion

[v(z) = v(y)] 2
4.4 / 2 2 dy < hx) P Moz a.e. ¢ € R").
(4.4) S P 2 (z) () ( )
Finally, we pick h(z) such that the right-hand sides of (4.3) and (4.4) are equal and obtain (4.2). O

As an easy consequence we obtain the required bounds for L3 p.

Corollary 4.5. Suppose s’ > 28, s'p’ < n, and put % = %—i— SI_TQB For every g € LY(R™) there holds

(L6,59,0)| S IBllscllglla[v]sry (v € W (R)).

Proof. We crudely bound |g(z) — g(y)| < |g(x)| + |g(y)| in the integral representation for (Lg pg,v)
and apply Tonelli’s theorem to give

(sng.oll < [ lal( [ O (Bl + 1B o) ay) ao

fo(@) — o)\ .\
< 21 Bll<llgl ( L (L e a) dx) ,

the second step being due to Holder’s inequality. Since the Holder conjugate of g is the exponent ¢’
appearing in Lemma 4.4, the claimed inequality follows from that very lemma. ]

4.2. Proof of a global higher differentiability and integrability result. Combining Propo-
sition 3.4 with the mapping properties found in the previous section, we can prove our main self-
improvement property for weak solutions of (4.1) . As in [14], we impose the additional restriction
28 — a < 1 in the case that 8 > a.

Theorem 4.6. There exists € > 0, depending only on \,n, a, B with the following property. Suppose
s € (a,1) and p € [2,00) satisfy |s —al, |p—2| < e. If u € W*(R") is a weak solution to (4.1), then
the following conditions guarantee u € W*P(R™):
1 1 2a-—
fEL®Y), —=-4=—
rop n
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and

1 1 2a-25-

gersmn, 1L, 207W78 ua5

q P n

or
g e W2—2a%sp(Rn) if0<28—a < 1.
Moreover, there is an estimate
lullsp S llullaz + 111+ llgll,

where the norms of f and g are with respect to the function spaces specified above and the implicit
constant depends on \,n,a, 3,s,p and || Bl -

Proof. As usual we write s + s =2« and 1/p+1/p’ = 1. We let £ > 0 as given by Proposition 3.4.

If we can show Lg g+ f+u € we' (R™)*, upon possibly forcing further restrictions on &, then by
density of C3°(R™) in the fractional Sobolev spaces we can write the equation for u in the form

(1 + anA)u = ﬁ/g,Bg +f+u
and Proposition 3.4 yields v € W*P(R") with bound
(45) Hu 5P S Hﬁﬁ,B‘g + f + u|’W5/vP/(Rn)*‘

By assumption and Lemma 4.2 we have u € LP(R") for all p € [2,2*] with 1/2* =1/2—a/n. Note
that here we used our assumption n > 2. For p in this range we write 1/p = (1 — 6)/2 + 6/2* with
6 € (0,1) and get for any s’ € (0,1) the bound

—0 0
(4.6) < lullp < fulla™lull3- < lullaz,

HUHWS’JD’ (Rn)*
where the second step follows from Holder’s inequality. Next, we have s'p’ < 2o < 2 < n (since
s’ < awand p’ < 2) and hence Lemma 4.2 yields HfHWS/,p/(Rn)* S |Ifll»- Finally, we consider L3 pg.

Suppose first that 28 < a. Upon taking ¢ smaller, we can assume 23 < s, in which case

L3 BY|lvos o s S lgllg follows from Corollary 4.5. If, on the other hand, 28 — « € [0,1), then
B, we' P (Rn)x ~S q

we can additionally assume 28 — s’ € (0,1) and apply Lemma 4.3 to give HEABQHWS/J,/(R,L)* <

9ll28—2a+s,p- Inserting these estimates on the right-hand side of (4.5) yields the desired bound for

U. g

4.3. Comparison to earlier results. As a consequence of our method, the exponents s and p
for the higher differentiability and integrability of v in Theorem 4.6 are precisely related to the
assumptions on f and g. As far as more qualitative results are concerned, this is by no means
necessary since the following fractional Sobolev embedding allows for some play with the exponents.

Lemma 4.7 ([4, Thm. 6.2.4/6.5.1]). Let sg, s1,52 € (0,1) and 1 < py < p1 < 0o satisfy so —n/py =
s1 —n/p1 and sy < s1. Then

WH0P0 (R™) ¢ WHPL(R™) C W21 (R?)
with continuous inclusions.

As a particular example, we obtain a self-improving property more in the spirit of [14, Thm. 1.1].
For this we define the following exponents related to fractional Sobolev embeddings, see Lemma 4.2,

2n 2n
47 Dy i D Y S L —
(47) ST n 4 20 o2 2(a—2p)

where the second one will of course only be used when 25 < «.

