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Abstract. We prove a self-improving property for reverse Hölder inequalities
with non-local right hand side. We attempt to cover all the most important situa-
tions that one encounters when studying elliptic and parabolic partial differential
equations as well as certain fractional equations. We also consider non-local
extensions of A∞ weights. We write our results in spaces of homogeneous type.
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1. Introduction

Gehring’s lemma [10] establishes the open-ended property of reverse Hölder
classes. If

(1.1)
(

1
|B|

∫
B

uq dx
)1/q

.
1
|B|

∫
B

u dx

with q > 1 and all Euclidean balls B ⊂ Rn, then(
1
|B|

∫
B

uq+ε dx
)1/(q+ε)

.q
1
|B|

∫
B

u dx

for a certain ε > 0 and all Euclidean balls. This self-improving property has proved
to be an important tool when studying elliptic [8, 11] and parabolic [12] partial
differential equations as well as quasiconformal mappings [18]. In this case, one
has to enlarge the ball in the right hand side. We come back to this.

In this work, we are concerned with reverse Hölder inequalities when the right
hand side is non-local. Understanding an analogue of Gehring’s lemma in this
generality turned out to be crucial in [3], where we prove Hölder continuity in time
for solutions of parabolic systems. The non-local nature arises from the use of half-
order time derivatives. The ambient space being quasi-metric instead of Euclidean
is also an assumption natural from the point of view of parabolic partial differential
equations. Hence, we shall explore these non-local Gehring lemmas in spaces of
homogeneous type.

It is well known that Gehring’s lemma holds for the so called weak reverse
Hölder inequality where the right hand side of (1.1) is an average over a dilated
ball 2B. We replace the single dilate by a significantly weaker non-local tail such
as

∞∑
k=0

2−k 1
|2kB|

∫
2k B

u dx

and certain averages over additional functions f and h that have a special meaning
in applications. The main result of this paper is Theorem 3.2 asserting that a variant
of Gehring’s lemma, and in particular the local higher integrability of u still holds
in this setting. We present a core version of the theorem already in the next section.
It comes with the introduction of some necessary notation but we tried to keep
things simple to give the reader a first flavor of our results. Once the strategy
is in place, we discuss various consequences (Section 5), ways to generalize it
(Sections 4 and 7) as well as self-improving properties for the right-hand side of
the reverse Hölder inequality with tail (Section 6). We aim at covering all the
aspects that usually arise from applications. We also illustrate our main result by
an application to regularity of solutions of a fractional elliptic equation different
from the ones treated in [5, 19, 25] in Section 9.

The context of our work is the following. Gehring’s lemma in a metric space
endowed with a doubling measure was proved in [29]. See also the book [7].
By [21], every quasi-metric space carries a compatible metric structure so that
Gehring’s lemma also holds in that setting. However, in the case of homogeneous
reverse Hölder inequalities, a very clean argument using self-improving properties
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of A∞ weights was used in [2] to give an intrinsically quasi-metric proof (see also
the very closely related work [16]). We do not attempt to review the literature
in the Euclidean n-space, but we refer to the excellent survey in [17] instead. In
addition, we want to point out the recent paper on Gehring’s lemma for fractional
Sobolev spaces [19]. That paper studies fractional equations, whose solutions are
self-improving in terms of both integrability and differentiability. Such phenomena
are different from what we encounter here, but we found the technical part of [19]
very inspiring.

Among generalizations, we mention that the tails may be replaced by some
supremum of averages taken over balls larger than the original ball on the left hand
side and/or that one may work on open subsets. In this way, our methods can also
be applied to obtain a generalization of A∞ weights: In [2], a larger class of weak
A∞ weights, generalizing the one considered in [9, 28] was defined and their higher
(than one) integrability was proved (in spaces of homogeneous type). This class
of weights, larger than the usual A∞ Muckenhoupt class, is defined by allowing a
uniform dilation of the ball in the right hand side compared to the one on the left
hand side. Here, we show that, in fact, the dilation may be arbitrary (depending on
the ball) provided it is finite. Another family of weights covered by our methods is
the Cp class studied in [22, 24]. Precise definitions are given in Section 8.

Acknowledgment. We thank Tuomas Hytönen for an enlightening discussion on
the topics of this work that led to the results extending the A∞ class. We also thank
Carlos Pérez for pointing out the connection to the Cp class.

2. Metric spaces

A space of homogeneous type (X, d, µ) is a triple consisting of a set X, a function
d : X × X → [0,∞) satisfying the quasi-distance axioms

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X, and

(iii) d(x, z) ≤ K(d(x, y) + d(y, z)) for a certain K ≥ 1 and all x, y, z ∈ X;

and a Borel measure µ that is doubling in the sense that

0 < µ(B(x, 2r)) ≤ Cd µ(B(x, r)) < ∞

holds for a certain Cd and all radii r > 0 and centers x ∈ X. If the constant K
appearing in the triangle inequality (iii) equals 1, we call (X, d, µ) a metric space
with doubling measure. The topology is understood to be the one generated by
the quasi-metric balls. For simplicity, we impose the additional assumption that all
quasi-metric balls are Borel measurable. In general, they can even fail to be open.

The doubling condition implies there is C > 0 so that for some D > 0,

(2.1)
µ(B(x,R))
µ(B(x, r))

≤ C
(

R
r

)D

for all x ∈ X and R ≥ r > 0. We can always take D = log2 Cd. In the following
we call this number the homogeneous dimension (although there might be smaller
positive numbers D than log2 Cd for which this inequality holds: our proofs work
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with any such D). For all these basic facts on analysis in metric spaces, we refer to
the book [7].

The following theorem is concerned with the special case of metric spaces, but it
has an analogue in the general case of quasi-metric spaces, see Theorem 3.2 below.

Theorem 2.2. Let (X, d, µ) be a metric space with doubling measure. Let s, β > 0
and q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D is any number
satisfying (2.1). Let N > 1 and let (αk)k≥0 be a non-increasing sequence of positive
numbers with α :=

∑
k αk < ∞, and define

(2.3) au(B) :=
∞∑

k=0

αk

?
Nk B

u dµ

for u ≥ 0 locally integrable and B a metric ball.
Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1

loc(X, dµ) and A ≥ 0 is a constant
such that for every ball B = B(x,R),

(2.4)
(?

B
uq dµ

)1/q

≤ Aau(B) + (a f q(B))1/q + Rβ(ahs(B))1/s.

