NON-LOCAL GEHRING LEMMAS

PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

ABsTRACT. We prove a self-improving property for reverse Holder inequalities
with non-local right hand side. We attempt to cover all the most important situa-
tions that one encounters when studying elliptic and parabolic partial differential
equations as well as certain fractional equations. We also consider non-local
extensions of A, weights. We write our results in spaces of homogeneous type.
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1. INTRODUCTION

Gehring’s lemma [10] establishes the open-ended property of reverse Holder
classes. If

1 Yo
(1.1) </uqu> s/udx
|Bl J 1Bl /5

with ¢ > 1 and all Euclidean balls B ¢ R", then

1 1/(g+e) 1
</uq+fdx> <4 /udx
|Bl /g |B| Jp

for a certain € > 0 and all Euclidean balls. This self-improving property has proved
to be an important tool when studying elliptic [8, 11] and parabolic [12] partial
differential equations as well as quasiconformal mappings [18]. In this case, one
has to enlarge the ball in the right hand side. We come back to this.

In this work, we are concerned with reverse Holder inequalities when the right
hand side is non-local. Understanding an analogue of Gehring’s lemma in this
generality turned out to be crucial in [3], where we prove Holder continuity in time
for solutions of parabolic systems. The non-local nature arises from the use of half-
order time derivatives. The ambient space being quasi-metric instead of Euclidean
is also an assumption natural from the point of view of parabolic partial differential
equations. Hence, we shall explore these non-local Gehring lemmas in spaces of
homogeneous type.

It is well known that Gehring’s lemma holds for the so called weak reverse
Holder inequality where the right hand side of (1.1) is an average over a dilated
ball 2B. We replace the single dilate by a significantly weaker non-local tail such
as

= 1

-k
kzzo: 2 25B] s udx
and certain averages over additional functions f and 4 that have a special meaning
in applications. The main result of this paper is Theorem 3.2 asserting that a variant
of Gehring’s lemma, and in particular the local higher integrability of u still holds
in this setting. We present a core version of the theorem already in the next section.
It comes with the introduction of some necessary notation but we tried to keep
things simple to give the reader a first flavor of our results. Once the strategy
is in place, we discuss various consequences (Section 5), ways to generalize it
(Sections 4 and 7) as well as self-improving properties for the right-hand side of
the reverse Holder inequality with tail (Section 6). We aim at covering all the
aspects that usually arise from applications. We also illustrate our main result by
an application to regularity of solutions of a fractional elliptic equation different
from the ones treated in [5, 19, 25] in Section 9.

The context of our work is the following. Gehring’s lemma in a metric space
endowed with a doubling measure was proved in [29]. See also the book [7].
By [21], every quasi-metric space carries a compatible metric structure so that
Gehring’s lemma also holds in that setting. However, in the case of homogeneous
reverse Holder inequalities, a very clean argument using self-improving properties
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of A weights was used in [2] to give an intrinsically quasi-metric proof (see also
the very closely related work [16]). We do not attempt to review the literature
in the Euclidean n-space, but we refer to the excellent survey in [17] instead. In
addition, we want to point out the recent paper on Gehring’s lemma for fractional
Sobolev spaces [19]. That paper studies fractional equations, whose solutions are
self-improving in terms of both integrability and differentiability. Such phenomena
are different from what we encounter here, but we found the technical part of [19]
very inspiring.

Among generalizations, we mention that the tails may be replaced by some
supremum of averages taken over balls larger than the original ball on the left hand
side and/or that one may work on open subsets. In this way, our methods can also
be applied to obtain a generalization of A, weights: In [2], a larger class of weak
A weights, generalizing the one considered in [9, 28] was defined and their higher
(than one) integrability was proved (in spaces of homogeneous type). This class
of weights, larger than the usual A, Muckenhoupt class, is defined by allowing a
uniform dilation of the ball in the right hand side compared to the one on the left
hand side. Here, we show that, in fact, the dilation may be arbitrary (depending on
the ball) provided it is finite. Another family of weights covered by our methods is
the C), class studied in [22, 24]. Precise definitions are given in Section 8.

Acknowledgment. We thank Tuomas Hytonen for an enlightening discussion on
the topics of this work that led to the results extending the A, class. We also thank
Carlos Pérez for pointing out the connection to the C), class.

2. METRIC SPACES

A space of homogeneous type (X, d, 1) is a triple consisting of a set X, a function
d: X x X — [0, c0) satisfying the quasi-distance axioms

(1) d(x,y) =0if and only if x =y,

(1) d(x,y) = d(y,x) for all x,y € X, and

>iii) d(x,z) < K(d(x,y) + d(y,z)) for a certain K > 1 and all x,y,z € X;
and a Borel measure y that is doubling in the sense that

0 < u(B(x,2r)) < Cqu(B(x,r)) <

holds for a certain C; and all radii » > 0 and centers x € X. If the constant K
appearing in the triangle inequality (iii) equals 1, we call (X, d, u) a metric space
with doubling measure. The topology is understood to be the one generated by

the quasi-metric balls. For simplicity, we impose the additional assumption that all
quasi-metric balls are Borel measurable. In general, they can even fail to be open.

The doubling condition implies there is C > 0 so that for some D > 0,

D
HBE.R) _ . <R>
M(B(x, 1)) r
forall x € X and R > r > 0. We can always take D = log, C4. In the following
we call this number the homogeneous dimension (although there might be smaller
positive numbers D than log, C, for which this inequality holds: our proofs work

2.1)
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with any such D). For all these basic facts on analysis in metric spaces, we refer to
the book [7].

The following theorem is concerned with the special case of metric spaces, but it
has an analogue in the general case of quasi-metric spaces, see Theorem 3.2 below.

Theorem 2.2. Let (X, d, u) be a metric space with doubling measure. Let 5,8 > 0
and q > 1 be such that s < q and § > D(1/s — 1/q) where D is any number
satisfying (2.1). Let N > 1 and let (ay)x>0 be a non-increasing sequence of positive
numbers with a = Zk ay < oo, and define

(2.3) a(B) =Y f udy

k
k=0 N'B

for u > 0 locally integrable and B a metric ball.

Suppose that u, f,h > 0 with u?, f49,h* € L}OC(X, du) and A > 0 is a constant
such that for every ball B = B(x, R),

1/q
24) ( f u du) < Aa,(B) + (as(B)'9 + RP(ays(B)'".
B

Then there exists p > q depending on oy, a, A, q, s, N and C4 such that for all balls
B,

1/p
< J[ uf d,u> < ay(NB) + (ap(NB)4 + RF(aps(NB))'/*
B

1/p q/sp
+ (f f”du> +RP (f hf”/‘fdy> ,
NB NB

with implicit constant depending on oy, a, A, q, 5,8, N and Cg.

2.5)

Remark 2.6. If one assumes the sequence (ax)r>0 is finite, the functional is com-
parable to one single average on NXB for some ky. This gives a proof of the
classical Gehring lemma with dilated balls. Note the shift from N*B to N**!B
in the conclusion. But well-known additional covering arguments show that the
dilation factor N¥*! can be changed to any number larger than 1. If one assumes

2.7) AC <0 :Vk20 ai £ Cajqr,

then it follows that a,(NB) < Ca,(B) for all u > 0 and all balls B. In that case,
one can replace NB by B in the right hand side of (2.5). Geometric sequences,
which are typical in application, do satisfy this condition but this rules out finite
sequences. Finally, note that the higher integrability of # on B depends only on the
higher integrability of f and 4 on the first dilated ball NB.

Proof. We prove (2.5) for B = B(xp, R) with xp € X and R > 0. Throughout, we
reserve the symbol C for a constant that depends at most on g, @, A, g, 5,8, N and
C, but that may vary from line to line.
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Step 1. Preparation. Having fixed B, we set g7 := A,qehsll NB With Ag a constant
so that for any ball B, with radius r contained in NB, we have

1/s 1/q
(2.8) * (J[ ' d,u) < <JC quu)
B, B,

and

1/q 1/s
(2.9) ( f g7 dﬂ) < C{(NRY ( f h* d,u)
NB NB

for some C; depending only on the doubling condition, s and g. Indeed, write
B, = B(x,r). As x € NB, we have NB = B(xg, NR) C B(x,2NR), hence

D B(1/s=1/g)7!
uNB) _p(Bx2NR) _ <2NR> <P <NR)
wu(B,) W(B(x,r)) r 4

where Cy depends only on the doubling condition. Unraveling this inequality and
setting C = (Co2P)1/471/5 yield

PuB)71s < C(NRPu(NB)! 4715,

Hence, as g > s,

1/s-1/q 1/s=1/q
PuB,)as ( / My) < C1(NRYPu(NB)"1~1/s ( / hW)
B, NB

so that

? <J€; h* d,u) l/s =/ (ﬁ h d,u) e (Ji 1 du) "

Thus, we set

1/s-1/q
(2.10) Ag := C1(NRY <JC h* dy)
NB

and (2.8) is proved. Observing that if B, = NB we have equalities with constant 1
in the inequalities above, the constant C; works for (2.9).

Step 2. Local setup. For £ € N, fix ry and pg real numbers satisfying R < rg <
po < NR with N¢(pg—rg) = R. For x € B(xo, ), we have that N*N¢(py—rg) = N*R
for k > 0 so

B(x, N*(po — r0)) € B(xo, N“"'R) c B(x, N*""J(py — ry)),
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where j = 2 when N > 2 and j = [(log, N)™' + 1T when 1 < N < 2, and
consequently for any positive u-measurable function v,

2.11)

1
vdu = vdu
Ji(x,zvk(po—ro)) u(B(x, N (0o = 10))) J Bix.Nk(pg—ro))
< KBk, Ni(pg — o)) 1
u(B(x, N¥(po — r0)))  B(xo, N¥*1R) [y ni1R)

< C,{,Jrjf vdu,
B(xo.NFR)

where we used (2.1) in the last line. The constant Cy > 1 only depends on the
doubling constant C; and the number N.

vdu

Step 3. Beginning of the estimate. For m > 0, set u, := min{u,m}, B, =
B(xo,r9) and B, := B(xo,p0). Using the Lebesgue-Stieltjes formulation of the
integral we have

m
/ ub u du = (p - q)/ A~ NyA(B, 0 u > A} dA
By, 0
Ao
=(p- q)/ Py 4(B, N {u > A))dA
0
2.12 m
12 +(p—q) [ APTWI(B, N {u> ) da
Ao

m
<A By) +(p=q) | A7 ul(By 0 {u > A))dA
Ao
=1 +11,

where u4(A) = f 7 4! dy for any measurable set A C X and A is a constant chosen

below.

Step 4. Choice of the threshold 1,. We define three functions

1/q 1/q
U(x,r) = JC udu, F(x,r):= (JC f4 dﬂ) , G(x,r) = <J[ g? dy)
B(x,r) B(x,r) B(x,r)

and for 4 > A, we denote the relevant level sets by
Uy =B, N{u>4aj, Fy:=B,Nn{f >4}, G, :=B,N{g>A4}.
It follows from (2.11) with k = O that for x € B,,,

l+]

C
U(x,po —ro) = JE udu < —~—a,(NB)
B(x,p0—ro) o

and one has the same observation for ' with f9. For the last term, we use (2.11) in
conjunction with (2.9) to obtain

. . qls
JC gldu < Ci,”f gldu < Ci,“C‘l’(NR)Bq <J[ h’ d,u>
B(x,p0~r0) NB NB
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(E+qls
C
< N

CY(NRYa;s(NB)!'",
ol

where we used Cyy > 1 and ¢g/s > 1. Consequently, we choose

C€+j Cf+j 1/q C[+j I/s
Ao = 20, (NB) + (Nafq(NB)> + C{(NRY (Nahs(NB)> :
(o7} (o)) @o
Finally, set

Q)= {x e UyUF, UG, : xis aLebesgue point for u, {7 and gq}.