Corollary 4.8. Let u € W*?(R") be a weak solution to (4.1). Suppose for some § > 0 there holds
f € LR N L= (R") and

. L2o-20H(RM) N L20=20(R")  if 28 < a,
I5 | wei-a+é2(gn) if0<28—a<l.
Then u € W*P(R™) for some s > «, p > 2. Moreover, s and p depend only on \,n,«, 3.
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Proof of Corollary /.8. Throughout, we will have s € (a,1) and p € [2,00). We consider the case
206 < « first. By the log-convexity of the Lebesgue space norms we may lower the value § > 0 as we
please and still have the respective assumptions on f and g. On the other hand, the exponents in
Theorem 4.6 satisfy r > 2, , and ¢ > 2, 423 and in the limits s — o and p — 2 we get equality.
Hence, we can apply Theorem 4.6 with some choice of s > « and p > 2 and the claim follows.

It remains to deal with the assumption on ¢ in the case 25 — o € [0,1). But according to
Lemma 4.7 we can find s > « and p > 2 arbitrarily close to « and 2, respectively, such that
W2B-atd2(gny ¢ W2-2a+sp(R™) holds with continuous inclusion and again u € W*P(R™) follows
by Theorem 4.6. O

As another application we reproduce the main result in [3] concerning the non-local elliptic equation
»Ca,Au = f

with f € L%(R™). We note that this corresponds to taking g = 0 in the general equation (4.1). Hence,
the entire Section 4.1 could be skipped except for the first lemma, thereby making the argument up
to this stage particularly simple.

Corollary 4.9. Let f € L2(R") and let u € W*?(R™) be a weak solution to Loau= f. Then

Tu(z) := </n W dy)m

satisfies for some p > 2 and a constant ¢ both depending only on A\, n, «,
ITull, < e(lull2 + [1£12)-

Proof. We use the notation introduced in Theorem 4.6 and write as usual s+s = 2o, 1/p+1/p’ = 1.
According to Lemma 4.2 we have L"(R") ¢ W** (R")* with continuous inclusion and if s and
p are sufficiently close to a and 2, respectively, then we have r < 2. Obviously, we also have
LP(R™) C we'r (R™)* and p > 2. Hence, by virtue of the splitting

F=FYn<ir12y + - Lgpzirey € LP(R) + L7(R™)

we obtain f € W (R")* with bound HfHWS,’p,(Rn
of the set E C R™. Moreover, ||u||wslﬂp/(Rn)

of the proof of Theorem 4.6 in order to find s > «a, p > 2, and implicit constants depending only on
the above mentioned parameters, such that

) < || fll2. Here 1 denotes the indicator function
. S llufla,2, see (4.6), and thus we can follow the first part

[ullsp S 1fll2 + llulla.2-
The pair (s,p) could be chosen anywhere in the (s, p)-plane close to («,2) but for a reason that will
become clear later one, we shall impose the relation
n o on
4.8 n_on_ .
(4.8) > ) s—«

Quasi-coercivity of the form associated with £, 4 along with the equation for u yield

1
Nl < antus)] =| [ 7-wde] < Sl + 171B)

and thus it suffices to prove the estimate ||[T'u||, < ||ul/s, to conclude.
To this end, we split I'u(z) = I'ju(x) 4+ I'yu(x) according to whether or not |z —y| > 1 in the
defining integral. Repeating the argument to deduce (4.4), we obtain

u(x) — uly)|? 1/2
o= ([ SRR a) S M)
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and as p > 2, we conclude | Ty u, < ||ull, from the boundedness of the maximal operator on LP/2(R™).
As for the other piece, we use Holder’s inequality with exponent p/2 on the integral in y, to give

s ([ SO 4yas) " <
2llp S n Jlz—yl<1 |x_y‘np/2+po¢ = S,p

where in the final step we used that np/2 + pa = n + sp holds thanks to (4.8). O

5. LOCAL RESULTS

In Theorem 4.6 and Corollary 4.8, we have obtained global improvements of regularity for solutions
to (4.1) under global assumptions on the right-hand side. We now discuss some local analogues of
this phenomenon. In order to formulate our main result in this direction, we define for balls B C R”
a local version of the fractional Sobolev norm by

1/p ( )|p 1/p
s — p
fullwercey o= ([ P ds) o+ = |x_y|n+sp dzdy)

and write v € W*P(B) provided this quantity is finite.