Then there exists p > q depending on α0, α, A, q, s,N and Cd such that for all balls
B, (?

B
up dµ

)1/p

. au(NB) + (a f q(NB))1/q + Rβ(ahs(NB))1/s

+

(?
NB

f p dµ
)1/p

+ Rβ
(?

NB
hps/q dµ

)q/sp

,

(2.5)

with implicit constant depending on α0, α, A, q, s, β,N and Cd.

Remark 2.6. If one assumes the sequence (αk)k≥0 is finite, the functional is com-
parable to one single average on Nk0 B for some k0. This gives a proof of the
classical Gehring lemma with dilated balls. Note the shift from Nk0 B to Nk0+1B
in the conclusion. But well-known additional covering arguments show that the
dilation factor Nk0+1 can be changed to any number larger than 1. If one assumes

(2.7) ∃C < ∞ : ∀k ≥ 0 αk ≤ Cαk+1,

then it follows that au(NB) ≤ Cau(B) for all u ≥ 0 and all balls B. In that case,
one can replace NB by B in the right hand side of (2.5). Geometric sequences,
which are typical in application, do satisfy this condition but this rules out finite
sequences. Finally, note that the higher integrability of u on B depends only on the
higher integrability of f and h on the first dilated ball NB.

Proof. We prove (2.5) for B = B(x0,R) with x0 ∈ X and R > 0. Throughout, we
reserve the symbol C for a constant that depends at most on α0, α, A, q, s, β,N and
Cd but that may vary from line to line.
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Step 1. Preparation. Having fixed B, we set gq := Aq
Rhs

1NB with AR a constant
so that for any ball Br with radius r contained in NB, we have

(2.8) rβ
(?

Br

hs dµ
)1/s

≤

(?
Br

gq dµ
)1/q

and

(2.9)
(?

NB
gq dµ

)1/q

≤ C1(NR)β
(?

NB
hs dµ

)1/s

for some C1 depending only on the doubling condition, s and q. Indeed, write
Br = B(x, r). As x ∈ NB, we have NB = B(x0,NR) ⊂ B(x, 2NR), hence

µ(NB)
µ(Br)

≤
µ(B(x, 2NR))
µ(B(x, r))

≤ C0

(
2NR

r

)D

≤ C02D
(

NR
r

)β(1/s−1/q)−1

where C0 depends only on the doubling condition. Unraveling this inequality and
setting C1 = (C02D)1/q−1/s yield

rβµ(Br)1/q−1/s ≤ C1(NR)βµ(NB)1/q−1/s.

Hence, as q > s,

rβµ(Br)1/q−1/s
(∫

Br

hs dµ
)1/s−1/q

≤ C1(NR)βµ(NB)1/q−1/s
(∫

NB
hs dµ

)1/s−1/q

so that

rβ
(?

Br

hs dµ
)1/s

= rβ
(?

Br

hs dµ
)1/s−1/q(?

Br

hs dµ
)1/q

≤ C1(NR)β
(?

NB
hs dµ

)1/s−1/q(?
Br

hs dµ
)1/q

.

Thus, we set

AR := C1(NR)β
(?

NB
hs dµ

)1/s−1/q

(2.10)

and (2.8) is proved. Observing that if Br = NB we have equalities with constant 1
in the inequalities above, the constant C1 works for (2.9).

Step 2. Local setup. For ` ∈ N, fix r0 and ρ0 real numbers satisfying R ≤ r0 <
ρ0 ≤ NR with N`(ρ0−r0) = R. For x ∈ B(x0, r0), we have that NkN`(ρ0−r0) = NkR
for k ≥ 0 so

B(x,Nk(ρ0 − r0)) ⊂ B(x0,Nk+1R) ⊂ B(x,Nk+`+ j(ρ0 − r0)),
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where j = 2 when N ≥ 2 and j = d(log2 N)−1 + 1e when 1 < N < 2, and
consequently for any positive µ-measurable function v,

?
B(x,Nk(ρ0−r0))

v dµ =
1

µ(B(x,Nk(ρ0 − r0)))

∫
B(x,Nk(ρ0−r0))

v dµ

≤
µ(B(x,Nk+`+ j(ρ0 − r0)))
µ(B(x,Nk(ρ0 − r0)))

1
B(x0,Nk+1R)

∫
B(x0,Nk+1R)

v dµ

≤ C`+ j
N

?
B(x0,Nk+1R)

v dµ,

(2.11)

where we used (2.1) in the last line. The constant CN ≥ 1 only depends on the
doubling constant Cd and the number N.

Step 3. Beginning of the estimate. For m > 0, set um := min{u,m}, Br0 :=
B(x0, r0) and Bρ0 := B(x0, ρ0). Using the Lebesgue-Stieltjes formulation of the
integral we have∫

Br0

up−q
m uq dµ = (p − q)

∫ m

0
λp−q−1uq(Br0 ∩ {u > λ}) dλ

= (p − q)
∫ λ0

0
λp−q−1uq(Br0 ∩ {u > λ}) dλ

+ (p − q)
∫ m

λ0

λp−q−1uq(Br0 ∩ {u > λ}) dλ

≤ λ
p−q
0 uq(Br0) + (p − q)

∫ m

λ0

λp−q−1uq(Br0 ∩ {u > λ}) dλ

=: I + II,

(2.12)

where uq(A) =
∫
A

uq dµ for any measurable setA ⊆ X and λ0 is a constant chosen
below.

Step 4. Choice of the threshold λ0. We define three functions

U(x, r) :=
?

B(x,r)
u dµ, F(x, r) :=

(?
B(x,r)

f q dµ
)1/q

, G(x, r) :=
(?

B(x,r)
gq dµ

)1/q

and for λ > λ0, we denote the relevant level sets by

Uλ := Br0 ∩ {u > λ}, Fλ := Br0 ∩ { f > λ}, Gλ := Br0 ∩ {g > λ}.

It follows from (2.11) with k = 0 that for x ∈ Br0 ,

U(x, ρ0 − r0) =

?
B(x,ρ0−r0)

u dµ ≤
C`+ j

N

α0
au(NB)

and one has the same observation for F with f q. For the last term, we use (2.11) in
conjunction with (2.9) to obtain?

B(x,ρ0−r0)
gq dµ ≤ C`+ j

N

?
NB

gq dµ ≤ C`+ j
N Cq

1(NR)βq
(?