Step 5. Estimate of the measure of U,. We begin to estimate // in (2.12) so we
assume A > Ay. For x € By,

(2.13) U(x,pg —1r9) + F(x,p0 — ro) + G(x,p0 — o) < Ag < A.
On the other hand, by definition of U,, F; and G, if x € Q, then
1i_r)1(1) Ux,r)+ F(x,r)+G(x,r) > A
Thus for x € Q, we can define the stopping time radius
ry i= sup {N""(po —rg):meN
and U(x, N"" (o9 — r9)) + F(x, N~ (09 — r9)) + G(x, N (o9 — rg)) > /1}.

We remark that (2.13) implies that r, < pg — ro. Of course Q) C Uyeq, B(x, r/5).
By the Vitali Covering Lemma (5r-Covering Lemma) there exists a countable col-
lection of balls {B(x;, r;)} = {B;} with r; = ry, such that {%B,-} are pairwise disjoint
and Q) c U;B;. Let m; > 1 such that N"ir; = pg — rg.

We make three observations:

(i) For each i, either J%l_ udp > 4, (ng_ frdw'a > 4, or (ng_ gldw'a > 4.
(i1) The radius of each B, is less than pg — o and x; € By, s0 B; C By,.
(iii) For 0 < k < m;, N*r; = N‘(mi‘k)(po —19) < po — ro, SO NF¥r; is ‘above’ or at
the stopping time and

1/q 1/q
JC udu + (J[ fqd,u> + (J[ quu> <Ca,
NkBi NkBl- NkBl_

where C shows up since we have used doubling once in the case k = 0.

Using that u((U, U Fp U G\ Qy) =0, Q, C U;B; and (2.4), we obtain

WU < ul(UyUF UGY) < ul(By)

(2.14) "
<> u(B)[Aay(By) + (aga(B)'/9 + ¥ (apns(B))" /1.
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Then using m; > 1, ), & = « and observation (iii) we obtain

00 mi—1 00
ar(B;) = a/kf f1du = a/kJC fIdu+ a/kf f4du
< Clal? + Z Qm; JC f4du,

pan B(xi,Nk(po-r0)

2.15)

where we simply re-indexed the second sum and used that N™r; = pg — rp. Now
we use (2.11) and that @y, < @ to deduce

ap(Bj) < Clad? + Cf;;rj Z ay f1du
=0 Nk+l B
< Cla? + Cyap(NB) < Clad? + apAl
<Ca,

where we used the definition of Ay in Step 4 and A > Ag. Similarly, a,(B;) < CA.
For A*, using m; > 1, we obtain

(riY ap(By)

= Z a(rif h* du
P NB;

mi—1 o
=) ) JC R du+ ) () f h* du
paare NKB; NEB;

k=m;
mi—1 S/q 00
Y a(f ew) 0o f e du
k=0 NEB; k=0 B(xi,N*(po~r0))

where we used (2.8) and N*B; c NB when k < m; for the first sum, re-indexed the
second sum and used that N"r; = pg — rg. With Ek ar = « and observation (iii)
for the first sum and g+, < ax along with (2.11) for the second one, we deduce

iV (By) < C'ad* + C (NRP D ay f h* dy
=0 Nk+l B
< C'ad’ + CU/(INRP aps(NB) < Cad® + ap AiCT*

<CA,

where we used A > 1p. Combining the above estimates with (2.14) we obtain
(2.16) ul(Uy) < CA1Y " pu(B) < CCIA1Y " (3B;) < CCHA% (UiBy)

i i
where we used that { %Bi} are pairwise disjoint. Now we use (i) and (ii) to conclude
that
(2.17) U;B; C {M(ulp, ) > A/3}U{M(f71p, ) > (4/3)1}U{M(g"1p, ) > (1/3)7},

where M is the uncentered maximal function.
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Step 6. Estimate of // and /. Plugging (2.16) and (2.17) into /I we obtain

m
H=p-q | 7wiU,)da
Ao

<Cp-g) / " (Mg, ) > /31 dA
0
+C(p-g) /0 (ML, ) > (/3T dA

m
+Cp=a) [ Mg, > A3
0
=1L + 1 + 115.
We handle /I, and /I3 in the same way. Using the Hardy-Littlewood maximal

theorem for spaces of homogeneous type and recalling that the LP/49 — LP/4 oper-

ator norm of the maximal function is bounded by C (p7 q/ )q_l , we obtain

I = C(p-g) /0 (M (g7, ) > (/3] dA

<20 | (a1, ) d
p X

rlq-1
sC( P ) /g”d#,
pP—q NB

where we used B,, C NB in the last step. Similarly we have that

-1
1 < c(—L-)r /fpdu.
pP—q NB

To handle 11; we notice that
{M(ulp, ) > 4/3} C {M(ulp, nwu>is6)) > 1/6}.

From this estimate and the weak type (1,1) bound for the Hardy-Littlewood maxi-
mal function for spaces of homogeneous type we have

C
umtn,)> 30 <G [ uda
ByyN{u>1/6)

Using this bound in /1 yields

m
I <C(p-q) / plas / ududd
0 B, N{u>1/6}

00

max{m,6u}
= C(p—q)/ u/ P72 dAdu
By, JO

- cer1 P4 : 611 / u%éudﬂ
p By,

(2.18)

< c@’*% /B u? ™ dy,

PO



10 PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

and we note that we can make the constant in front of the integral arbitrarily small
by choice of p > g. Combining our estimates for /1, I1, and /13 we obtain for any

p € (q,29),

(2.19) II < ep/ ub™tul du + Ce;l / fPdu+ CE;I / g? du,
B NB NB

)
where €, := C(p — q).
Now we bound /. Note that B C B,, C NB. By definition of 4y and using (2.4),
1 <A "u!(NB)
(2.20) < A 'u(NB) (Aau(NB) + (ap(NB)4 + (NRY (aps(NB)'/*)?
< C(CY7Y™1u(NB)a,(NB),
where we denoted a,(NB) := (au(NB) + (afq(NB))l/‘f + (NR)B(ahx(NB))l/s)p and

put EN := max(Cy, C,lv/s) > 1 on recalling that we allow for s < 1.

Step 7. Conclusion. Setting

() = / ub~u du
B(xo,1)

and combining estimates (2.12), (2.19) and (2.20), we may summarize our esti-
mates as

@(ro) < Cu(NB)a,(NB)CY "™ + e,0(p9) + Ce;! / fPdp + Ce,! / g du,
NB NB
whenever R < rg < po < NR and N[(po —ro) = R and where j depends at most on

N, see Step 2. For notational convenience set

M, := Cu(NB)a,(NB),
M, ::C/ fpd,u+C/ grdu,
NB NB
so that

(2.21) @(ro) < MiCY ™ + ey0(00) + €, M.

Now, we set up an iteration scheme to conclude: We fix K € N large enough to
guarantee E}io N~KC < N, initiate with 7y := R and put 7,1 := t, + N KEDR for
€=0,1,.... Then R < t; < tz41 < NR and NX“ V(1. — 17) = R so that

(2.22) olte) < MiCY PN 4 €10, + epplten)-

Iterating the above inequality we obtain for any £y € N
lo

o
~(p-KC (- -
©(tg) < M, E C](f; ! '61{; 'y M, E elf 2y 6§°<p(tgo)
t=1 t=1

< CM; + CM, + Ce) ¢o(NR)

provided that €, < (25%’_‘1)1()_1 < 1/2 by now fixing p € (g, 2g) with p — g small
enough.
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Noting that ¢(NR) < oo (by truncation of ) and #p = R, we may let {3 — oo
above to conclude
o(R) < CM; + CM,.

Upon replacing My, M>, a,(NB) and ¢(R) we obtain

/ ul™u? dy < Cu(NB)(au(NB) + (ap(NB)' + (NRY(a)s(NB))'/*)”
(2.23) 7B

+C fpdu+C/ gf du.
NB NB

Dividing both sides of the inequality by u(B), taking p—th roots and letting m — oo
we obtain (2.5) except for the presence of the term ( ﬁv B gP d,u)l/ 7. 'We handle this
term using the definition of g in terms of 4 and the definition of Ag in (2.10),
obtaining

1/p 1/p
(JC g’ dﬂ> = Ag (f hPsld d,u>
NB NB
1/s-1/q 1/p

= C1(NRY < f h d/J> ( f hPsla d/,l)

NB NB
q/ps-1/p I/p

< C1(NRY < JC hPsla d,u> ( JC hPsla du>

NB NB

q/sp
= C|(NR/ ( JC hPsld d,u> . O
NB

3. QUASI-METRIC SPACES

In Theorem 2.2, it is possible to relax the structural assumption of (X, d, u) being
a metric space by allowing the constant K in the quasi triangle inequality to take
values greater than one. The proof of Theorem 2.2 does not carry over as such (or
rather it becomes very technical) but we can take advantage of the fact that every
quasi-metric (K > 1) is equivalent to a power of a proper metric (K = 1). See
[1, 21, 23]. The following proposition is from [23].

Proposition 3.1. Let (X, p) be a quasi-metric space and let 0 < § < 1 be given by
(2K)° = 2. Then there is another quasi-metric p such that p° is a metric and for all
x,y € X,

E™'p(x,y) < p(x.y) < Ep(x.y),
where E > 1 is a constant only depending on the quasi triangle inequality constant
of p.

With Proposition 3.1 at hand, the following theorem is a straightforward conse-
quence of its metric counterpart. For the reader’s convenience and since akin re-
ductions to the metric case will be used at other occasions in this paper, we present
the full details here.

Theorem 3.2. Let (X, p,u) be a space of homogeneous type. Let 5,8 > 0 and
q > 1 be such that s < q and § > D(1/s — 1/q) where D is any number satisfying



12 PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

(2.1). Let N > 1 and (ap)i>0 be a non-increasing sequence of positive numbers
with @ 1= ), @) < oo. Define

a,(B) := a/kJC udu
kz:; NkB

for u > 0 locally integrable and B a quasi-metric ball.

Suppose that u, f,h > O with u?, f1,h* € L

loc(X, dpt) and there exists a constant
A such that for every ball B = B(x, R),

1/q
(3.3) (f u dy) < Aay(B) + (ap(B)'1 + RE(ays(B)'/".
B

Then there exists p > q depending on g, a, A, q, s, K, N and Cy4 such that for all
balls B,

1/p
< JC uP d,u) < ay(NB) + (@ (NB)'1 + RP(ays(NB))'/*
B

1/p q/sp
+ ( f fr dp) +R° ( f hPsla du> .
NE2I5B NE2/6B

Here, a, is obtained from a, by replacing the sequence ay With max(0k—jo—j)
where jo and j| are the minimal integers with E> < N and E*'° < NJ' and
E, 6 are the constants from Proposition 3.1. The implicit constant depends on
ag, @, A, q, 5,8, K,N and C,.

(3.4)

Remark 3.5. The same remarks as after Theorem 2.2 apply.

Proof. Let d be the metric so that d'/° with § € (0, 1] is equivalent to p, provided by
Proposition 3.1. Then there is a constant £ > 1 only depending on the quasi-metric
constant K of p so that

B(x,r) = {z: p(z, x) < r} C{z: E"'d"%(z,x) < r} = BU(x,(Er)®)
and
B(x,r) ={z: p(z,x) < r} 2 {z: Ed"%(z,x) < r} = B (x,(E"'r)°).