Theorem 5.1. There exists € > 0, depending only on \,n, a, B with the following property. Suppose
s € (a,1) and p € [2,00) satisfy |s—al,|p—2| < e. Let u € W*2(R") be a weak solution to (4.1) and
let B C R™ be a ball. Then the following conditions guarantee u € W*P(B') for every ball B’ CC B:

1 1 2a-—
feL"(B) for somer with — < -+ a-s
rTp n
and
1 1 2a—-28-— 1 1 1 2a-—
g € LY(B)NLYR™) for some q,t with 7§7+O‘758, —<-< -+ a-s if 28 < a,
q P n p-t p

or
g e WH2etsp(Rn) f0 <28 —a < 1.

Again, this gives a precise relation in the exponents, but we also state a more quantitative version.
It follows by the exact same reasoning as Corollary 4.8 was obtained from Theorems 4.6 in the
previous section and we shall not provide further details. We are using again the lower Sobolev
conjugates defined in (4.7).

Corollary 5.2. Let u € W*%(R") be a weak solution to (4.1) and let B C R™ be a ball. Suppose for
some 8 > 0 there holds f € L?**%9(B) and

) L2a=26T0(BY N LYR™)  for some t € (24.0,2] if 28 < a,
g W2B—a+5,2(Rn) ZfO < 2,8 —a<l1.

Then there exist s > «, p > 2, such that u € W¥P(B') for every ball B' CC B. Moreover, s and p
depend only on A\,n,a, .

These statements are astonishingly local in that the assumption on f and part of that for g are
only on the ball where we want to improve the regularity of u. To the best of our knowledge this
has not been noted before. In particular, if f and g satisfy the assumption for every ball B, then
the conclusion for u holds for every ball B’. This is the result in [14]. (Except that they suppose
global integrability of exponent ¢ = 2, ,_25 + 0 instead, which for large 4 is not comparable with the
condition in Corollary 5.2. It is pos&ble to modify our argument to work in the setting of [14] as
well, but we leave this extension to interested reader, see Remark 5.4.)

For the proof of Theorem 5.1 it is instructive to recall a simple connectlon between the condition
xu € WHP(R™) for some x € C§°(B) and the fractional Sobolev norm || - [[y=»(p): On the one hand,



10 PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

denoting by d > 0 the distance between the support of x and “B we obtain from the mean value
theorem,

(//Rann |(XU),E:)_;,S§:Z@)‘ dxdy)l/p ) 2||X||oo<//BxB wdx dy> 1/p
N AT A P
N PATCIO( pe——

where by symmetry and the fact that the integrand is zero when z,y ¢ supp(x), we can assume
x € supp(x) and then distinguish whether or not y € B. As s > 0 and s — 1 < 0, the second and
third terms are finite. Hence, we see that u € W*P(B) implies yu € W¥P(R™). On the other hand,
if x =1 on a smaller ball B’ CC B, then

6:2) (f, meras) v (ff, OO )™ <

Due to these observations and the fact that Lebesgue spaces on a ball are ordered by inclusion, we
see that Theorem 5.1 follows at once from

Lemma 5.3. There exists € > 0, depending only on \,n,c, B with the following property. Suppose
s € (a,1) and p € [2,00) satisfy |s —al,|p — 2| < e. Let u € W¥2(R") be a weak solution to (4.1)
and let x € C5°(R™). Assume

1 1 2a-—
XfELT(RY) with -=-42"%
rop n
and if 28 < a assume
1 1 2a—28-— 1 1 1 2a-—
xg € LY(R"), —27—1—704 b S, and g € LYR"), <-< -+ c 3,
q p n p—t p n

whereas if 0 < 26 — a < 1 assume g € WH=29FSP(R). Then yu € WP(R").

The strategy for the proof of this key lemma is as follows. We let v € Wa’2(R”) be a weak solution
o (4.1) and seek to write down a related fractional equation for xu in order to be able to apply
Proposition 3.4. To this end, we note for three functions u, x, ¢ and z,y € R™ the factorization

(Xatz — XyUy) Pz — Py)
(5'3) = (Xx¢x - Xy¢y)(ux - uy) + Uy(Xx - Xy)¢a: + Ux(Xy - Xx)¢y
= (Xabz — XyPy) (Uz — uy) — (Uz — Uy) Xz — Xy) Py + Uy(Xa — Xy) (P — Dy),

where u; := u(z) and so on for the sake of readability. This identity plugged into the definition of
Ea A, see (3.1), yields

<£a,A(XU)7 ¢> = <£o¢,Au7 X¢> + <Ra,A,xu7 ¢> (<Z> € CSO(RH))a

where

(Rt sty 6) 1= //RWR” (z.7) (1‘)—u(y))~(x(w)—x(y))@dxdy

‘JJ _ y‘n+2a
(x(x) = x()) - (¢(x) — ¢(y))
+ //Rann Az, y)u(y) o g dz dy

provided all integrals are absolutely convergent. We shall check that in the proofs below. Of course,
a similar calculation applies to Lz g. Therefore xu € WO"Z(R”) solves the non-local elliptic equation

(5.4) (14 La,a)(xu) = Ra,axu = Rp,pxg + xu+ Lsp(x9) + X[
With this strategy in place, we turn to the
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Proof of Lemma 5.5. We start by taking € > 0 as provided by Theorem 4.6 but for some steps we
possibly need to impose additional smallness conditions that depend upon n, «, 8 through fractional
Sobolev embeddings. As usual, we write s + ' =2a and 1/p+1/p' = 1.