NB
hs dµ

)q/s
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≤
C(`+ j)q/s

N

α
q/s
0

Cq
1(NR)βqahs(NB)q/s,

where we used CN ≥ 1 and q/s > 1. Consequently, we choose

λ0 :=
C`+ j

N

α0
au(NB) +

(
C`+ j

N

α0
a f q(NB)

)1/q

+ C1(NR)β
(

C`+ j
N

α0
ahs(NB)

)1/s

.

Finally, set

Ωλ :=
{

x ∈ Uλ ∪ Fλ ∪Gλ : x is a Lebesgue point for u, f q and gq
}
.

Step 5. Estimate of the measure of Uλ. We begin to estimate II in (2.12) so we
assume λ > λ0. For x ∈ Br0 ,

(2.13) U(x, ρ0 − r0) + F(x, ρ0 − r0) + G(x, ρ0 − r0) ≤ λ0 < λ.

On the other hand, by definition of Uλ, Fλ and Gλ, if x ∈ Ωλ then

lim
r→0

U(x, r) + F(x, r) + G(x, r) > λ

Thus for x ∈ Ωλ we can define the stopping time radius

rx := sup
{

N−m(ρ0 − r0) : m ∈ N

and U(x,N−m(ρ0 − r0)) + F(x,N−m(ρ0 − r0)) + G(x,N−m(ρ0 − r0)) > λ
}
.

We remark that (2.13) implies that rx < ρ0 − r0. Of course Ωλ ⊂ ∪x∈ΩλB(x, rx/5).
By the Vitali Covering Lemma (5r-Covering Lemma) there exists a countable col-
lection of balls {B(xi, ri)} = {Bi} with ri = rxi such that { 15 Bi} are pairwise disjoint
and Ωλ ⊂ ∪iBi. Let mi ≥ 1 such that Nmiri = ρ0 − r0.

We make three observations:

(i) For each i, either
>

Bi
u dµ > λ

3 , (
>

Bi
f q dµ)1/q > λ

3 , or (
>

Bi
gq dµ)1/q > λ

3 .
(ii) The radius of each Bi is less than ρ0 − r0 and xi ∈ Br0 so Bi ⊂ Bρ0 .

(iii) For 0 ≤ k < mi, Nkri = N−(mi−k)(ρ0 − r0) < ρ0 − r0, so Nkri is ‘above’ or at
the stopping time and?

Nk Bi

u dµ +

(?
Nk Bi

f q dµ
)1/q

+

(?
Nk Bi

gq dµ
)1/q

≤ Cλ,

where C shows up since we have used doubling once in the case k = 0.

Using that µ((Uλ ∪ Fλ ∪Gλ) \Ωλ) = 0, Ωλ ⊂ ∪iBi and (2.4), we obtain

uq(Uλ) ≤ uq(Uλ ∪ Fλ ∪Gλ) ≤
∑

i

uq(Bi)

≤
∑

i

µ(Bi)[Aau(Bi) + (a f q(Bi))1/q + rβi (ahs(Bi))1/s]q.
(2.14)
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Then using mi ≥ 1,
∑

k αk = α and observation (iii) we obtain

a f q(Bi) =

∞∑
k=0

αk

?
Nk Bi

f q dµ =

mi−1∑
k=0

αk

?
Nk Bi

f q dµ +

∞∑
k=mi

αk

?
Nk Bi

f q dµ

≤ Cqαλq +

∞∑
k=0

αk+mi

?
B(xi,Nk(ρ0−r0))

f q dµ,

(2.15)

where we simply re-indexed the second sum and used that Nmiri = ρ0 − r0. Now
we use (2.11) and that αk+mi ≤ αk to deduce

a f q(Bi) ≤ Cqαλq + C`+ j
N

∞∑
k=0

αk

?
Nk+1B

f q dµ

≤ Cqαλq + C`+ j
N a f q(NB) ≤ Cqαλq + α0λ

q
0

≤ Cλq,

where we used the definition of λ0 in Step 4 and λ > λ0. Similarly, au(Bi) ≤ Cλ.
For hs, using mi ≥ 1, we obtain

(ri)βsahs(Bi)

=

∞∑
k=0

αk(ri)βs
?

Nk Bi

hs dµ

=

mi−1∑
k=0

αk(ri)βs
?

Nk Bi

hs dµ +

∞∑
k=mi

αk(ri)βs
?

Nk Bi

hs dµ

≤

mi−1∑
k=0

αk

(?
Nk Bi

gq dµ
)s/q

+ (ri)βs
∞∑

k=0

αk+mi

?
B(xi,Nk(ρ0−r0))

hs dµ,

where we used (2.8) and NkBi ⊂ NB when k < mi for the first sum, re-indexed the
second sum and used that Nmiri = ρ0 − r0. With

∑
k αk = α and observation (iii)

for the first sum and αk+mi ≤ αk along with (2.11) for the second one, we deduce

(ri)βsahs(Bi) ≤ Csαλs + C`+ j
N (NR)βs

∞∑
k=0

αk

?
Nk+1B

hs dµ

≤ Csαλs + C`+ j
N (NR)βsahs(NB) ≤ Csαλs + α0λ

s
0C−s

1

≤ Cλs,

where we used λ > λ0. Combining the above estimates with (2.14) we obtain

(2.16) uq(Uλ) ≤ Cλq
∑

i

µ(Bi) ≤ CC3
dλ

q
∑

i

µ
( 1

5 Bi
)
≤ CC3

dλ
qµ (∪iBi)

where we used that { 15 Bi} are pairwise disjoint. Now we use (i) and (ii) to conclude
that

(2.17) ∪i Bi ⊂ {M(u1Bρ0
) > λ/3}∪{M( f q

1Bρ0
) > (λ/3)q}∪{M(gq

1Bρ0
) > (λ/3)q},

where M is the uncentered maximal function.
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Step 6. Estimate of II and I. Plugging (2.16) and (2.17) into II we obtain

II = (p − q)
∫ m

λ0

λp−q−1uq(Uλ) dλ

≤ C(p − q)
∫ m

0
λp−1µ({M(u1Bρ0

) > λ/3}) dλ

+ C(p − q)
∫ m

0
λp−1µ({M( f q

1Bρ0
) > (λ/3)q}) dλ

+ C(p − q)
∫ m

0
λp−1µ({M(gq

1Bρ0
) > (λ/3)q}) dλ

=: II1 + II2 + II3.