In total BY(x, (E~'r)%) C B°(x,r) C B4(x, (Er)°). Consequently y is doubling with
respect to the metric d, and we also see that the hypothesis (3.3) implies that

1/q o
(B )55 Fon
BU(x,(E7'R)?) =0 NokES B (x,R%)
0 1/q
(Y f 74 du

=0 N‘”‘E"Bf’(x,R")
o 1/s

+RP Z g JC h' du
=0 N‘“‘E‘in(x,R‘i)
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holds for all x € X and R > 0. Setting R’ := (E‘IR)5 , we can rewrite this as

[e9)

l/q
u? d,u> < JC
<J€?‘f (x,R") Z NOkBd(x, E2‘>R’
l/q
zak f 71y
Node(x E20R’ )

1/s
+ (RPP° f hd .
( )ﬁ (Z ak 6de(x E26R/ ’u>

We set N’ := N°. Then Jo is the smallest positive integer so that E? < (N")J.
We note that

Zakf udy<Zakf ud,uSZa/;cf udu,
a ( ’)de(x,EZ()R’ /)kﬂ()Bd(xR) =0 ( /)de()C,R’)

=0

where @} := @maxk-j,,0)- Analogous estimates hold with f4 and h* in place of u.
Finally, we set 8 := B/6 so that (2.4) is satisfied in the metric space (X, d, u) with
(k. B’s N’ replacing (i), 3, N there. We also have control over the homoge-
neous dimension of (X, d, u). Indeed, for x € X and R > r, we see that ER > E~'r
and therefore

u(BY(x,R%)  u(B°(x,ER) _ [ER\”
< <
u(BA(x, %) = w(BP(x,E~'r)) ~ ’

where D is a number satisfying (2.1) for (X, p, w).

It follows that D’ = D&~! satisfies (2.1) for (X,d, ). As a consequence, 8 =
B/6 = D’(1/s — 1/q), and we can apply Theorem 2.2.

We obtain

(o)

1/p 1/q
P d, < f du +
<fBa’ “ /l) ~ Z a/k f(v /)k+le “ /J (Z ak f r)k+le )
k=0
s 1/s
+ (R @, f h* du
(g k ( /)k+le

1/p , q/sp
+ ( f 17 du) + (R ( f hr1e du)
N'Bd N’ B4

for all balls B¢ with radius R’. Note that R’ is arbitrary. Comparing the d-balls
with p-balls once again, we see that B°(x, (E~'»V%) ¢ Bl(x,r) c B°(x,(Er)'/9).
Arguing as in the beginning of the proof and denoting R = (E~'R")!/, we can get
back to an inequality in the quasi-metric space (X, p,u): We only need to recall
that N’ = N9, that j; is the smallest integer so that E*/9 < N/' and set @ =
nax(0k—j;) = ¥max(Ok—jo—j)- 1Lhis together with the doubling condition implies
that (3.4) holds. O
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4. VARIANTS

One might wonder whether one can use in the proof of Theorem 2.2 the frac-
tional maximal operator M where

MPy(x) = sup rBY + 1, xeX B>0,
B>x B

to control the terms stemming from A° more efficiently. (Here r(B) denotes the

radius of B.) However, this operator has no boundedness property in this generality

and one has to assume volume lower bound in the following sense:

4.1 d0>0 : Vballs B, u(B) > r(B)?.

Lemma 4.2. Let (X, p, 1) be a space of homogeneous type. Assume that the volume
has a lower bound with exponent Q > 0. Then MP is bounded from LP(X) to L X)
when 1 < pand 0 < B < Q/p with p* = Qp_—%p. For p =1, it is weak type (1, 1%).

Proof. See e.g. Section 2 in [15] for a simple proof on metric spaces with doubling
measure that applies verbatim in the quasi-metric setting. In fact, the result fol-
lows from the inequality MPv(x) < Mv(x)15/ Qllvlﬁ/ 0 using the lower bound, the
uncentered maximal function M and interpolation. O

We obtain the following variant in the presence of a volume lower bound.

Theorem 4.3. Let (X, p, 1) be a space of homogeneous type having a volume lower
bound with exponent Q. Let s > 0, § > 0 and q > 1 be such that s < q and
B < 0(/s—1/q). Suppose that u, f,h > 0 with u?, f1,h* € L}OC(X, du) and (3.3)
holds. Then there exists p > q such that (3.4) holds with Rﬁ(ﬁvEZ/ﬁ B hPs19 du)a/sp

replaced by ,u(B)B/Q(Je\/EwB hP du)'/P+ where p, = Qﬁ—%p.

Proof. It suffices to give a proof for (X, p, i) a metric space with doubling measure.
Then we can apply the general reduction argument from the previous section. In
this regard, we note that if p is equivalent to d'/%, then d has lower volume bound
with exponent O’ := Q/é.

Forany p > g seto = Q”J%p) = £+ Note the condition Bgs < Q(q — s) ensures

for all p > g the bound Bps < Q(p — s). Hence o > 1. Now we indicate the
changes in the proof of Theorem 2.2.

One does not introduce the function g in Step 1 and the function G in Step 4
becomes H(x, 1) = rP( ﬁ?(x " h* du) 5 The choice of Ao is similar and then we can
follow the argument until we need to estimate //3 in Step 6. Here we now have

Iy = C(p - q) /0 A (M (g, ) > (4/3)') dA

< [ 1, ) d
X

p/(so) p/p«
< (/ W5 d,u) — (/ hP* dﬂ)
NB NB
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by definition of o and we used the L7 (X) — LP/5(X) boundedness of MP* from
Lemma 4.2. Recall near then end of Theorem 2.2 we divide by u(B) then take p-th
roots. Thus, the power of y(B) in front of ( ﬁ\,B hP+ du)'/P+ comes from the equality

P

(B! ( /B - du> " By ( fB W du) "

Remark 4.4. Assume 8 =1, s = n% and g = 2 in the Euclidean space R" with

Lebesgue measure, which is typical of elliptic equations. Then the Lebesgue ex-
ponent for A in Theorem 3.2 is % = B5 while above we get p, = fT’; which
is smaller. If 8 = 0, then p, = p. Of course the interest is to have S as large as
possible so that p, is as small as possible, but in applications to PDEs the value of
[ is usually not free to choose but determined by scaling arguments. Finally note
that the admissible ranges for § in the two theorems are almost complementary in
this example: Indeed, since D = Q = n, we have 8 > n(1/s — 1/g) in Theorem 2.2

and 8 < n(1/s - 1/q) in Theorem 3.2.

O

Another variant is to replace powers of the radius by powers of the volume al-
ready in the assumption and then no further hypothesis on the measure is required.

Theorem 4.5. Let (X, p, i) be a space of homogeneous type. Let s > 0, v > 0 and
q > 1 besuchthats < gandy < 1/s—1/q. Suppose thatu, f,h > Owithul, f1,h° €
L}OC(X, du) and (3.3) holds with RP(ays(B)V/$ replaced by ,u(B)V(ahs(B))l/ 5. Then
there exists p > q such that (3.4) holds with RP( J€VE2/6 B hPs19 du)y?/sP replaced with

/J(B)”(fNEZ/(,-B hS7 du)/7, where so = lf;p'

Remark 4.6. Note that one can take y = 0 in which case so = p. In accordance
with Remark 4.4 we note that the higher y the smaller the integrability needed on
h.

Proof. Once again it suffices to treat the metric case. The modification to the proof
of Theorem 2.2 are the same as in the above argument, except for now using instead
of MPS the modified fractional maximal operator M?*, 0 <y < 1, where

M v(x) := sup (u(B))"* JC v, xeX.
Bax B
It maps L7 (X) into Lﬁ(X) when 1 < oandyso < 1, see Remark 2.4 in [15]. O

5. GLOBAL INTEGRABILITY

A typical application of Gehring’s lemma is to prove higher integrability locally
and globally. To extract a conclusion at the level of global spaces L”(X), we need
some further hypotheses. We say that the space of homogeneous type (X, p, 1) is
¢-regular if it satisfies

¢(r) ~ u(B(x,r))
for all x € X and r > 0, where ¢ : (0,00) — (0, o) is a non-decreasing function
with ¢(r) > 0 and ¢(2r) ~ ¢(r) for r > 0. An important subclass of such spaces
are the Ahlfors—David regular metric spaces where ¢(r) = r¢ for some Q > 0. The
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case of local and global different dimensions which occur on connected nilpotent
Lie groups (see [27]) is also covered with ¢(r) ~ r? for r < 1 and ¢(r) ~ rP for
r>1.

Theorem 5.1. Let (X, p, u) be a ¢-regular space of homogeneous type. In addition
to assumptions of Theorem 3.2, suppose that u?, f4,h* € L'(X, du). Then

”M”LP(X) < ||u||L‘I(X) + Hf”LP(X) + ||h||Lps/q(x)

with the implicit constant depending on u, f, h only through the parameters quan-
tified in the assumption.

Proof. For the sake of simplicity let us assume N = 2 in the statement of Theo-
rem 3.2. We shall see in Section 6.2 below that upon changing the sequence (o)
we can do so without loss of generality. Alternatively, we could also adapt the
following argument to cover the general case.

Take any R > 0 and choose a maximal R separated set of points {x;}, that is,
p(xi,xj) > Rforall i # j and for every y € X there exists x; such that p(y, x;) < R.
Since we assume that X is doubling, such a collection necessarily has only finitely
many members in any fixed ball, hence, it is countable. The balls B; := B(x;, R)
cover X, and there is C only depending on K and Cy such that

> g =sC
i
for every x € X. Also the balls (2K)™'B; are disjoint. Further, we have

P(2*R)
(5.2) Z Ly (0~ “ 5o

for every x € X and every integer k > 1. Indeed, fix k > 1 and x € X. We can
assume that 251 > K, since otherwise we can just use that the left- and right-hand
sides are comparable to constants depending only on K, C; and ¢. Let I, be the set
of i giving a non zero contribution, and N, be the cardinal of I, that is, the value
of the sum. Clearly, N, is not exceeding the number of i for which p(x, x;) < 2R,
As the balls (2K)™'B;, i € I, are disjoint and contained in B(x, K 2F + 2K)"HR),
we have

H(R/2K)N; < Zﬂ((ZK)_lBi) < u(B(x, K2k + 2K)™HR)) < o(K2X*IR).

iel,
Also the balls B, i € I, cover B(x, (K~'2F — 1)R), hence

$(R/I2KIN, 2> u(K) ' B) 2 Y u(Bi) 2 u(B(x,(K~'2° = DR))

i€l i€l

> (K28 = DR)> ¢(K~ 12K 'R)

by the assumption on k. The claim follows using the comparability ¢(K25*'R) ~
$(K~'2*71R) ~ ¢(2*R) and 4(R/2K) ~ ¢(R).
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Applying Theorem 3.2 in each B; and denoting by @y := &max(0.k-j,- ;) the sum-
mable sequence appearing in the conclusion of that theorem, we see that

SR /X uPdp sy Ji wdu sy (@B +ap B + Ry B )

= I+1I+1Il,

where we used ¢-regularity, Holder’s inequality é¢(2B)'/4 < é@»(2B;)'/? and ab-
sorbed the term with f7 in (2.5) in d@»(2B;) and similarly for the terms with 4. Let
us treat //1: From the continuous embedding ¢ I(N) c ¢4/5(N) and (5.2) we obtain

© qls
Sy <3 (Saf, )
i i N k=0 2+1B;
© qls
(XY af, wia)

© qls
< (Zak p(2HRY! / D perg P d,u>
X

qls
< <d¢(R>“ / hl’”‘fdu) ,
X

where @ := ), @&. Doing the same for I and /I, implies

(53)  Mullrcxy s SRYP™H ull gy + 1 llocy + RESR P WP Rl s -
Note that since R is fixed (R = 1 for example), this concludes the proof. O

Remark 5.4. We note that the implicit constant in (5.3) does not depend on R. If
h =0, then we may let R — oo as p > g and obtain [|ullzrx) < | f1lLrx)-

We have a global analogue of Theorem 4.3, which might be of independent
interest as it can be proved directly in the quasi-metric setting without recursing to
Section 3.