The claim is yu € W*P(R") and according to Proposition 3.4 we only need to make sure that the
right-hand side in (5.4) belongs to W***' (R")*. But from the proof of Theorem 4.6 we know that
this is the case for yu € W*?(R") and that the conditions on xf and yg are designed to make it
work for the last two terms.

We are left with the error terms. We start with R4 4.y, which as we recall is given for ¢ € Cg°(R")

by
Ropon) == [ e, ﬂff%%? ) 5 g dy
e L Ayt WX G =) o,
=1+1I.
Now,

(5.5) / x(z) = x@)I” d$</ 27| x5 d$+/ IVXllBs o, <4
nolz eyt T ey o -yt ja—yl<1 |z —y[rHsmp

uniformly in y € R™ since s < 1. Thus, applying Holder’s inequality first in  and then in y, we
obtain

_ p 1/p _ Y 1/p
< xt [l f, M ) ([ ST ) dy <l

Similarly, but reversing the roles of ¢ and u, we get

et [ o ([, MO ) ([ DR )y < falol

By making ¢ > 0 smaller, we can assume 1/2 — a/n < 1/p and 1/p’ — §'/n < 1/2, which pays for
continuous inclusion W*2(R") ¢ LP(R™) and W*# (R") c L?(R"), sce Lemma 4.2. Thus,

’<Ra,A,Xuv ¢> ~ 'p! (¢ € CSO(Rn))

and by density R, 4, v extends to a functional on we' (R™) as required.

It remains to estimate Rgp,g. In case 0 <28 —a < 1land g € W2B-2a4sp(R")  we can repeat
the argument for bounding I and I1 by replacing u by g and changing the indices of integrability
and smoothness in Holder’s inequality accordingly. In this manner,

[(Rs.8.x9: ) S l9llpl@)srpr + [9]28-2015pl¢llp S N19ll25-2015pl0llspr (¢ € CF(R™)).

In the complementary case 23 < «, there is no smoothness of g to be taken advantage of. This,
however, can be compensated by the fact § < «/2 < 1/2. More precisely, we put B(z,y) :=
B(z,y) + B(y,x) and use the first part of the factorization (5.3) to write the error term differently
as

Ramaand) = [, Blea@ X056 dady

- //]R"x]Rn B, y)g(y) X&) =XW) - (6) = 6(@)) 1 g

|z — y[nt20

; () = x(¥)
_//RnXRn B(m,y)g(y)%(ﬁ(y) dl"dy

= [IT+ IV,

where we changed 2 and y in the second step. Now, our assumption is ¢ € L!(R") with 1/p <
1/t <1/p+s/n. Welet 1/t +1/t' =1 and obtain from Lemmas 4.2 and 4.7 that the condition on
¢ is precisely to guarantee the continuous inclusions W**' (R") ¢ W% (R") c L¥ (R") for at least
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some small § € (0,1). This being said, we use Holder’s inequality and (5.5) with (s, p) replaced by
(28 —6,t) to give

2 x(@) —x@)" .\ o) — o)\
<2 [ lo( [, MOS0 ar) ([ A ) T < Lalllolor

Likewise, for the term IV, we use the bound (5.5) with (s, p) replaced by (24, 1) to conclude that

V]S /Rn lglle)ldy < ligllellolle < llglelldllsp- O

Remark 5.4. As we mentioned after stating Corollary 5.2, the assumption g € L?~28 (B)NL!(R")
for 28 < a can be replaced by one global assumption g € L?e~28T9(R") with § > 0 in accordance
with the result in [14]. This follows from a simple modification of the argument above to give the
required adaptation of Lemma 5.3. We sketch the main idea but leave the precise extensions to the
interested reader. The difference arises from the term Lz pg so it suffices to see that xLz pg and x f
belong to the same W' (R™)* so that one can apply Proposition 3.4.