We handle II2 and II3 in the same way. Using the Hardy-Littlewood maximal
theorem for spaces of homogeneous type and recalling that the Lp/q → Lp/q oper-
ator norm of the maximal function is bounded by C p/q

(p/q)−1 , we obtain

II3 = C(p − q)
∫ m

0
λp−1µ({M(gq

1Bρ0
) > (λ/3)q)}) dλ

≤ C
p − q

p

∫
X

(M(gq
1Bρ0

))p/q dµ

≤ C
( p

p − q

)p/q−1
∫

NB
gp dµ,

where we used Bρ0 ⊂ NB in the last step. Similarly we have that

II2 ≤ C
( p

p − q

)p/q−1
∫

NB
f p dµ.

To handle II1 we notice that

{M(u1Bρ0
) > λ/3} ⊂ {M(u1Bρ0∩{u>λ/6}) > λ/6}.

From this estimate and the weak type (1,1) bound for the Hardy-Littlewood maxi-
mal function for spaces of homogeneous type we have

µ({M(u1Bρ0
) > λ/3}) ≤

C
λ

∫
Bρ0∩{u>λ/6}

u dµ.

Using this bound in II1 yields

II1 ≤ C(p − q)
∫ m

0
λp−2

∫
Bρ0∩{u>λ/6}

u dµ dλ

= C(p − q)
∫

Bρ0

u
∫ max{m,6u}

0
λp−2 dλ dµ

= C6p−1 p − q
p − 1

∫
Bρ0

up−1
m/6u dµ

≤ C6p−1 p − q
p − 1

∫
Bρ0

up−q
m uq dµ,

(2.18)
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and we note that we can make the constant in front of the integral arbitrarily small
by choice of p > q. Combining our estimates for II1, II2 and II3 we obtain for any
p ∈ (q, 2q),

(2.19) II ≤ εp

∫
Bρ0

up−q
m uq dµ + Cε−1

p

∫
NB

f p dµ + Cε−1
p

∫
NB

gp dµ,

where εp := C(p − q).
Now we bound I. Note that B ⊂ Br0 ⊂ NB. By definition of λ0 and using (2.4),

I ≤ λp−q
0 uq(NB)

≤ λ
p−q
0 µ(NB)

(
Aau(NB) + (a f q(NB))1/q + (NR)β(ahs(NB))1/s)q

≤ C(C̃`+ j
N )p−qµ(NB)αp(NB),

(2.20)

where we denoted αp(NB) :=
(
au(NB) + (a f q(NB))1/q + (NR)β(ahs(NB))1/s

)p and
put C̃N := max(CN ,C

1/s
N ) ≥ 1 on recalling that we allow for s < 1.

Step 7. Conclusion. Setting

ϕ(t) :=
∫

B(x0,t)
up−q

m uq dµ

and combining estimates (2.12), (2.19) and (2.20), we may summarize our esti-
mates as

ϕ(r0) ≤ Cµ(NB)αp(NB)C̃(p−q)(`+ j)
N + εpϕ(ρ0) + Cε−1

p

∫
NB

f p dµ + Cε−1
p

∫
NB

gp dµ,

whenever R ≤ r0 < ρ0 ≤ NR and N`(ρ0 − r0) = R and where j depends at most on
N, see Step 2. For notational convenience set

M1 := Cµ(NB)αp(NB),

M2 := C
∫

NB
f p dµ + C

∫
NB

gp dµ,

so that

ϕ(r0) ≤ M1C̃(p−q)`
N + εpϕ(ρ0) + ε−1

p M2.(2.21)

Now, we set up an iteration scheme to conclude: We fix K ∈ N large enough to
guarantee

∑∞
`=0 N−K` ≤ N, initiate with t0 := R and put t`+1 := t` + N−K(`+1)R for

` = 0, 1, . . . . Then R ≤ t` < t`+1 ≤ NR and NK(`+1)(t`+1 − t`) = R so that

ϕ(t`) ≤ M1C̃(p−q)K(`+1)
N + ε−1

p M2 + εpϕ(t`+1).(2.22)

Iterating the above inequality we obtain for any `0 ∈ N

ϕ(t0) ≤ M1

`0∑
`=1

C̃(p−q)K`
N · ε`−1

p + M2

`0∑
`=1

ε`−2
p + ε`0

p ϕ(t`0)

≤ CM1 + CM2 + Cε`0
p ϕ(NR)

provided that εp ≤ (2C̃(p−q)K
N )−1 ≤ 1/2 by now fixing p ∈ (q, 2q) with p − q small

enough.
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Noting that ϕ(NR) < ∞ (by truncation of u) and t0 = R, we may let `0 → ∞

above to conclude
ϕ(R) ≤ CM1 + CM2.

Upon replacing M1,M2, αp(NB) and ϕ(R) we obtain∫
B

up−q
m uq dµ ≤ Cµ(NB)

(
au(NB) + (a f q(NB))1/q + (NR)β(ahs(NB))1/s)p

+ C
∫

NB
f p dµ + C

∫
NB

gp dµ.
(2.23)

Dividing both sides of the inequality by µ(B), taking p−th roots and letting m→ ∞
we obtain (2.5) except for the presence of the term (

>
NB gp dµ)1/p. We handle this

term using the definition of g in terms of h and the definition of AR in (2.10),
obtaining(?

NB
gp dµ

)1/p

= AR

(?
NB

hps/q dµ
)1/p

= C1(NR)β
(?

NB
hs dµ

)1/s−1/q(?
NB

hps/q dµ
)1/p

≤ C1(NR)β
(?

NB
hps/q dµ

)q/ps−1/p(?
NB

hps/q dµ
)1/p

= C1(NR)β
(?

NB
hps/q dµ

)q/sp

. �

3. Quasi-metric spaces

In Theorem 2.2, it is possible to relax the structural assumption of (X, d, µ) being
a metric space by allowing the constant K in the quasi triangle inequality to take
values greater than one. The proof of Theorem 2.2 does not carry over as such (or
rather it becomes very technical) but we can take advantage of the fact that every
quasi-metric (K > 1) is equivalent to a power of a proper metric (K = 1). See
[1, 21, 23]. The following proposition is from [23].

Proposition 3.1. Let (X, ρ) be a quasi-metric space and let 0 < δ ≤ 1 be given by
(2K)δ = 2. Then there is another quasi-metric ρ̃ such that ρ̃δ is a metric and for all
x, y ∈ X,

E−1ρ(x, y) ≤ ρ̃(x, y) ≤ Eρ(x, y),

where E ≥ 1 is a constant only depending on the quasi triangle inequality constant
of ρ.