Theorem 5.5. Let (X, d, ) be a space of homogeneous type having volume lower
bound with exponent Q. Let s > 0, 8 > 0 and g > 1 be such that s < q and
B < O(1/s — 1/q). Suppose that ud, f4,h* € L' (X,du) and that (3.3) holds. Then
there exists p > q such that

lullrxy < WfllLexy + WAllLoe ) »

Qﬁ%p. The implicit constant depends on u, f, h only through the pa-

rameters quantified in the assumption.

where p, =

As for the choice of §, the same comments as in Remark 4.4 apply.

Proof. We indicate the modification to the argument of Theorem 2.2, which, as
said, works directly in the quasi-metric setting for this result. This is basically the
one in [3].
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There is no need for the first and second steps and the proof begins as in Step 3
without the balls B,, and B,,, and we have

m
/ ub ul dy = (p - q) / P4yl ({y > ) dA.
X 0
There is also no need for a threshold 1y and we set for x € X and r > 0,
Ux,r) = ay(Bx.n),  F(xr) = (agpBa, ), Hexr) = Pap B, n)',

and for 4 > 0, we denote U, := {u > A}. Note that without loss of generality we
may assume o > 1 right from the start as this only increases the right-hand side
of our hypothesis (3.3). Thus,

lim iglf (U(x, r)+ F(x,r)+ H(x, r)) > u(x)

for almost every x because already the first term in a,(B(x, 7)) tends to agu(x) >
u(x). We define U, as the subset of U, where this holds. Note that

lim (U(x,r) + F(x,r) + H(x,r) =0

for all x using the global assumptions on u, f, h. For the term with A, this follows
from H(x,r)* < € Jx h* du, provided Bs < Q, which holds under our assump-
tion. For x € U, we can define the stopping time radius

ry:=sup{r >0:U(x,r)+ F(x,r) + H(x,r) > 4}.

Remark that sup,cpy, rx < co. Indeed, at r = ry, U(x,r) + F(x,r) + H(x,r) = 2
and therefore either U(x,r) > A/3 or F(x,r) > A/3 or H(x,r) > A/3. In the last
case, we obtain r275(1/3)* < f y 1’ dp < oo, The other cases also give us a bound
on r. By the Vitali covering lemma, there exists a countable collection of balls
{B(xi,ry;)} = {B;} such that %Bi are pairwise disjoint and U, c U;B;. (Usually,
V = 5 but our metric is only a quasi-metric in which case the Vitali covering
lemma still holds but with a larger constant V depending on K, and we apply it to
the covering Uy C U, B(x,V™'ry). A direct way to see this is by the technique
in Section 3.) Now, using the hypothesis for each B; and pairwise disjointness of
the balls %,Bi,

wl(U) <> ul(B;) <Y u(By)(Aau(By) + (asa(B))" + F(an (B)"/*)*

1

=Y uBIAT S VP (B! < VPu(UiB) A,
i i

where D is the homogeneous dimension. The stopping time implies
(5.6) U; B; € {Mu > 1/3} U {M(f?) > (1/3)7} U (MPS(h®) > (1/3)*}.

From there the estimates are as in Step 6 and we use Lemma 4.2 for boundedness
of MP*. We obtain

P/ px
(5.7) /ug—quqdusC(p—q)/u{;-ludmc,,/fpdmcp (/ hP« d,u) ,
X X X X

with p, as in the statement. As [, ubu du < [ ub 'u? du we can hide this term
if p — g > 0 is small enough and then let m — co. i
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6. SELF-IMPROVEMENT OF THE RIGHT HAND SIDE

We discuss here the change in the exponents in the tails on the right hand side
and subsequently the change of the dilation parameter N. Both induce change in
the sequence a@. These remarks can be used to reduce some seemingly different
properties to cases covered by Theorem 3.2.

6.1. Exponent. It is a direct consequence of the log-convexity of the L” norms

that if
1/p 1/q
()" (54
B B

with p > ¢, then for every s € (0,q) we can write 1/g = 0/p + (1 — 6)/s for some
6 € (0, 1) and consequently

1-6 [
lllzo sy S Mtllzags,yy < ISy s,

so that [lullpr(p,) < llullzss,y)- Here v = du/u(B). The same self-improving property
holds true for the weak reverse Holder inequality [18] and even for the reverse
Holder inequality with tails as we now show. To prove the claim for the inequality
with tails, we use a modification of the argument from [6], Appendix B.

Proposition 6.1. Let (X, p,u) be a space of homogeneous type. Let g € (0, p),
50, 51, 52 € (0,g] with f51,h% € L}OC(X) and set T := min (%0 %‘, %) Let ()0
be a summable sequence of strictly positive numbers. Let N > 1 and > 0. Let
(@0, (ai)kzo be summable sequences of non negative numbers with &y, af) >0

and assume

m m
(6.2) DL TTIATESY MR Y g s
k=0 k=0
and
m
(6.3) > aalINTE < G,
k=0

Define a,(B), a,(B), aﬁ(B) as in (2.3) in terms of the three respective sequences, for
u > 0 locally integrable, N > 1 and B a quasi-metric ball.

Assume that

1/p
(6.4) < f u? du) < (@(B)'9 + b(B),
B

where the implicit constant does not depend on B, with

b(B) = (ags (B)'*' + r(BY(ap(B))"/*2.

Then, for any ball B for which aﬁq (B) < o0, one has

I/p
(6.5) ( f uP d,u) < (@0 (B)'"* + b(B),
B

where b is obtained by replacing « by & in the definition of b.
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Remark 6.6. Note that, in contrast with the improvement of integrability, we do not
need the non-increasing assumption on the sequence « for this proposition. The
condition (6.2) together with a/g > 0 implies @, < a/ﬁq and similarly, since 7 < 1,
we have @, < @,,. Hence we have to assume more than a,¢(B) < co. For example,
with 7 as above, if ay = N~ for y > 0, then @; = N7 and a/,ti = N77'* work in
the theorem for any 0 < 9’ < y such that 85, < ys2/q —y'7. In particular, decay
v > Bq is needed to obtain any improvement, which typically is hard to obtain in
applications. On the other hand, if 8 = 0, we can improve the right-hand exponent
by only paying an arbitrarily small amount of decay to replace y by ' < y. The
condition (6.3) takes into account the presence of #(B)? in (6.4). Finally, the strict
positivity of @y rules out in particular the case where the a; form a finite sequence,
but in that case, the argument in [6] already covers the situation.

Proof. Define

(@us(B))'/4

K(6, sp) :=sup — ,
(@0 (B)/% + b(B) + (5(aﬁq(B))” 4

where the supremum is taken on the set of balls B such that the denominator is

finite. Indeed, there is nothing to prove if the right hand side of (6.5) is infinite,
which is equivalent to the denominator being infinite since we assume aﬁq(B) < 00,
As a, < aﬁh we have a,4(B) < aﬁq(B) and the presence of 6 > 0 guarantees that
K(6,50) < 6~'. We show a uniform bound in terms of 8. To this end we can of

course assume K(J, so) > 1 since otherwise there is nothing to prove.
Fix a ball B with the above restriction. Let 8 € (0, 1) be such that
1 6 1-6
-—=— 4+ —

q S0 p
We see that

1/q /50 1-6/p
<J[ u"d,u) < <qu3" dy) <JC u”dﬂ) .
B B B

Using (6.4), b(B) < b(B) and K (8, s¢) > 1,

1/q 0/so w
< f u dy) < < f u’” du) (BN + b(B))
B B

0/so
< < f ' du) K(6,50)' ™ (o (B! + B(B) + 8(al (B)/)
B

1-6

< K650 (@un (B! + B(B) + S(ab(B)')

We apply this last inequality to N*B. This is possible provided N*B belongs to
the same set of balls and this follows from the assumption on the sequences: For
example, using (6.2),
ab(N*B) = Zag—kf ul du < o Zaif_ ! du < a7'dly(B) < .
P N NiB

B j=k
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Similar calculations can be done for the other terms. Thus,

I~ 1/q o0 1/q
au (B4 = (Z 78 kaB u? d,u) < K(6, 50)1 70 (Z Qxys (NkB)q/s‘))
k=0 k=0
oo l/q
+ K(6, 50) 179 ( akE(NkB)‘1>
k=0
0o l/q
+ K(8,50) ' 06 (Z ayaly (NkB)>
k=0

= I+II+1II

Each of the three sums is estimated similarly so we restrict our attention to the first
one. Using the continuous embedding £!(N) c £4/%0(N) and the properties of a in
(6.2), we compute

) 00 m
JAL < Z a,]i()/q&um (NkB) - Z (Z a]i()/qd'm—k> f MSO d/.l
k=0 m=0 \ k=0 N"B

S Z ¥ fva u® du = a,(B).
m=0

The same kind of argument applies to the remaining two terms so that
©7) B < K, 50" (@uo(B)'* + B(B) + 5y (B)'19).

We remark that it is the part of 5 involving r(B)? that requires us to use the strong
condition (6.3). As the right hand side is finite, we readily obtain K(J, sg) <
K(8, s0)' ¢, therefore K(8,s0) < 1. Now, all the bounds are independent of ¢,
so we may send 6 — 0 in (6.7). Plugging this inequality into (6.4) concludes the
proof of (6.5). |

6.2. Dilation. Another direction to which the reverse Holder inequalities self-
improve is the dilation parameter on the right hand side of

1/p 1/q
<qupdu> < (JC uqd,u) .
B NB

Indeed, if such an inequality holds in a space of homogeneous type, then the similar

inequality
1/p 1/q
<J[upd,u> s(f uqdu>
B CB

holds for all balls with any C > K where K is the quasi-metric constant. See for
instance Theorem 3.15 in [2]. The proof of this fact is based on a covering of B by
small balls whose N-dilates are still contained in CB and applying the weak reverse
Holder inequality in each small ball individually.

It is worth a remark that a change of geometry similar to the property just de-
scribed can be carried out with the reverse Holder inequality with tails. To for-
mulate this technical remark, we introduce some notation. Given a sequence of
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positive numbers @ = (ax)i>0 and real numbers with 1 < n < m, we define the
(m, n)-stretch S™"a by

k-1 k

S"™a)j =, j=20:m <n! <m.

We also define the (m, n)-regrouping by
R™a)y = > aj +fi. k20,
Jemk—l<ni <mk

where (B is a correction term. It makes each (R"™"a); to be the sum of equally
many terms and hence the regrouping of a non-increasing sequence remains non-

increasing: The intervals
1 1
h-1) nm, r nm
Inn Inn
contain ¢ or £ + 1 integers when ¢ is the integer such that
1
{ < m <{+1.
Inn
We set B = 0if D ;i1 pipme 1 = € + 1 and B = Apyin(jinismi-1y Otherwise.
For example, for y > 0, the (m, n)-stretch of (m™%) is (term-wise) comparable
to (n=%), and the (m, n)-regrouping of (n77%) is (term-wise) comparable to (m™7%).
More generally, if @ is summable, so are its stretch and regrouping. For the latter,

it is obvious and for the former, is follows from bounding the number of possible

repetitions by 1 + 11‘[‘1—’,’1’ In addition, if @ is non-increasing so are its (m, n)-stretch

(m, n)-regrouping.

Proposition 6.8. Ler (X, p, i) be a space of homogeneous type and let (ay)ix>0 be a
summable sequence of positive numbers. For u € L}OC(X), u>0,N>1, define

a,(B) = a/kf udu.