If w is a weak solution to (4.1), then automatically

X‘CB,Bg c Woz,Z(Rn)*

by the assumption on f, the mapping properties of £, 4 and the error term considerations for
Ra,au. By Corollary 4.5,

XLppg € W7 (R")*

provided that é = % + # One can check that there is an admissible choice of ¢/ < o and 7" < 2
when g = 2, o_23 + J. By interpolation, we find a line segment ¢ connecting (¢’,1/7') to (o, 1/2) so
that xLgpg € WP (R")* for all (s',1/p') € £. Finally, since xf € L{(R") for all t € [1,2, o+ 6] with
d > 0, there is at least one such ¢ for which we can find (s',1/p’) € £ with 1/t =1/p+ (2a— s)/n so

that Lemma 4.2 implies f € W (R")* with (s,1/p/) as close to (o, 1/2) as desired.

6. AN APPLICATION TO FRACTIONAL PARABOLIC EQUATIONS

We demonstrate the flexibility of our approach by a new application to fractional parabolic equa-
tions. We shall only treat a particularly interesting special case with connection to non-autonomous
maximal regularity, leaving open the establishment of a suitable (full) parabolic analog of Theorem 4.6
and its local version, Theorem 5.1.

We are going to consider the Cauchy problem

(6.1) Oput) + Laamu(t) = f(t),  u(0) =0,

where f € L(0,T;L?(R")), a € (0, 1), and for each t € [0, T] we let Loa): W2(R?) — W2(R?)*
be a fractional elliptic operator as in Section 3 satisfying the ellipticity condition (1.1) uniformly in ¢.
We recall that the associated sesquilinear forms &, 4(;) were defined in (3.1). As for the coefficients

Alt,z,y) = A(t)(z,y)

we assume no regularity besides joint measurability in all variables.

Note that we formulated our parabolic problem on [0,7") x R™ from the point of view of evolution
equations using for, X, a Banach space, the space LQ(O, T; X)) of X-valued square integrable functions
on (0,T) and the associated Sobolev space H(0,7;X) of all u € L2(0,T; X) with distributional
derivative dyu € L(0,T; X).

Definition 6.1. Let f € L?(0,T;L?(R")). A function u € H'(0, T; W*2(R™)*) N L2(0, T; W*%(R™))
is called weak solution to (6.1) if u(0) = 0 and

T T
(6.2) /0 — (1, e} + Eap ey (1, ) dt = /0 (f,d)adt (€ CP((0,T) x RY)),

where (-,-) denotes the inner product on L?(R™).
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Remark 6.2. (i) Since W%?(R") is a Hilbert space, the solution space for u above embeds into
the continuous functions C([0, T]; L%(R™)) and hence the requirement u(0) = 0 makes sense
[19, Prop. II1.1.2].
(ii) By smooth truncation and convolution C§°((0,T) x R™) is dense in L2(0, T; W*2(R™)). Thus,
the integrated equation (6.2) precisely means that u satisfies the parabolic equation in (6.1)
almost everywhere on (0,T) as an equality in W*2(R")*, which contains L2(R").

By a famous result of Lions, the Cauchy problem (6.1) has a unique weak solution u for every
f € L%0,T;L3(R")). See [8, p. 513] and [9, Thm. 6.1] for the case of function spaces over the complex
numbers. The following self-improvement property is the main result of this section.

Theorem 6.3. Let f € L?(0,T;L*(R")). Then there exists ¢ > 0 such that the unique weak solution
o (6.1) satisfies

u € HY(0, T; W =2(R™)*) N L2(0, T; WoT2(R™)).
Moreover, for some s > o and p > 2 there holds u € W2a(0, T; LP(R™)) N LP(0, T; W*P(R™)), that

18,
1/p T |u(t, z) (s, )| 1/p
)P
(/ / u(t, x)| dxdt) (/n/ / |t—s|1+3p/(2°‘) dsdtd:c)
—u(t,y)P )l/p T(/ / ) )1/2
dx dydt < " d dt '
</ //ann |a:— |+sp ray ~ € 0 Rn|f( ;@) d

The values of €, s,p and the implicit constant in (6.3) depend only on A\, n, .

(6.3)

Remark 6.4. (i) Since sp > 2«, the boundedness of the second integral in (6.3) entails, in
particular, v € C7([0,T]; LP(R™)) with Holder exponent v = 5& — 1, see fore example [20
Cor. 26].

(ii) The largest possible value ¢ = a with W%2?(R") := L%(R™) would mean mazimal regularity
because all three functions in the parabolic equation were in the same space L?(0, T; L2(R")).
See [1] for further background and (counter-)examples.

For the proof, we shall apply the same scheme as in the stationary case, see Sections 3 and 4.