With Proposition 3.1 at hand, the following theorem is a straightforward conse-
quence of its metric counterpart. For the reader’s convenience and since akin re-
ductions to the metric case will be used at other occasions in this paper, we present
the full details here.

Theorem 3.2. Let (X, ρ, µ) be a space of homogeneous type. Let s, β > 0 and
q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D is any number satisfying
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(2.1). Let N > 1 and (αk)k≥0 be a non-increasing sequence of positive numbers
with α :=

∑
k αk < ∞. Define

au(B) :=
∞∑

k=0

αk

?
Nk B

u dµ

for u ≥ 0 locally integrable and B a quasi-metric ball.
Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1

loc(X, dµ) and there exists a constant
A such that for every ball B = B(x,R),

(3.3)
(?

B
uq dµ

)1/q

≤ Aau(B) + (a f q(B))1/q + Rβ(ahs(B))1/s.

Then there exists p > q depending on α0, α, A, q, s,K,N and Cd such that for all
balls B,(?

B
up dµ

)1/p

. ãu(NB) + (ã f q(NB))1/q + Rβ(ãhs(NB))1/s

+

(?
NE2/δB

f p dµ
)1/p

+ Rβ
(?

NE2/δB
hps/q dµ

)q/sp

.

(3.4)

Here, ãu is obtained from au by replacing the sequence αk with αmax(0,k− j0− j1),
where j0 and j1 are the minimal integers with E2 ≤ N j0 and E2/δ ≤ N j1 and
E, δ are the constants from Proposition 3.1. The implicit constant depends on
α0, α, A, q, s, β,K,N and Cd.

Remark 3.5. The same remarks as after Theorem 2.2 apply.

Proof. Let d be the metric so that d1/δ with δ ∈ (0, 1] is equivalent to ρ, provided by
Proposition 3.1. Then there is a constant E > 1 only depending on the quasi-metric
constant K of ρ so that

Bρ(x, r) = {z : ρ(z, x) < r} ⊆ {z : E−1d1/δ(z, x) < r} = Bd(x, (Er)δ)

and

Bρ(x, r) = {z : ρ(z, x) < r} ⊇ {z : Ed1/δ(z, x) < r} = Bd(x, (E−1r)δ).

In total Bd(x, (E−1r)δ) ⊆ Bρ(x, r) ⊆ Bd(x, (Er)δ). Consequently µ is doubling with
respect to the metric d, and we also see that the hypothesis (3.3) implies that(?

Bd(x,(E−1R)δ)
uq dµ

)1/q

.
∞∑

k=0

αk

?
NδkEδBd(x,Rδ)

u dµ

+

(
∞∑

k=0

αk

?
NδkEδBd(x,Rδ)

f q dµ

)1/q

+ Rβ
(
∞∑

k=0

αk

?
NδkEδBd(x,Rδ)

hs dµ

)1/s



GEHRING’S LEMMA WITH TAILS 13

holds for all x ∈ X and R > 0. Setting R′ := (E−1R)δ, we can rewrite this as(?
Bd(x,R′)

uq dµ
)1/q

.
∞∑

k=0

αk

?
Nδk Bd(x,E2δR′)

u dµ

+

(
∞∑

k=0

αk

?
Nδk Bd(x,E2δR′)

f q dµ

)1/q

+ (R′)β/δ
(
∞∑

k=0

αk

?
Nδk Bd(x,E2δR′)

hs dµ

)1/s

.

We set N′ := Nδ. Then j0 is the smallest positive integer so that E2δ ≤ (N′) j0 .
We note that

∞∑
k=0

αk

?
(N′)k Bd(x,E2δR′)

u dµ .
∞∑

k=0

αk

?
(N′)k+ j0 Bd(x,R′)

u dµ ≤
∞∑

k=0

α′k

?
(N′)k Bd(x,R′)

udµ,

where α′k := αmax(k− j0,0). Analogous estimates hold with f q and hs in place of u.
Finally, we set β′ := β/δ so that (2.4) is satisfied in the metric space (X, d, µ) with
(α′k)k, β

′,N′ replacing (αk)k, β,N there. We also have control over the homoge-
neous dimension of (X, d, µ). Indeed, for x ∈ X and R > r, we see that ER > E−1r
and therefore

µ(Bd(x,Rδ))
µ(Bd(x, rδ))

≤
µ(Bρ(x, ER))
µ(Bρ(x, E−1r))

.

(
E2R

r

)D

,

where D is a number satisfying (2.1) for (X, ρ, µ).
It follows that D′ = Dδ−1 satisfies (2.1) for (X, d, µ). As a consequence, β′ =

β/δ ≥ D′(1/s − 1/q), and we can apply Theorem 2.2.
We obtain(?

Bd
up dµ

)1/p

.
∞∑

k=0

α′k

?
(N′)k+1Bd

u dµ +

(
∞∑

k=0

α′k

?
(N′)k+1Bd

f q dµ

)1/q

+ (R′)β
′

(
∞∑

k=0

α′k

?
(N′)k+1Bd

hs dµ

)1/s

+

(?
N′Bd

f p dµ
)1/p

+ (R′)β
′

(?
N′Bd

hps/q dµ
)q/sp

for all balls Bd with radius R′. Note that R′ is arbitrary. Comparing the d-balls
with ρ-balls once again, we see that Bρ(x, (E−1r)1/δ) ⊂ Bd(x, r) ⊂ Bρ(x, (Er)1/δ).
Arguing as in the beginning of the proof and denoting R = (E−1R′)1/δ, we can get
back to an inequality in the quasi-metric space (X, ρ, µ): We only need to recall
that N′ = Nδ, that j1 is the smallest integer so that E2/δ ≤ N j1 and set α′′k :=
α′max(0,k− j1) = αmax(0,k− j0− j1). This together with the doubling condition implies
that (3.4) holds. �
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4. Variants

One might wonder whether one can use in the proof of Theorem 2.2 the frac-
tional maximal operator Mβs where

Mβv(x) := sup
B3x

r(B)β
?

B
|v|, x ∈ X, β > 0,

to control the terms stemming from hs more efficiently. (Here r(B) denotes the
radius of B.) However, this operator has no boundedness property in this generality
and one has to assume volume lower bound in the following sense:

(4.1) ∃Q > 0 : ∀ balls B, µ(B) & r(B)Q.