Then for any M > 1, one has

a,(B) < kJC udu,
2

with, if M > N, B = RMNa and if M < N, B = SMMRMN o ohere € is the least
integer to satisfy { > InN/In M.

Proof. We start with M > N. Then,
a/kf udy = a/-JC udu < a/-JC udu
Lo wdi=d D« > A

k=0 k=0 jimi-t<nisyt  ON'B k=0 j:

<> (®RM™Vay, f udy
k=0 MFKB

as claimed, using the doubling condition.
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Let now M < N. Assume first that there is an integer £ > 2 such that M’ = N.
Then we can write

Zakf ud,u:Za/kJC udﬂSZ(SM[’Ma)jf udu.
=0 NB vy M*B e MJB

In general, we can find an integer £ > 2 so that M*~! < N < M’ so that by the
previous case (M > N)

Z a/kf udu < Z(RM[’NCZ)kf udu < Z(SMK’MRMZ’NQ/),- udu.
k=0 NB k=0 M*B '

k=0 M'B

7. EXTENSIONS

There are several ways to further generalize the Gehring lemma with tails that
follow by the argument used in the proof of Theorem 2.2. For the sake of clear
exposition, we have not included them in the main theorem, but we briefly discuss
some of them in this separate section. For simplicity we work in the metric situation
(but quasi-metric works the same).

7.1. Sequences. We usually asked the sequence oy in the definition of a, to be
non-increasing. Of course, this assumption can always be relaxed by asking the
sequence to be non-increasing starting from a certain index k¢ and then replacing
the terms a; with 0 < k < ko with @, := maxXo<x<, @x. The resulting sequence with
@, := ay for k > ko is always non-increasing and summable.

7.2. Maximal function. The functional a, can also take the form
Q,loc _
m, " (B(x,1)) = sup J[ udu
reft,(1/2)dist (x,00)) J B(x,r)

where Q0 C X is an open set. In other words, the supremum is over “large” balls B
so that 2B C Q. We also define

mf(B(x, n) = sup JC udu.
relt,(3/4)dist (x,00)) JB(x,r)

Corollary 7.1. Let Q C X be an open set in a metric space (X, d, i) with doubling
measure. Let 5,3 > 0 and g > 1 be such that s < gand 8 > D(1/s — 1/q) where D
is any number satisfying (2.1). Suppose that u, f,h > Owithul, f4,h’° € L}OC(Q, du)
and A > 0 is a constant such that for every ball B = B(x, R) with 2B C Q

1/q
(7.2) ( f ud du) < Am$M°(B) + (m?‘;l“(B))”q + RE(my " (B))!/".
B

Then there exists p > q such that for all balls B with 12B C Q,

1/p
< f u? dﬂ) < m(B) + (m(B)/4 + RE(mjh(B)!/*
B

l/p q/sp
+ <JC fpdu> +RP (JC hps/qd,u> :
2B 2B

(7.3)
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where both p and the implicit constant depend on A, D, s, q, .

Proof. We prove the claim for B = B(xg, R) with xp € X, R > 0 and 12B c Q. We
point out the relevant changes to the proof of Theorem 2.2. Having fixed B, we
repeat Step 1 as before (we take N = 2) to define g4 = A%h*1,5 with Ag a constant
so that for any ball B, contained in 2B we have

/s 1/q 1/s
O(f ) < (f ) e (f,0)
B, B, 2B

In Step 2, fix rg and pg real numbers satisfying R < ry < pg < 2R. Forx € B, :=
B(xp, ro), we have that

B(x’pO - r()) - B(X(), 2R) - B(X, 4R),

and consequently for any positive function v,
B(xo, 2R
JC pdy < P80 2R) vy
B(x,(00—70)) H(B(x, 00 = 10)) JB(xo.2R)

D
R
< ( ) JC vdy,
PO — 10 B(x0,2R)

where we used the constant D from the doubling dimension in the last line. Set
Y := (R/(po = ro)®.
We repeat Step 3 as it is. In Step 4, we define three functions

1/q 1/q
U(x,r) 2=JC udu, F(x,r):= (J[ fqdﬂ> ,G(x,r) = (JC qu,u> ,
B(x,r) B(x,r) B(x,r)

and for 4 > Ay, we denote the relevant level sets by
Up=B,N{u>1}, Fy=B,N{f>4, Gpy:=B,N{g>A4}.
We set

(7.4)

1/ 1/s
Ao 1= Cym$}(2B) + C (ym%,(2B)) " + CQRY (ym§i(2B)) ",

where C is a constant independent of u and the ball B, chosen such that, by an
inclusion relation as in (7.4) we obtain

(7.5) U(x,po — ro) + F(x,p0 — ro) + G(x,p0 — r9) < Ao
for all x € B(xp, po). Finally, we define as before

Q)= {x e UyUF, UG, : xis aLebesgue point for u, f¢ and g"}.

In Step 5, we note, as before, that if x € Q then
liII(l) Ux,r)+ F(x,r)+ G(x,r) > A,

and thus for x € 0, we can define the stopping time radius, this time continuously,
as

Iy = sup{r <po—ro: Ulx,r)+ F(x,r) +G(x,7r) > /l}.

Remark that (7.5) implies that ry < pg—rp. Of course Q) C Uxeq, B(x, r/5). By the
Vitali Covering Lemma (5r-Covering Lemma) there exists a countable collection
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of balls {B(x;,r;)} = {B;} with r; = ry, such that {%Bi} are pairwise disjoint and
GaCU;B;.

We make three observations:

(i) For each i, either ﬁ;i wdp > 4, (359,- fldw'a > 4, or (359,- gldw'1 > 4.
(i1) The radius of each B; is less than pg—ry and x; € B(xg, o) so B; C B(xg, po)-
(>iii) Each r € [r;, pg — rp) is ‘above’ or at the stopping time and

1/q l/q
JC udu + (JC fqd,u> + (JC qu,u> s A
B(x;,r) B(x;,r) B(xi,r)

We obtain from (7.2) that
WU < ulf(UyUF UGY) < ul(B)

i

s ZMB) (m&4oe(By) + (m ' (B) 4 + 1 (" (By)' 7).

We handle the term involving f, to begin we split mQ loc(B;) as
(7.6)
my"(B) = sup fidu

refr;, dist (x;,Q0)) v Blxi,r)

= max ( sup f4du, sup 1 d,u) .
B(x;,r)

relri,po—ro) v B(x;,r) relpo—ro, dist (x;,Q¢))

By observation (iii), we see that

sup JC fldu < A
relri,po—ro) v B(x;,r)

On the other hand,

sup JC fldu = sup JC f1du
relpo—ro, 2dlst(x ,Q0)) Y B(xi,r) ke[l,5 = 20—y dist (x1,Q) B(xi,k(po—10))

k(pg — rg) + r
s p ((P00)0> JE 17 du
kell, dist (x;,Q¢)) k(oo = 10) B(x0,k(po~r0)+10)

2(p =rp)

R D
S ( > m(B) < Af < A7,
PO~ T0

where the last line is justified as follows: By the upper bound on k in the supremum,
we always have

1 1 3
R <k(pp—ro)+ro < Edist (x;, Q)+ 19 < Edist (x0, Q) + 3R < Zdist (x0, Q°),

where we used |x; — x| < rg < po < 2R and B(xp, 12R) C €. Hence every
B(xg, k(o9 — rp) + rp) is admissible in the definition of m?q(B) and we get the bound

claimed before since m% (B) <2P m?q (2B). Altogether,
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Terms with u and & are estimated similarly. The rest of Step 5 follows as before
and we obtain

UiBi C{M(ulp,) > /3y U{M(f'1p, ) > (4/3)1} U {M(g"1p, ) > (4/3)}.

Step 6 involving maximal function arguments to estimate the measure of the set
in the above display for 4 > Ag as well as the overall contribution for 4 < Ay is
repeated without changes. In the end, we reach an inequality of the form (2.21).
Indeed, set

o(r) = / wb il dy,  ap = (m2B) + (m%2B) + (RP(mit(2B)'*)”
B(xo,1)

and for p € (g,2q) we may summarize our estimates as

R g _ _
@(ro) < p(B) <> @y + €p(po) + &, / fPdu+¢), / g’ dy,
PO — 10 2B 2B

whenever R < ry < pp < 2R. Here €, = p — g and n > 0 is independent of u and
B. The claim (7.3) then follows from a well known iteration argument (see e.g.
Lemma 6.1 in [13]) or from modifying the argument in Step 7. m|

Note that the proof for the maximal-function-like object m/¢ is actually sim-

pler than for the tailed a,. Several choices of how to discretize the scale parameters
can be omitted. This setup is also very close but not comparable to Gehring’s orig-
inal assumption

(MuhH)' < Mu

where ¢ > 1 and M the Hardy—Littlewood maximal operator. Indeed, the left-hand
side here does not have a maximal function and the right hand side is a maximal
function restricted to large scales (a non-local maximal function).

Q,loc
u

af’lOC(B) = Z g Jngud,u

7.3. Domains. We can define the tail functional a
for example

restricted to an open set €,

k>0
2k+4BcQy
and
Q e
a,(B) = g udu,
k
k=0 2'B
28+ BcQy

where as before (ay )y is a non-increasing and summable sequence of positive num-
bers. Then we can localize the assumptions of Theorem 2.2 to Q.

Corollary 7.7. Let Q C X be an open set in a metric space (X, d, i) with doubling
measure. Let 5,3 > 0 and q > 1 be such that s < gand 8 > D(1/s — 1/q) where D
is any number satisfying (2.1). Suppose that u, f,h > Owithu?, f4,h* € L}OC(Q, du)
and A > 0 is a constant such that for every ball B = B(x, R) with 16B C Q

l/q
(7.8) (f u? d,u) < Aaiz’loc(B) 4 (a?(;loc(B))l/q + Rﬁ(a%loc(B))l/s,
B
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Then there exists p > q such that for all balls B with 32B C Q,

l/p
< JC uf dp) < d, (4B) + (af,(4B)" + RF(aj: (4B))!/*
B

1/p q/sp
+ <JC fr du> +R° (f hPsl4 d,u) ,
4B 4B

where both p and the implicit constant depend on A, B, s, q, D.

(7.9)

Proof. Theorem 2.2 shows how to deal with the tail. Corollary 7.1 shows how
to adapt the proof to the setting relative to Q. The proof of this Corollary can
be reconstructed following the proof of Theorem 2.2 and carefully adapting the
estimation in (2.15) in the spirit of estimating (7.6) to make sure that all relevant
balls appearing in the estimates are contained in Q2. O

7.4. Convolutions. In the Euclidean setting where (X, d, 1) is R"” equipped with
the usual distance and the Lebesgue measure, we can realize the functionals a, as
convolutions
ay(B(x, 1)) = (¢r * u)(x)

where ¢ has suitable decay and integrability and ¢,(x) = r"@(x/r). More pre-
cisely, our assumptions correspond to ¢ being bounded, radial, decreasing and
globally integrable. A convolution makes sense in certain groups, so this kind
of special functional can also be considered, for instance, in nilpotent Lie groups
asin [27].

8. VERY WEAK A, WEIGHTS

For a weight (that is, a non-negative locally integrable function), the condition

/M(ILBw)d,uSC/wd,u
B B

valid for some C < oo and all balls B of X can be taken as a definition of the A
class, where M is the uncentered maximal operator, see [9, 28] for the Euclidean
case with Lebesgue measure. In spaces of homogeneous type, this condition im-
plies higher integrability with an exponent that can be computed from the constant
C and the structural constants of X, see [16]. This was extended in [2] to weights
in the weak A, class defined by

(8.1 JCM(]le)d,u < CJE wdu.
B oB

where o > 1 is given. The classes are shown to be independent of o provided
o > K, K being the quasi-metric constant, and their elements still have a higher
integrability. The methods passing through a dyadic analog yield an accurate es-
timate of the exponent in terms of the best C in the definition. We note that the
dilation parameter o is uniform: it is the same for all balls. Our methods allow
us to remove the uniformity, that is we define the very weak A, class as the set of
weights such that for all balls,

(8.2) M(1pw)du < Csupf wdu < oo,
B oB

o>1
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The quantity in the middle is the same functional as the one defined in Section 7.2
when Q = X.