6.1. Definition of the parabolic Dirichlet form. One of the immediate challenges in moving from
the elliptic operator to the parabolic operator is the lack of coercivity of the operator 0 + L, a()-
However, we can rely on the hidden coercivity introduced in this context in [9]. This requires us to
study the fractional parabolic equation for ¢ € R first, that is,

8{&(75) + ﬁa,A(t)u(t) = f(t)a
where weak solutions are in the sense of Definition 6.1, but by replacing (0,7) with R and of course
removing the initial condition. Note that we can simply extend the coefficients by A(t,z,y) := 1 if
t ¢ [0,T] since we are not assuming any regularity.

For simplicity, put H := L*(R") and V := W*%(R"). Let F be the Fourier transform in ¢ on
the vector-valued space L2(R; H) and define the half-order time derivative Dg /? and the Hilbert
transform H; through the Fourier symbols |7|'/? and —isgn(7), respectively. They are crafted to
factorize 0, = Dtl/QHtDtl/Z. Next, we write H'/2(R; H) for the Hilbert space of all u € L?(R; H) such
that Dl/zu € LQ(R; H) and define the parabolic energy space

E := HY(R; H) N L2(R; V)

1/2 )1/2

equipped with the Hilbertian norm ||u||g := (HuHL2 rv) T || D, . It allows one to define

1+ 0+ L4 A as a bounded operator E — E* via

u”}ﬁ(R H)

(6.4) (140 + Lo a@))u, v) = /R (u, v)2 + (H, Dy *u, D} *v), + Eaaqp) (u, v) dt,
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where (-, )9 denotes the inner product on H = L*(R™). We state our substitute for Lemma 3.1 in
the parabolic case. It is an extension of Theorem 3.1 in [9].

Lemma 6.5. The operator 1 + 0 + Ly a@) + E — E* is bounded and invertible. Its norm and
the norm of its inverse can be bounded only in terms of X. Moreover, given f € L*(R;H), u :=
(1+0 + Ea’A(t))_lf is a weak solution to Oyu+ Lo ayu = f —u on R,

Proof. The E — E* boundedness of 1 + 0, + L4, 4 is clear by definition. Next, for the invertibility,
the form

as(u, v) == /R<u, (14 8Ho)v)2 + (H: Dy *u, D (1 4 6H)0)s + En gy (u, (1 + SHy)v) dt

for u,v € E, is bounded and satisfies an accretivity bound for § > 0 sufficiently small, for example
§ := A\?/2. Indeed, from boundedness and ellipticity of Ea,A(t) uniformly in ¢ (see Section 3) and the

fact that the Hilbert transform is L2-isometric and skew-adjoint,
)\2
Reas(u, ) 2 [ula ) + 61D} ullf + = A1) [ [ult,)20dt = 5 Jull.
As
(L+ 0+ Lo aw)u, (1 + dHy)v) = as(u,v), (u,v € E),
and since (14 62)~1/2(1+6H;) is isometric on I as is seen using its symbol (14 62)~/2(1 —idsgn7),

it follows from the Lax-Milgram lemma that 1+ 0¢ + L, ;) is invertible from E onto E*. Finally,
given f € L}(R; H) C E we can define u := (1 + 9y + Loaw)” 1 f and have by definition

/(H D2, DY)y + Eqage) (1, v) dt = /R<f—u,v>2dt (v € E).

Since for v € C5°(R x R™) we can undo the factorization <H1tD1/2 tl/Qv>2 = —(u, Opv), we see that
u is a weak solution to dru + L, gyu = f — u. O

Remark 6.6. Skew-adjointness of the Hilbert transform and ellipticity of each sesquilinear form
Ea,Ar) Yield Re((0¢ + L a))u, u) > 0 for every u € E and by the previous lemma 1+ (9; + Lo a(r))
E — E* is invertible. By definition, this means that d;+ L, 4(;) can be defined as a maximal accretive
operator in L2(R'™") with maximal domain D := {u € E : (9; + Lo A@m))u € L2(R+7)}.

In order to proceed, we need to link the parabolic energy space [E and the sesquilinear form on the

right-hand side of (6.4) with a Dirichlet form on fractional Sobolev spaces as in Section 3. To this
end, note that for u,v € L?(R; H) we obtain from Plancherel’s theorem applied to the integral in s,

u(s+h) —u(s),v(s+h) — le=hm —1]2
//M BB Fdsdh = //M T = (Fu(r), Fo(r))2 dr dh
= 2n [ (D} u(t), D 0(e)dr.
R

where in the second step we evaluated the well-known integral in h to 27|7r|. This calculation is
understood in the sense that for u = v the left-hand side is finite if and only if the right-hand
side is defined and finite and if both u and v have this property, then equality above holds true.
Consequently, d; + L, a() is the operator associated with the parabolic Dirichlet form

poz,A(t) (uv U) = / <HtD1/2u D1/2 >2 + Sa,A(t) (u7 U) de

- L /n //RXR (Hyu(t,x) — Hu(s,x)) - (v(t,x) — v(s, x)) dsdt d

|t = s?