Lemma 4.2. Let (X, ρ, µ) be a space of homogeneous type. Assume that the volume
has a lower bound with exponent Q > 0. Then Mβ is bounded from Lp(X) to Lp∗(X)
when 1 < p and 0 < β < Q/p with p∗ =

pQ
Q−βp . For p = 1, it is weak type (1, 1∗).

Proof. See e.g. Section 2 in [15] for a simple proof on metric spaces with doubling
measure that applies verbatim in the quasi-metric setting. In fact, the result fol-
lows from the inequality Mβv(x) . Mv(x)1−β/Q‖v‖β/Q1 using the lower bound, the
uncentered maximal function M and interpolation. �

We obtain the following variant in the presence of a volume lower bound.

Theorem 4.3. Let (X, ρ, µ) be a space of homogeneous type having a volume lower
bound with exponent Q. Let s > 0, β ≥ 0 and q > 1 be such that s < q and
β ≤ Q(1/s − 1/q). Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1

loc(X, dµ) and (3.3)
holds. Then there exists p > q such that (3.4) holds with Rβ(

>
NE2/δB hps/q dµ)q/sp

replaced by µ(B)β/Q(
>

NE2/δB hp∗ dµ)1/p∗ where p∗ =
pQ

Q+βp .

Proof. It suffices to give a proof for (X, ρ, µ) a metric space with doubling measure.
Then we can apply the general reduction argument from the previous section. In
this regard, we note that if ρ is equivalent to d1/δ, then d has lower volume bound
with exponent Q′ := Q/δ.

For any p > q set σ := pQ
s(Q+βp) =

p∗
s . Note the condition βqs ≤ Q(q − s) ensures

for all p > q the bound βps < Q(p − s). Hence σ > 1. Now we indicate the
changes in the proof of Theorem 2.2.

One does not introduce the function g in Step 1 and the function G in Step 4
becomes H(x, t) = rβ

( >
B(x,t) hs dµ

)1/s. The choice of λ0 is similar and then we can
follow the argument until we need to estimate II3 in Step 6. Here we now have

II3 = C(p − q)
∫ m

0
λp−1µ({Mβs(hs

1Bρ0
) > (λ/3)s}) dλ

.

∫
X

(Mβs(hs
1Bρ0

))p/s dµ

.

(∫
NB

hsσ dµ
)p/(sσ)

=

(∫
NB

hp∗ dµ
)p/p∗



GEHRING’S LEMMA WITH TAILS 15

by definition of σ and we used the Lσ(X) → Lp/s(X) boundedness of Mβs from
Lemma 4.2. Recall near then end of Theorem 2.2 we divide by µ(B) then take p-th
roots. Thus, the power of µ(B) in front of (

>
NB hp∗ dµ)1/p∗ comes from the equality

µ(B)−1
(∫

B
hp∗ dµ

) p
p∗

= µ(B)βp/Q
(?

B
hp∗ dµ

) p
p∗

.

�

Remark 4.4. Assume β = 1, s = 2n
n+2 and q = 2 in the Euclidean space Rn with

Lebesgue measure, which is typical of elliptic equations. Then the Lebesgue ex-
ponent for h in Theorem 3.2 is ps

q =
pn

n+2 while above we get p∗ =
pn

n+p , which
is smaller. If β = 0, then p∗ = p. Of course the interest is to have β as large as
possible so that p∗ is as small as possible, but in applications to PDEs the value of
β is usually not free to choose but determined by scaling arguments. Finally note
that the admissible ranges for β in the two theorems are almost complementary in
this example: Indeed, since D = Q = n, we have β ≥ n(1/s − 1/q) in Theorem 2.2
and β ≤ n(1/s − 1/q) in Theorem 3.2.

Another variant is to replace powers of the radius by powers of the volume al-
ready in the assumption and then no further hypothesis on the measure is required.

Theorem 4.5. Let (X, ρ, µ) be a space of homogeneous type. Let s > 0, γ ≥ 0 and
q > 1 be such that s < q and γ ≤ 1/s−1/q. Suppose that u, f , h ≥ 0 with uq, f q, hs ∈

L1
loc(X, dµ) and (3.3) holds with Rβ(ahs(B))1/s replaced by µ(B)γ(ahs(B))1/s. Then

there exists p > q such that (3.4) holds with Rβ(
>

NE2/δB hps/q dµ)q/sp replaced with
µ(B)γ(

>
NE2/δB hsσ dµ)1/sσ, where sσ =

p
1+γp .

Remark 4.6. Note that one can take γ = 0 in which case sσ = p. In accordance
with Remark 4.4 we note that the higher γ the smaller the integrability needed on
h.

Proof. Once again it suffices to treat the metric case. The modification to the proof
of Theorem 2.2 are the same as in the above argument, except for now using instead
of Mβs the modified fractional maximal operator M̃γs, 0 ≤ γ < 1, where

M̃γsv(x) := sup
B3x

(µ(B))γs
?

B
|v|, x ∈ X.

It maps Lσ(X) into L
σ

1−γsσ (X) when 1 < σ and γsσ < 1, see Remark 2.4 in [15]. �

5. Global integrability

A typical application of Gehring’s lemma is to prove higher integrability locally
and globally. To extract a conclusion at the level of global spaces Lp(X), we need
some further hypotheses. We say that the space of homogeneous type (X, ρ, µ) is
φ-regular if it satisfies

φ(r) ∼ µ(B(x, r))
for all x ∈ X and r > 0, where φ : (0,∞) → (0,∞) is a non-decreasing function
with φ(r) > 0 and φ(2r) ∼ φ(r) for r > 0. An important subclass of such spaces
are the Ahlfors–David regular metric spaces where φ(r) = rQ for some Q > 0. The
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case of local and global different dimensions which occur on connected nilpotent
Lie groups (see [27]) is also covered with φ(r) ∼ rd for r ≤ 1 and φ(r) ∼ rD for
r ≥ 1.

Theorem 5.1. Let (X, ρ, µ) be a φ-regular space of homogeneous type. In addition
to assumptions of Theorem 3.2, suppose that uq, f q, hs ∈ L1(X, dµ). Then

‖u‖Lp(X) . ‖u‖Lq(X) + ‖ f ‖Lp(X) + ‖h‖Lps/q(X)

with the implicit constant depending on u, f , h only through the parameters quan-
tified in the assumption.