We denote by AYY this class. As the right hand side of (8.2) requires bounded-
ness of all averages on large balls, this rules out weights growing at co. For this
reason, it is neither contained in, nor containing the class A% introduced in [2].
Typically, such very weak A, weights arise from fractional equations. See the next
section.

Theorem 8.3. For any very weak A, weight w, there exists p > 1 and C' < oo
such that for all balls B,

l/p
(8.4) (JCM(IBW)” d,u> <’ supf wdu.
B o1 JoB

Remark 8.5. The improvement of integrability on a given ball B only depends on
the finiteness of the right hand side for that same ball and nothing else, as the
proof will show. Hence, one can also define the very weak A« class on B by the
condition (8.2) on that very ball. The theorem remains valid if one replaces (in
the assumption and the conclusion) the supremum by a tail as before. That variant
leads to the class C,, (see Section 8.1). The advantage is to allow some possible
growth for which the tail is finite while the supremum is not. Finally our argument
works with the supremum replaced by one average with a fixed dilation parameter.
We leave these extensions to the interested reader. They will not be needed here.

Proof. To simplify we do the proof in the metric case. Again the trick to reduce the
quasi-metric case to the metric case applies, see Section 3. The argument follows
again that of Theorem 2.2 with f, 1 = 0 but with some changes.

We pick N = 2. We ignore Step 1 and have the setup of Step 2. Having fixed the
ball B = B(xy, R), the parameters pg, rg, and £ such that 25(,00 —rg) = R, define

Mv(x) := sup J[ v du.
keZ B(X,Zk(po—r()))

Then if M, designates the centered maximal operator,
Mv < My < Mv < KMoy < kM.

Indeed, Mv < «’M_v is classical, while M,.v < My follows from the doubling

property and « does not depend on py — ry in particular. By the same token, in
the right hand side of (8.2) we may restrict to the supremum over all o~ = 2* for
integers k > 0. This only causes a change in the constant C.

We modify Step 3 as follows. With the truncation of the maximal function at
level m,

| U < [ WL L B, 0
o o

(8.6) <KP / (M(Lg, W) M(1p, ) dp
B

o

m/k
=«’(p-— 1)/ /lp_Zu(BrO N{u> A} da
0
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with u := M(15, ).
In Step 4, we pick Ag := C§+2 SUP;>1 Jf, » W dp (which is assumed finite otherwise
there was nothing to prove), where we recall that Cy is the doubling constant. We
observe that for x € B,, = B(xo, 7o) and k > 0,

(8.7) JC 1g, wdu < Cj*? f wdu < Ao.
B(x,2%(po—r0)) B(x0,2F+1R)

The stopping time of Step 5 is slightly different. Let A > Ag. Pick x € B;, N {u >
A} As u(x) = M(1 By, w)(x) > A > Ay, the observation above and B(x, 2k(po —rp)) C
B,, when k < 0 imply

u(x) = supJC 1p, wdu = supf w du.
k<0 JB(x 2% (po-r0))  © k<0 JB(x,2%(00-r0))

Let kx < O be the supremum of those k£ < 0 for which ﬁ?(x,Zk(p()—ro)) wdu > A. We
extract the covering B; = B(x,-,ZkXi (po — ro)) of B,y N {u > A}, where all B; are
subballs of B, with the %Bi pairwise disjoint. We claim that if B] = 2B;, then for
all x € B; N By, we have u(x) < CZM(1gw)(x).

Indeed, fix x € B; N By, and pick k € Z. In the case where k£ > 0 we have by
@&.7),

JC ]]_BPOWd,LlS/l()</1<JC wdu < M(1w)(x).
B(x,2k(po=r0)) i

B;
In the case where 0 > k > k,,, we have either by the stopping time or again by (8.7)
ifk=-1,
B ,, 2k+1 _
f Ly w e < HBC 2100 = 1))
B2k (oo—ro) H(B(x, 2%(po — 10)))  JBxi 2441 (09-r0))

<Cia<C3 JC wdu < CIM(15w)(x).

B;

wdu

In the case where k < k,,, B(x, 2k(po —19)) C B} and B(x, 2k(po —19)) C By,, hence

JC ]prowd,u = f wdp < M(1gw)(x).
B(x,2%(po~10)) B(x,2(po~10))

Thus, the intermediate claim is proved.

Now, using this together with (8.2) and the opening remark, we obtain

u(Bry N> ) <> wBiNB) <Y udy

B,‘ﬂBrO

i i

SZC‘Z’/B M(1g:w) du

imBrU

<D CiuB) Ji M(1Lg;w) dpt

< CC3Y  u(B))sup ]ng* wdu
i i

k>0



30 PASCAL AUSCHER, SIMON BORTZ, MORITZ EGERT, AND OLLI SAARI

< CCiYy uB) 2
i
< A u(UB)).
The next to last inequality is by definition of B; = 2B;, hence all the averages do not
exceed g < A by (8.7), and the last inequality uses doubling and the fact that %Bi
are disjoint. As B; C B,, and A < J%. wdu we have UB; C B,, N {M(lprOw) > A}
and we have obtained

w(Byy N {u > A}) $ A p(Byy N {M(Lg, w) > A}).

Step 6 is now done as follows by cutting the rightmost integral in (8.6) at Ay. Let
¢(ro0) := [ (M(1p, )i dy. Then
0
m/k

0(ro) < KA~ w(B,) + kP (p - 1) AP2u(B,, O {u > A} dA
Ao

p m/k
< y(B)Cf;g <supJC wa’u) +(p-1) /lp_l,u(Bp0 N{M(1p, w) > A}) da
oB

o>1 Ao

Pt
< uBCh <supf wdp) Ty / M(1g, W), du.
oB B,

o>1 p L0

We recall that £ was defined by 2‘7(p0 —1r9) = R. As k > 1, we have obtained

o) < u(BIC)! (sup £ Wl + eppton

o>1

From there, we do as in Step 7 an iteration provided p — 1 is small and finally let
m — oo to deduce (8.4). m|

Having this theorem at hand, we can proceed as in [2] and show the equality of
the class A2 with other classes. We say that a weight is a very weak A, weight,
if there exist an exponent 1 < p < oo and a constant C such that for all balls B and
Borel subsets E of B,

w(E) p(oB) w(EY\'”
oy o< ntem i <o)

We call AYY this class. We say that a weight w is a very weak reverse Holder
weight if there exist an exponent 1 < g < oo and a constant C < oo such that for all
balls B,

1/q
(8.9) <chq d,u> < CsupJC wdu < oo,
B o1 JoB

We call RH"" this class.

Theorem 8.10. Let w be a weight and B be a ball of X. The condition (8.2), (8.8)
for some p € (1,00) and (8.9) for some q € (1, 0) are equivalent (with different
constants). In particular, we have coincidence of AYY , A% and RH"" .

Proof. Adapt the proof of Lemma 8.2 in [2] together with our Theorem 8.3 as the
proper replacement for Theorem 5.6 therein. m|
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8.1. C), weights. Let X = R" equipped with Euclidean distance and Lebesgue
measure and write |E| for the Lebesgue measure of a set E. Fix a weight w. Upon
replacing the supremum sup,..; w(o B)/|o B by the tail functional

1 |BI
B):=— M(1p)wdx = dx+ — d
acp( ) 1Bl Je (Ip)wdx JCW X |B|Z/2A+IB\2kB (|2kB|) wdax

= 22_1‘”(1’_1)]( wdx
k=1

2kB

with 1 < p < oo in the definition of A in (8.4), we recover the C,, condition of
Muckenhoupt [22] and Sawyer [24]. Namely, we say that w € C), if there are 6 > 0
and C > 0 so that

|E]
8.11 E)y<cC
8.11) w(E) < <|BI

holds for all balls B and measurable E C B.

Following the proof of Lemma 8.2 in [2], we see that w € C,, if and only if there
are 0’ > 0 and C > 0 such that for all balls B,

1/(1+8)
(JC wlto dx) < Cac,(B) < 0.
B

Modifying the proof of Theorem 8.3 (see Remark 8.5), one can append

> M(]lB)deX<OO

J[M(]lgw)dx < Cac,(B) <
B

holding for some C > 0 and all balls B to the list of equivalent definitions of the C,
class. In conclusion, the class C,, gives examples of functions satisfying a reverse
Holder inequality with tail as in Theorem 2.2. Conversely, as we prove next a
reverse Holder inequality with a tail of the form ac,(B) for fractional derivatives of
solutions to certain fractional equations, we see that solutions produce examples of
C, weights.

9. AN APPLICATION TO FRACTIONAL EQUATIONS

Throughout this section let @« € (0,1/2). For u € [* = [2(R"), we define
the fractional Laplacian (—A)®u in the sense of tempered distributions through
F(=A)%u = (47)>?|¢]**u, where we use the normalization

(&) = Fu@) := / u(x)e FEX dx

n

for the Fourier transform. For simplicity, we shall always assume the dimension
to be n > 3. The Bessel potential spaces H*** = H***(R") consists of tempered
distributions u with u, (~A)%u € L>. For u € H>*?, we also have the singular
integral representation for almost every x € R”

arum=c [ 1O ay
Re X = yrree

where integral is understood in the principal value sense and ¢ = c(a,n) can be
computed explicitly. For further background on we refer e.g. to [20, 26].
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Fractional Sobolev embedding theorems give us two important indices for every
p e (l,00):
x pn

p = and P =
n—2ap

pn
n+2ap’

that satisfy 1/p* + 1/p. = 2/p and (p.)* = (p*). = p. The value of « in the
definition of p, and p* will usually be clear from the context. Otherwise it will
be given explicitly as p., or p5,. We are interested in the weak solutions of the
equation

9.1) (=0 (a(=A)"u) = (=A)*F + f,
where

e a:R" — C satisfies 4! < Re a(x) and |a(x)| < A for some A > 1 and all
x e R",

e a€(0,1/2),

e Fel?and f € L*,

Note that this fractional equation is different from those studied in [5] and [19].

Definition 9.2. A function u € H>*? is a weak solution to (9.1) if for all ¢ € H>*2,

(a(=A)"u)(-A)pdx = / ) (F(=A)¢ + f9) dx.

R~2

Weak solutions to (9.1) satisfy a reverse Holder inequality with tails. This will
allow us to apply the non-local Gehring lemma to prove a self-improving property
of weak solutions.

Lemma 9.3. Let u € H**? be a weak solution to (9.1). Then there exists € =
e€(n,a) > 0and y = y(n, @) > 0 such that for every ball B(x,r) C R",

1/2 0 1/2-¢)
(f cara) < (Xobf icarue
B(x,r) =0 2kB(x,r)
o 1/2
(9.4) + ) 2k JC |FI?
=0 2kB(x,r)
0 1/q'
+ 2 Z kv JC A ’
=0 2kB(x,r)

where q' = 2.4 and the implicit constants only depend on A,n and «.

Proof. Throughout we allow the value of y and € to change from line to line, noting
that we will only alter their values a finite amount of times and that estimates (9.4)
and (9.6) become weaker for smaller y and €. We reduce the proof to the following
claim.