(u(t, ) —u(t,y)) - (v(t, z) —v(t,y))
+/R//R"><R" A(t,z,y) drdydt,

|z — y[rt2e

defined so far for u,v € E. Here, Hyu( -, x) is understood as the Hilbert transform of u(-,z) € L?(R)
for almost every fixed z € R".
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6.2. Analysis of the parabolic Dirichlet form. The definition of the parabolic Dirichlet form
determines the spaces ‘nearby’ IE to look at: For s € (0,1)N(0,2a) and p € (1,00) we let WP (RIH")
consist of all functions u € LP(R*") with finite semi-norm

lu(t, z) — u(s, z)|P /// u(t,y)|P >1/p
dsdtd dx dy dt
(/n //RX]R ]t _ s’l—i—sp/ 20) T + . |x — y|n+sp xdy

and put | - [lywsr@ieny == || - [p + [ ]sp- Again, smooth truncation and convolution yields density of

C3°(R*™) in any of these spaces. Often we shall write more suggestively
WP (RYT™) = Waa P (R; L (R™)) N LP(R; WHP(R™)),

where the vector-valued fractional Sobolev spaces are defined as their scalar-valued counterpart
upon replacing absolute values by norms. But as Wza?(R; LP(R")) = LP(R™; W2aP(R)) in virtue of
Tonelli’s theorem, all fractional Sobolev embeddings stated for the scalar-valued space W za P (R) re-
main valid for W2aP(R; L?(R")). Note the scaling in the spaces W?(R'*") adapted to the fractional
parabolic equation: one time derivative accounts for 2a spatial derivatives.

By what we have seen before, W2(R!'*") = E up to equivalent norms and hence 1 + 9; + Lo, Axt)
is invertible from that space onto its anti-dual by Lemma 6.5. The following mapping properties are
then proved by Holder’s inequality exactly as their elliptic counterpart, Lemma 3.2, on making the
additional observation that H; : W*P(R) — W*P(R) is bounded. Indeed, this is immediate from the
equivalent norm (2.1) on W*P(R) since the Hilbert transform commutes with convolutions and is
bounded on LP(R).

Lemma 6.7. Let s,s" € (0,1) and p,p’ € (1,00) satisfy s + s = 2a and 1/p+ 1/p' = 1. Then
140+ Lo 4 extends from CF(R™) by density to a bounded operator WP (R'") — Wehe (R1T7)*,

Remark 6.8. The extensions obtained above are also denoted by 1 + 0; + £, 4 and a comment
analogous to Remark 3.3 applies.

Hence, the only ingredient missing in our recipe for self-improvement is the complex interpolation
identity replacing (3.3). This can be obtained from [7] as follows. We define the vector of anisotropy
v and the mean smoothness v by

20(14 14+n
= ( (Z&Q;), ;jg‘a, e 73:2%) e R, o= (n+202 € (0,1) for s € (0,1)N(0,2a).

Then, [7, Thm. 6.2] identifies W5P(R*") up to equivalent norms with the anisotropic Besov space
B):¥(R™). In turn, this space is defined in [7] exactly as the ordinary Besov space B) (R'*™) in
Section 2, upon replacing the scalar multiplication 2/ = (2/zq, ..., 2/2,) on R'*" by the anisotropic
multiplication 2¥7x := (2V09xg,...2V"Ix,,), where j € R and subscripts indicate coordinates of (n+1)-
vectors, and the Euclidean norm |z| by the anisotropic norm |z|, defined as the unique positive
number o such that ; x? Jo®¥i = 1. With these modifications, B)Y(R'*") is the collection of all
u € LP(R'*") with finite norm

o 1/p
Jullsgyeaery = (L 27Pl0y xulp) < .
=0

Note that this norm now reads exactly as the one in (2.1) on the anisotropic space B} , (R'*") because
the anisotropy v is only present in the now anisotropic dyadic decomposition 1 = >>22 F(¢;)(§)-
With this particular structure of the norms, complex interpolation works by abstract results exactly
as outlined before in Section 3, see again [4, Thm. 6.4.5(6)] and [4, Cor. 4.5.2]. Thus, we have

(Wi (RY), Wa ¥ (RI)], = W (R")

for po,p1 € (1,00), so,s1 € (0,1) N (0,2cr) and the analogous identity for the anti-dual spaces both
up to equivalent norms with p, s given as before by % = 11);00 + p% and s = (1 —0)sp+ 0s;. We do not
insist on uniformity of the equivalence constants as in Section 3 and leave the care of checking it to

interested readers.
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This interpolation identity and Lemma 6.7 set the stage to apply énefberg’s result as in the proof
of Proposition 3.4 to deduce