Proof. For the sake of simplicity let us assume N = 2 in the statement of Theo-
rem 3.2. We shall see in Section 6.2 below that upon changing the sequence (αk)k
we can do so without loss of generality. Alternatively, we could also adapt the
following argument to cover the general case.

Take any R > 0 and choose a maximal R separated set of points {xi}, that is,
ρ(xi, x j) ≥ R for all i , j and for every y ∈ X there exists xi such that ρ(y, xi) < R.
Since we assume that X is doubling, such a collection necessarily has only finitely
many members in any fixed ball, hence, it is countable. The balls Bi := B(xi,R)
cover X, and there is C only depending on K and Cd such that∑

i

1Bi(x) ≤ C

for every x ∈ X. Also the balls (2K)−1Bi are disjoint. Further, we have

(5.2)
∑

i

12k Bi
(x) ∼

φ(2kR)
φ(R)

for every x ∈ X and every integer k ≥ 1. Indeed, fix k ≥ 1 and x ∈ X. We can
assume that 2k−1 ≥ K, since otherwise we can just use that the left- and right-hand
sides are comparable to constants depending only on K, Cd and φ. Let Ix be the set
of i giving a non zero contribution, and Nx be the cardinal of Ix, that is, the value
of the sum. Clearly, Nx is not exceeding the number of i for which ρ(x, xi) ≤ 2kR.
As the balls (2K)−1Bi, i ∈ Ix, are disjoint and contained in B(x,K(2k + (2K)−1)R),
we have

φ(R/2K)Nx .
∑
i∈Ix

µ((2K)−1Bi) . µ(B(x,K(2k + (2K)−1)R)) . φ(K2k+1R).

Also the balls Bi, i ∈ Ix, cover B(x, (K−12k − 1)R), hence

φ(R/2K)Nx &
∑
i∈Ix

µ((2K)−1Bi) &
∑
i∈Ix

µ(Bi) & µ(B(x, (K−12k − 1)R))

& φ((K−12k − 1)R)≥ φ(K−12k−1R)

by the assumption on k. The claim follows using the comparability φ(K2k+1R) ∼
φ(K−12k−1R) ∼ φ(2kR) and φ(R/2K) ∼ φ(R).
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Applying Theorem 3.2 in each Bi and denoting by α̃k := αmax(0,k− j0− j1) the sum-
mable sequence appearing in the conclusion of that theorem, we see that

φ(R)−1
∫

X
up dµ .

∑
i

?
Bi

up dµ .
∑

i

(
ãu(2Bi)p + ã f p(2Bi) + Rβãhps/q(2Bi)q/s

)
=: I + II + III,

where we used φ-regularity, Hölder’s inequality ã f q(2Bi)1/q . ã f p(2Bi)1/p and ab-
sorbed the term with f p in (2.5) in ã f p(2Bi) and similarly for the terms with h. Let
us treat III: From the continuous embedding `1(N) ⊂ `q/s(N) and (5.2) we obtain∑

i

ãhps/q(2Bi)q/s ≤
∑

i

( ∞∑
k=0

α̃k

?
2k+1Bi

hps/q dµ
)q/s

≤

(∑
i

∞∑
k=0

α̃k

?
2k+1Bi

hps/q dµ
)q/s

≤

( ∞∑
k=0

α̃k

∑
i

?
2k+1Bi

hps/q dµ
)q/s

.

( ∞∑
k=0

α̃k φ(2k+1R)−1
∫

X

∑
i

12k+1Bi
hps/q dµ

)q/s

.

(
α̃φ(R)−1

∫
X

hps/q dµ
)q/s

,

where α̃ :=
∑

k α̃k. Doing the same for I and II, implies

(5.3) ‖u‖Lp(X) . φ(R)1/p−1/q ‖u‖Lq(X) + ‖ f ‖Lp(X) + Rβφ(R)(1/p)−(q/sp) ‖h‖Lps/q(X) .

Note that since R is fixed (R = 1 for example), this concludes the proof. �

Remark 5.4. We note that the implicit constant in (5.3) does not depend on R. If
h = 0, then we may let R→ ∞ as p > q and obtain ‖u‖Lp(X) . ‖ f ‖Lp(X).

We have a global analogue of Theorem 4.3, which might be of independent
interest as it can be proved directly in the quasi-metric setting without recursing to
Section 3.

Theorem 5.5. Let (X, d, µ) be a space of homogeneous type having volume lower
bound with exponent Q. Let s > 0, β ≥ 0 and q > 1 be such that s < q and
β ≤ Q(1/s − 1/q). Suppose that uq, f q, hs ∈ L1(X, dµ) and that (3.3) holds. Then
there exists p > q such that

‖u‖Lp(X) . ‖ f ‖Lp(X) + ‖h‖Lp∗ (X) ,

where p∗ =
pQ

Q+βp . The implicit constant depends on u, f , h only through the pa-
rameters quantified in the assumption.

As for the choice of β, the same comments as in Remark 4.4 apply.

Proof. We indicate the modification to the argument of Theorem 2.2, which, as
said, works directly in the quasi-metric setting for this result. This is basically the
one in [3].
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There is no need for the first and second steps and the proof begins as in Step 3
without the balls Br0 and Bρ0 and we have∫

X
up−q

m uq dµ = (p − q)
∫ m

0
λp−q−1uq({u > λ}) dλ.

There is also no need for a threshold λ0 and we set for x ∈ X and r > 0,

U(x, r) := au(B(x, r)), F(x, r) := (a f q(B(x, r))1/q, H(x, r) := rβ(ahs(B(x, r)))1/s,

and for λ > 0, we denote Uλ := {u > λ}. Note that without loss of generality we
may assume α0 ≥ 1 right from the start as this only increases the right-hand side
of our hypothesis (3.3). Thus,

lim inf
r→0

(
U(x, r) + F(x, r) + H(x, r)

)
≥ u(x)

for almost every x because already the first term in au(B(x, r)) tends to α0u(x) ≥
u(x). We define Ũλ as the subset of Uλ where this holds. Note that

lim
r→∞

(
U(x, r) + F(x, r) + H(x, r)

)
= 0

for all x using the global assumptions on u, f , h. For the term with h, this follows
from H(x, r)s . rβs−Q

∫
X hs dµ, provided βs < Q, which holds under our assump-

tion. For x ∈ Ũλ, we can define the stopping time radius

rx := sup{r > 0 : U(x, r) + F(x, r) + H(x, r) > λ}.