GEHRING’S LEMMA WITH TAILS

Claim 9.5. Given any n € (0, 1) we have

1/2 1/2
< f |(—A)“u|2> <7 < f |<—A>“u|2>
B(x,r) B(x,8r)

oo 1/(2—€)
ce[Srf e
=0 2k B(x,r)
oo 1/2
+C 2k JC |F|?
(kz:(; 2kB(x,r)
o /g
st (o)
=0 2k B(x,r)

where C = C(n, A, n, @), € = €e(n,a) >0 andy = y(n,a) > 0.

9.6)

Taking the claim for granted momentarily, for any ball B set

1/2
M(B) := ( Ji |<—A)“u|2>

0 1/(2-€)
A(B) :=C (Z 27k f |(—A)au|2_€>
= 2kB

0

o 1/2
—ky 2
+C <Z 2 Jng |F| )
k=0

o0 g
+CrPr |y ok JC Vi
k=0 2'B

Then (9.6) is equivalent to

and

M(B) < nM(8B) + A(B).
Iterating this inequality, we obtain for j > 1

j-1
M(B) <n/M(8'B)+> n'A®8'B)
=0

<n’/M®#'B)+> nPAQ'B).
=0
Letting j — oo and noting that nj M(8/B) — 0 since (—A)*u € L2, we obtain

M(B) <> nPAQ'B).
=0

33
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Letting 7 = 273¢ where a — 2« = 2y, we immediately recover (9.4). To see this, let
us examine the following sum (which is the “hardest” to analyze)

00 00 1/q
Z n3e@Elr Z y—ky JC Vi .
=0 k=0 2k+C B(x,r)

Using Holder’s inequality we have

[ ) 1/q
Z nBC@lr Z yky J[ Y
=0 k=0 2k+CB(x,r)

0 00 1/q’
— r2a 2—257 2—ky JC q
¢ ; <; 2k+C B(x,r) |f| )
00 00 1/q
2a =20y —ky q
9.7) <Cr (;02 ; 2 JSMBW) If] )
00 m 1/q
< Cr2a (Z o—my Z 2—t’y JC |f|q’>
m=0 =0 2" Blxr)

) 1/q'
ser| 2 f )
=0 2MB(x,r)

as desired. The bounds for the other terms are simpler. Thus, it suffices to prove
Claim 9.5.

Proof of Claim 9.5 When proving the claim we may assume (by scaling) that B =
B(x,r) = B(0,1) and that uyp = f43 u = 0 as u — uyp solves the same equation.

Of course, strictly speaking, u — u4p is usually not contained in L? but setting
(=A)*1 := 0, we immediately see that all all conclusions drawn for u in the previous
section remain true upon adding a constant. Let ¢ € C’(R") with 13 < p < 14 5

3

Before continuing we introduce some convenient notation for “error” terms:
When the quantity exists we set

. Y(y) —¥(x)
Eqo(u,Y)(x) := - u@)m
We will justify absolute convergence of all such integrals on our way. Notice that
for almost every x € R",

(9.8)
> (X)(—A)"u(x) = / ¢ (x)

n

_ / U@ ~ PO [ UOWE) ~ uO)e()

Ix _ y|n+2a RP |x _ y|n+2&
= (=A)*(up*)(x) + Eo(u, 9*)(x)
= (=A)*(up™)(x) + @(x)Eq (1, 9)(x) + Eo(uep, 9)(x),

where we used the difference of squares formula in the last line.

u(x) — u(y)

|X _ y|n+2a

dy
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Using the ellipticity of a and (9.8), we have

/ (=AY ul¢? <

/ (~)"ua(~A)7ug?

A

’ / (&) ual=B) (ug?) | +

©9.9) / (=A) uapEy(u, )

(=A)"uaE(up, so)‘
ST+ 11+ 111

We intend on using the equation, (9.1), on term I, but we estimate /1 and /1] first
as the estimates will be useful in handling /. Consider first term ///. By the mean
value theorem and the fact that |[V¢| < 1,

|Eq(up. )] < / Iunp(y)lw dy
() (W)

(9.10) < l2p(x) o T — e T

1
+ lppe(X) ——————— uy|.
T [

By the fractional Sobolev-Poincaré inequality, see Remark 10.3 with p = ¢ = 1 in
the next section, we have

/ Jugl < / ul= [ lu—upl D 270 f I(=A)"u.
n 4B 4B =1 2kB

This yields the estimate

5 |(=A)*u(x)[1 2By (x) W

(9.11) 2
<Zz o f - A)“u|) :
2B

where we broke the integral in x over dyadic annuli. Also, by Holder’s inequality

/ we)(y)| dy dx

[ U250 / %dm

, 1/q 1/q
(9.12) N (/ |(—A)"M|q> (/ Il—2&(|”|123)q)
2B R"
o0 2/(2-€)
< 2—k)/JC —A o, 2—€ ]
(I; ) )
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Here we used in last line ¢’ < 2 and that [1_p, : L9%1-2 — L9 with | < g 124 <
q = 25, due to a < 1/2; from this and Proposition 10.1 proved below we obtain

Ha Tim
(/ 11—2a(|bt|123)q> < </ |u|q*’120>
! 2B
1
9%,1-2a
< </ IM_M4B|‘I*,1—2<Y>
1/(2-€)
<Z2 i f (=AY uP ) .

Combining (9.10), (9.11) and (9.12), we have obtained a desirable bound for /1.
Next, we handle term /1. Again, using the mean value theorem we obtain

1l = ‘/(—A)“u(x)a(x) - (x) u(y)T(y) Vi(za) dy dx’
[u(y)|
< —A) dyd
o1y < / AUl [y dvda
+ / (~A) () (x) _B0) 4y
B(x8/3) |x — y[e

=: A1 + A2.

To bound A; we may use that supp ¢ C %B and the L” bounds for the Riesz poten-
tial I1_o,(|u|14p) and proceed exactly as in (9.12). For A, we have

u(y) — u(x)

Ay <
B 3y 1 =yl

/ (=AY u(x)a(x)g*(x) dy dx‘

+ / (=) u(x)a(x)e? (x)u(x)

= A2’1 + A2,2.

dydx

B(x8/3)c 1X — Y[t

Using Young’s inequality with §’s and Proposition 10.1 we have

1
Arp <6 / (=AY ulPg* + — / Jul?
0 Jap

1 o 2/(2-¢€)
<6 —A) 2.2 - 2—kyJC —A)¥ 2—€ ,
~/|< >u|so+5<k§ =0y

where we an hide the first term by choice of § when returning to (9.9). Turning our
attention to A, ; we recall the definition of w(x) (with r = %) and apply Young’s
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inequality with ¢’s and Proposition 10.4 to obtain

Ary = | [ (=A)"u(x)a(x)¢*(x)w(x) dx

RH

1
<6 / I(=A)*ul¢* + — / wi?

0 Jap

1 0 2/(2—¢€)
<6 —A)® 2.2 - 2—kyJC —A) 2—-€ )
< /|< Yulp +6<k§ =0y

Hiding the first term above we have a desirable bound for A, ;.

We are left with handling term /. Using the equation (9.1) we have
| fu

For I”, using the “sharp” version of Proposition 10.1 and Young’s inequality we

have
) 1/q 1/q
< ( / |f|‘1> < / |u|4>
2B 4B
) 2/q 2/q
<! (/ |f|‘f) +f7</ |u|‘1)
2B 4B
) 2/q
<! ( / |f|‘1> p / (=A)ul?
2B 8B
- 2
~ 2—kyJC —A) ,
+1 (l; Y u|)

which by a choice of 7 = ¢n is a desirable bound. To bound I’, we use the same
techniques as we did for /7 and /1]. Using Young’s inequality and (9.8), we have

I< +

/ F(=0)*(up?)
= +1"

I < +

/ FICA g

/ FE,(u,¢?)

1
<6 / (=AUl + - / P+
6 Jap

Hiding the first term above it only remains to bound

‘ / FE., wZ)‘

/ FE,(u, gpz)’ )

IA

+

' / FoEq(u,¢)
: ﬂl + ﬂz.

/ FE(ugp, so)‘
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We handle A, as we did /11, recalling our bound for |E,(up, ¢)(x)| from (9.10).
Using this bound we obtain (in similar fashion to /11)

T < / FOOap(0 120l 125)(x) dx

“ [ F(x)lme(x)W | wpoiaax

< / P+ / T1sa(ul128)?

2B

oo 172 2
+) 27k ( f |F|2> + ( / |u<p|>

0 2/(2—¢€)
<) 27k FI> + 27k JC A)ul>€ ,
<> JSkB' | (Z (A

where we used that I;_, : L*'"2 — [? with 2.1-2¢ < 2 (< q). We now bound
Aj. Proceeding as we did for /7, the mean value theorem gives the bound

u(y)|
A < /lF(x)| (x) ——— dydx
: 4 B(xg/3) I — ylrr2e-l Y
u(y)
F(x)¢*(x) ————dydx
B(x8/3)c 1X — Y[t

= A, + A

. 4
As before, since B(x,8/3) C 4B for all x € suppy C 3B,

A, < / IFI> + / I1-20(|ul14p)*
2B

=) 2/(2-¢)
< / FP+ (D 27(=A) " uf :
2B k=0

Finally, appealing to previous estimates we have

.y u(y) — u(x
Ay < | [ Fooo uh) ~u) dx‘
B(x8/3)¢ 1X— )
F(x)@* (x)u(x) —————dydx
B(x.8/3)c 1X — VI
< / F(x)g02(x)w(x) dx| + / F(x)u(x)dx
R” 2B

0 2/(2—€)
< [P (S rtiearar)
2B k=0

Combining our estimates for I, I1 and 111 we have proved the claim (by choice of
i1 = cn) and hence the lemma. O
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With Lemma 3.2 at hand, we can apply Theorem 2.2 to obtain improvement of
the integrability of (—A)%u. The first application concerns the case when the right
hand side of the equations exhibits higher local integrability:

Theorem 9.14. Let u € H**? and p > 2. Suppose u is a weak solution to (9.1)
where f € L*NLY and F € L* N Lf;c. Then there is €y = €y(4,n, a, p) > 0 so that

e loc

€

[(=A)*ul € L *.

Proof. Let € and y as in Lemma 9.3 and put v := |(=A)?u|*~€ and similarly F :=
|F|*~¢ and f=1f [>=¢. In terms of v, F, f the conclusion of that lemma reads

2—¢

5 2—¢ o 0o ) 3
2 -
<JC v2—6> < E 2-ky JC v+ g T"’JC F2-e
B(x,r) =0 2kB(x,r) =1 2kB(x,r)

2-¢

Sl JC fae ,
k=0 2k B(x,r)

with implicit constants depending on A,7n and @. Now that the exponent of v on
the right hand side is 1, the claim follows from Theorem 2.2 after checking the
numerology. The parameters in that theorem are

(D,B,q,s) = (n, 2a(2 - &), ﬁ, ﬁ),

and so the conditions 0 < s < ¢, ¢ > 1 and 8 > D(1/s—1/q) are satisfied. (Note that
in fact D(1/s — 1/q) = 2a(2 — &) = B and that s < 1). Hence, Theorem 2.2 gives
us local higher for v with exponent larger than ¢, provided F and f are globally
integrable with exponents g and s and locally integrable to some higher exponents,
respectively. By definition, this precisely means F € L? N Lf’o .and f € L*n Lf;c
and for some p > 2, which is our assumption. Of course we can write the resulting
estimate again in terms of the original functions: We get for all sufficiently small
€ = e(d,n,a,p) >0,

_1
(J{: |(—A)“u|2+€0> 2+e
B(x,r)

N

> o f (=A)"uf?