Proposition 6.9. Fiz any line ¢ passing through (o, 1/2) in the (s,1/p)-plane. There exists € > 0
depending on 0, \,n, such for (s,1/p) € £ with |s —al,|p—2| < e and §',p’ satisfying s+ s’ = 2« and
1/p+1/p' =1, the operator

148 + Lo awy : WEP(RYT™) — WE P (R
is invertible and the inverse agrees with the one obtained for s = o, p = 2 on their common domain
of definition.
6.3. Higher differentiability and integrability result. We still need a lemma making Proposi-
tion 6.9 applicable in the L2-setting of our main result.
Lemma 6.10. Suppose s € (a,2a), p € [2,00) and let s+ =2a, 1/p+1/p' =1. If2/p >1—5"/n,
then L2(R; L2(R™)) € WP (R™™)* with continuous inclusion.

Proof. Since p's’ < 2a < 2 < n by assumption, we can infer from Lemma 4.2 the continuous
embedding

!

Wi (R; L (R") € L'(R; LY (R™) (5 — 55 <7 < )
Now, the additional condition 2/p > 1 — s’/n along with 2a < n precisely guarantees that we can
take ¢ = p = r and therefore
WP (R = Waa ' (R; L7 (R)) N LY (R; W7 (R")) € LP(R; LP (R™)) N L” (R; LP(R™)).

Taking into account the convex combinations % = 1}'%9 —i—}% = 1};0 —I—% for § = %, standard embeddings

for mixed Lebesgue spaces imply that the right-hand space is continuously included in L*(R; L2(R™)),
see for example [4, Thm. 5.1&5.2]. The claim follows by duality with respect to the inner product
on L%(R; L2(R™)). O

With this at hand, we are ready to give the

Proof of Theorem 6.3. Let f € L2(0,T;L?(R™)). Since uniqueness is known, only existence of a weak
solution to (6.1) with the stated properties is a concern. To this end, we shall argue as in [9] by
restriction from the real line, where we know how to improve regularity.

We extend A(t,x,y) := 1 and f(t) := 0 for t ¢ [0,T]. Then, g(t) := et f(t) € L2(R;L*(R")) and
thus Lemma 6.5 furnishes

= (140 + La,a) 'g € WA (R'T™),
which is a weak solution to
() + Lo apv(t) =e ' f(t) —v(t)  (tER).
In particular, v is a continuous function on R with values in L?(R") (see Remark 6.2 (i)). We claim

v(0) = 0. Indeed, t — ||v(t)||3 is absolutely continuous with derivative %Hv(t)”% = 2Re(0w(t),v(t)),
where (-,-) denotes the W*?(R")*-W*2(R") duality [19, Prop. 1.2]. By (3.2),

0 1
)\/ ]2 5t < Re/ (0+ Loay.v) dt = —Re [ (@r,0)de =~ [o(0) 3

where we have used the equation for v along with f(¢) = 0 for ¢t € (—o00,0) in the second step. Thus,
|v(0)]]2 = 0. The upshot is that the restriction of e'v(t) to [0, 7] is the unique weak solution u to the
Cauchy problem (6.1) and it remains to prove the additional regularity.

Let s > a, p > 2 sufficiently close to «, 2, so that we have both Lemma 6.10 and Proposition 6.9
at our disposal. Defining s’ and p’ as usual, the former guarantees g € Wg’ P (R*7)* and thus the
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latter yields v € WEP(R1F™). As we have u(t) = elv(t) for t € [0,T], restricting to [0,7] readily
yields that the left-hand side of (6.3) is controlled by

T T T T
e ([[vllp + [v]sp) Se ||9||WZ’,p’(R1+n)* Se ||g||L2(R;L2(]Rn)) Se HfHLQ(o,T;LQ(Rn))

as claimed.

Repeating the same argument with s > « and p = 2 reveals v € W$2(R*") and in particular
u € L2(O,T;Wa+€’2(R”)), where € := s — a > 0. By Holder’s inequality this also implies v €
L2(0,T; Wo=2(R™)*). Moreover, from the equation for u since Lo A : WoTe2(R?) — W e2(R7)*
is bounded by A~! uniformly in ¢ due to Lemma 3.2, we deduce

T T
[ wada < [ 15@llo]: + A ()
0 0

late,2]|0(t) ||a—e,2 dt

for all ¢ € C§°((0, T)xR™). By density, see Remark 6.2, this remains true for ¢ € H'(0, T; W 52(R"))
and we conclude u € H' (0, T; W*=2(R™)*) as required. O
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