2kB(x,r)

k=0
00 1/2
+ > 2 M JC |FI?
=1 2%B(x,r)
1

0o 1/2. 1
p
+ 72 <Z 27k f |f|2*> + < f |F|”>
2kB(x,r) 2B(x,r)

k=0
1

P
+ (JC |f|1’*) . O
2B(x,r)

A global version follows by replacing Theorem 2.2 by Theorem 5.1.

Theorem 9.15. Suppose u is a weak solution to (9.1) where f € L* N LP< and

Fel?’n L? for some p > 2. Then there is €y = €y(d,n,a, p) > 0 so that |(-A)%u| €
L2+€0.
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10. TECHNICAL ESTIMATES

The Sobolev—Poincaré inequality is as follows:

Proposition 10.1. Let B = B(x,r) be a ball and u € H***. If a € (0,1/2) and
N > 1, then

1/q 1/p
( f lu — u3|4> < Cr¥® < f |(—A)“u|p>
B NB

cre = k(1-2a)
+ E N —A)%u,
(N _ 1)n+1—2(1 P Jf\/’fB I( ) ul

(10.2)

where C = C(n,p,q,a,N) forall 1 < p < 2,1 < g < p* with exception of
p =1,q = 1%, The constant C stays bounded as N — 1.

Remark 10.3. In the next section we shall only use Proposition 10.1 with N = 2.
In fact, we will only use this “strong” version of the inequality once and we will
often use the inequality

1/q 00 1/p
<JE lu — MB|q> < Cr2<x Z 9—k(1-2a) JC |(_A)au|p ,
B P 2B

which follows from (10.2) and Holder’s inequality.

Proof. We prove the claim for a Schwartz function u# and B = B(0, 1). The general
claim follows by scaling and approximation via smooth truncation and convolution.
Let K(x) = |x]7"*2 be the kernel of the Riesz potential I,. Using the formula
u = chyo(—A)%u, see Chapter V in [26], we can write

() — u()l < / (—A UK (x = 2) — K(y - 2 d=

for all x,y € B. Estimating VK and using the mean value theorem for z ¢ NB, we
obtain a uniform bound

/ |(=8)*u@IK(x —z) — K(y - 2)l dz
(NB)

N n+1-2a
< (=AY u()||z| ™"~ 12
<N - 1> /(NB)C

N n+l1-2a o
< N-(-200k JC I(=A)?u(z)| dz.
() X,

For the rest of the integral, we write

/NB I(=A) u(@)|IK(x—2) = K(y—2)|dz < Do (1nl(=A)"ul)(x) + Lo (Inpl(=A)*uh(y).

Then

. Nn+1—2a © ra N P
[ fB ) =) ddy < <(N_1)12 3 sk va I M(Z)Idz>

k=2
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plp
+(f |(—A>@u<z>|”dz) ,
NB

where we have used the boundedness I, : LP — LP if 1 < p < 2. This proves
the claim for the case ¢ = p* and 1 < p < 2. The intermediate cases for g are then
obvious by Holder’s inequality. Finally, we need to consider p = 1 and 1 < g < 1*.
Here, we use the boundedness I, : L' — L' and that the weak-type space
L' (B) embeds into LI(B) since B has finite measure. O

We next prove an estimate for the truncated fractional Laplacian.

Proposition 10.4. Let u € H**2(R") and

() /| uy) = u() |
Y

—x|>r |X - y|n+2a

Given p € [2,2%), there are y > 0 and € > 0 only depending on a, n and p such

that
1/p w0 1/2-¢)
( JC lw()|P dx) < Z 2k f I(=A)ul*€ dx
B(z,r) =1 2%B(z,r)

forall ze R" and r > 0.

Proof. Again, it suffices to treat the case B(z,r) = B(0, 1) with u a Schwartz func-
tion. The general result follows by scaling and density as before. For x € R", we
set By 1= B(x, 1). Let (€) := |£€]*%u so that v = ¢(—A)*u. Then, writing h =y — x,

[ (St ) e
w(x) = _— eEV(E) dE.
" i1 |§|211|h|n+211 é: f

We analyze the multiplier
eZm’f~h -1
(10.5) m(€) = / —————dh
=1 € A2

and need to estimate w = m=*vin L?(B(0, 1)). Let 4 be a smooth and radial function
with

swpuc {1 <is2f. Suaio-1

JjE€Z

whenever & # 0, and let m;(§) := m(E)W(27/€) be the piece of the multiplier local-
ized near the frequency 2/. We also put ¢ (&) = W(27IE).

Small frequencies. Now assume |£| < 1, that is, consider the pieces for j < —1.
Using polar coordinates, we write

o 2mip -0 _ 1 d
m(é) = w, / / S 5 d@—p .
104
€1 gn—1 P P
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The expression above is radial. Denote 6 := é - 0. Let m(]¢]) := m(¢). Differentiat-
ing once, we see

2mr9
3 (27r10) -
"(r) = d@ rim172a gg.
' (r) /sn | 2 /sn 1 Z

By symmetry,
/ do = 0.
gn-1

Hence the term with j = 1 is zero, and the lowest power of r in the series is 1 — 2a.
Consequently, for r € (0, 1) and K > 1 the K-th derivative is bounded by

)| g r o
Hence a calculation yields for o € Nj, a multi-index with K = |o| and |¢] < 1,
07 m@)| sk €' Ke' 2

Take a frequency piece m; with j < —1. Bounding the L™ norm of 7#; by the L'
norm of its Fourier transform, we get

|X| |mj(x)| < Z |x0'fh](x)| < Z /|a§m1(f)|d§< pin . 9j(-K+1-2a)

lo|=K lo|l=K

by the support properties of m;. Since 2a < 1, we can set K = n + 1 and sum over
Jj to obtain

Z |mJ(x)| < |x| (n+1) Z 2](1 2a) < |x| (n+1)
Jj=—oo j==
This together with the integrability of Z;zl_w m (by local integrability of m) shows

-1

D

j:—oo

P
S @

and therefore, by splitting the integral into dyadic annuli, we obtain for almost
x € B a desirable pointwise bound
St f
2B

-1
(10.6) ‘( > > *v(x)| <
k=0

j==eo

Symbol estimate for large frequencies. To estimate the pieces m; with j > 0, we
write (10.5) with aid of a Bessel function (see Appendix B.4 of [14]) as

©-/ 22 Qr0) dp
m = - .
il p% p1+2a 20z|§|2“

The part mo(f) = w, /2a/|§|2" is a constant multiple of the symbol of the Riesz
potential I5,. Denoting ¥_, := Z]_.:l_oo Y j (smooth and compactly supported), we
can decompose

[ee)
m° Ztﬁj =m’ - mow_oo.

J=0
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On the other hand, since we restrict to large frequencies, we have

0 N .
/ ‘aﬂm jzz(;wp@‘df = /If

e P2 de < 1
>4

for all multi-indices 8 with |8| > n, which, as in the previous step, implies a bound
by |x| " on the inverse Fourier transform. In total, we have

_ - (s V()|
ks v] = )sf "om® > ")) <k min (w_m * Lo(IV)) + Lo (W), / ’ fyle dy
j=0
for any K > n. Now, we split v = 1p2)v + 1p©2)v. For p € [2,2%), we see that
convolution with i/_, is bounded in L? so that for € := 2 — p, > 0,

(10.7)
00 p

/ ICTCRTE [ Eattmoaivbr ax+ <Z 2 f dy)
B(O, =

=1

p/(2—€) 0 p
< ( / e dy) (2 f dy) .
B(0.2) =1 B(0.2)

Here we have chosen K = n + 1 in our estimate for k * v, used the boundedness
of the Riesz potential from LP* — L? and broke up the integral in y into dyadic
annuli. This is a desirable estimate for m° Zj‘io V.

It remains to estimate on the level of large frequencies the kernel of the multi-
plier
= Ji20) dp
P% pl+Za :

(10.8) M(€) := (m—mO)(&) = /If |

This is a radial function, and we denote by M(r) its value at any & with |¢| = r. Let
g,(t) := t77J, () so that the recursion (g,())" = tg,+1(¢) holds for v > —1/2 (item
(1) of Appendix B.2 of [14]). Clearly

M’(V) = J%(r)r_%_l—za = g%(r)r—l—m
so that
! / |
M) = Z (l’) ((9[,‘1 ng(r)) (6£ m)
'=0

The Bessel functions satisfy [J,(r)] < r 12 forr > 1/2 provided v > —1/2 (Ap-
pendix B.7 of [14]). By this and the recursion formula for g, we see that repeated
differentiation does not alter its decay rate so

(10.9) D) g T e

for r > 1/2 and we can use the same technique as in the previous step to obtain for
J = 0and M; := My ; the bounds

jn . ="t +1+2a)

(10.10) IM(x)] sk [k
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for all K > 1. This estimate does not allow for a pointwise bound for the associated
kernel, but it will do for an averaged statement.

Pointwise bound for moderately large frequencies. We decompose v into pieces
supported in annuli in space. Let 1p(0,1) < 171 < 1p(0,4) be smooth and for each k > 2
let n7; be supported in 2k+1B(0, 1) \ 2~ B(0, 1) and be such that

L=me) + > m®)

k=2
for all y € R".
Recall M := My; for j > 0. We aim at estimating ' (3" M;v). Fix a scale

k > 2 and denote M5! := Z/;;é M;. By the symbol estimate (10.10) and support
of n;, we have for |x] < 1,

k-1
MG (om0l < M| (W) ()
j=0

k—1
< Zz—j(%+l+2a/) . 2jn/ M)l dy
=0

x — y¥
s £y
B(O,Zk“)

since |x — y| ~ 2k whenever nx # 0 and choosing K large.

L? bound for very large frequencies. Finally, for k > 2, denote M = Zj’;k M;.
By (10.9), where M is the real function corresponding to the radial function M,
and by now common arguments for the spatial derivatives, we see that for any
multi-index 8 # 0,

|8BMZO|2 df S / Ifl_(n+1+4a) dé': S 2—k(1+40{)'
R2 |§|22k—1

By Plancherel’s formula, we infer
/ bﬁM;OF dy < 2—k(1+4a)'
Rn

Since p < oo, thereis 1 < g <2sothat1+ % = % + ~. Then by Young’s inequality,

1
7
1/p

1/p
</ IM;? % ()P d)’> < </ (M1 30 202\ B0.24-2)) * (Ukv)}pd}’>
B(O,1)

<

M "L2(3(0,2k+2)\3(0,2k-2)) H”k"Hm
< [ | 2 (|27 e

1
—1+4a)k q fa
<272 v|? dy .
3(0,2k+2)
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Conclusion for large frequencies. Summing over k > 2 the results from the pre-
vious two steps, we get the desirable bound for large frequencies

> Mp((1 = 1))
j=0

LP(B(0,1))

<

NE

1/p
< / (IME™ 5 ()P + M + (ov)lP) dy)
B(0,1)

i 1/q
272 V|9 dy .
3(072k+2)

It still remains to estimate the piece with k = 1. In this case, we just note that the
symbol from (10.8) is

k=2

[

<
k=2

_ _n=2 © 1 n
M(@) = clel™ e /0 iz w2 QréDrt dr,
and the second factor can be regarded as the Fourier transform of the radial function
ki =1 B(o,l)clxl‘”‘za (cf. [14] Appendix B.5) whereas the first factor is the symbol
of the Riesz potential I,,. Then, using again the smooth and compactly supported

function /_o, = Z;i_m v,

D Mjx q)@)| < ki * Dam))] + [k *Y-w) * ()|
Jj=0
< (Iillzz + et ll 2 —collzr) 120 (w2
1/2.
< (/ v|> dx> .
B(0,4)
This together with the bounds for the kernels of m with frequencies |£] < 1in (10.6)
and m® = (m — M) with frequencies |£] 2 1 in (10.7) completes the proof. m]
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