Remark that supx∈Ũλ
rx < ∞. Indeed, at r = rx, U(x, r) + F(x, r) + H(x, r) = λ

and therefore either U(x, r) ≥ λ/3 or F(x, r) ≥ λ/3 or H(x, r) ≥ λ/3. In the last
case, we obtain rQ−βs(λ/3)s .

∫
X hs dµ < ∞. The other cases also give us a bound

on r. By the Vitali covering lemma, there exists a countable collection of balls
{B(xi, rxi)} = {Bi} such that 1

V Bi are pairwise disjoint and Ũλ ⊂ ∪iBi. (Usually,
V = 5 but our metric is only a quasi-metric in which case the Vitali covering
lemma still holds but with a larger constant V depending on K, and we apply it to
the covering Ũλ ⊂ ∪x∈Ũλ

B(x,V−1rx). A direct way to see this is by the technique
in Section 3.) Now, using the hypothesis for each Bi and pairwise disjointness of
the balls 1

V Bi,

uq(Ũλ) ≤
∑

i

uq(Bi) ≤
∑

i

µ(Bi)
(
Aau(Bi) + (a f q(Bi))1/q + rβi (ahs(Bi))1/s)q

=
∑

i

µ(Bi)λq . VD
∑

i

µ( 1
V Bi)λq . VDµ (∪iBi) λq,

where D is the homogeneous dimension. The stopping time implies

(5.6) ∪i Bi ⊂ {Mu ≥ λ/3} ∪ {M( f q) ≥ (λ/3)q} ∪ {Mβs(hs) ≥ (λ/3)s}.

From there the estimates are as in Step 6 and we use Lemma 4.2 for boundedness
of Mβs. We obtain

(5.7)
∫

X
up−q

m uq dµ ≤ C(p−q)
∫

X
up−1

m u dµ+Cp

∫
X

f p dµ+Cp

(∫
X

hp∗ dµ
)p/p∗

,

with p∗ as in the statement. As
∫

X up−1
m u dµ ≤

∫
X up−q

m uq dµ we can hide this term
if p − q > 0 is small enough and then let m→ ∞. �
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6. Self-improvement of the right hand side

We discuss here the change in the exponents in the tails on the right hand side
and subsequently the change of the dilation parameter N. Both induce change in
the sequence α. These remarks can be used to reduce some seemingly different
properties to cases covered by Theorem 3.2.

6.1. Exponent. It is a direct consequence of the log-convexity of the Lp norms
that if (?

B
up dµ

)1/p

.

(?
B

uq dµ
)1/q

with p > q, then for every s ∈ (0, q) we can write 1/q = θ/p + (1 − θ)/s for some
θ ∈ (0, 1) and consequently

‖u‖Lp(B,ν) . ‖u‖Lq(B,ν) ≤ ‖u‖
(1−θ)
Ls(B,ν) ‖u‖

θ
Lp(B,ν)

so that ‖u‖Lp(B,ν) . ‖u‖Ls(B,ν). Here ν = dµ/µ(B). The same self-improving property
holds true for the weak reverse Hölder inequality [18] and even for the reverse
Hölder inequality with tails as we now show. To prove the claim for the inequality
with tails, we use a modification of the argument from [6], Appendix B.

Proposition 6.1. Let (X, ρ, µ) be a space of homogeneous type. Let q ∈ (0, p),
s0, s1, s2 ∈ (0, q] with f s1 , hs2 ∈ L1

loc(X) and set τ := min
( s0

q ,
s1
q ,

s2
q

)
. Let (αk)k≥0

be a summable sequence of strictly positive numbers. Let N > 1 and β ≥ 0. Let
(α̃k)k≥0, (α

]
k)k≥0 be summable sequences of non negative numbers with α̃0, α

]
0 > 0

and assume

(6.2)
m∑

k=0

α̃kα
τ
m−k . α̃m,

m∑
k=0

α
]
kαm−k . α

]
m

and

(6.3)
m∑

k=0

α̃kα
s2/q
m−kN(m−k)βs2 . α̃m.

Define au(B), ãu(B), a]u(B) as in (2.3) in terms of the three respective sequences, for
u ≥ 0 locally integrable, N > 1 and B a quasi-metric ball.

Assume that

(6.4)
(?

B
up dµ

)1/p

. (auq(B))1/q + b(B),

where the implicit constant does not depend on B, with

b(B) = (a f s1 (B))1/s1 + r(B)β(ahs2 (B))1/s2 .

Then, for any ball B for which a]uq(B) < ∞, one has

(6.5)
(?

B
up dµ

)1/p

. (ãus0 (B))1/s0 + b̃(B),

where b̃ is obtained by replacing α by α̃ in the definition of b.
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Remark 6.6. Note that, in contrast with the improvement of integrability, we do not
need the non-increasing assumption on the sequence α for this proposition. The
condition (6.2) together with α]0 > 0 implies αm . α

]
m and similarly, since τ ≤ 1,

we have αm . α̃m. Hence we have to assume more than auq(B) < ∞. For example,
with τ as above, if αk = N−γk for γ > 0, then α̃k = N−γ

′τk and α]k = N−γ
′k work in

the theorem for any 0 < γ′ < γ such that βs2 < γs2/q − γ′τ. In particular, decay
γ > βq is needed to obtain any improvement, which typically is hard to obtain in
applications. On the other hand, if β = 0, we can improve the right-hand exponent
by only paying an arbitrarily small amount of decay to replace γ by γ′ < γ. The
condition (6.3) takes into account the presence of r(B)β in (6.4). Finally, the strict
positivity of αk rules out in particular the case where the αk form a finite sequence,
but in that case, the argument in [6] already covers the situation.

Proof. Define

K(δ, s0) := sup
(auq(B))1/q

(ãus0 (B))1/s0 + b̃(B) + δ(a]uq(B))1/q
,

where the supremum is taken on the set of balls B such that the denominator is
finite. Indeed, there is nothing to prove if the right hand side of (6.5) is infinite,
which is equivalent to the denominator being infinite since we assume a]uq(B) < ∞.
As αm . α

]
m, we have auq(B) . a]uq(B) and the presence of δ > 0 guarantees that

K(δ, s0) . δ−1. We show a uniform bound in terms of δ. To this end we can of
course assume K(δ, s0) ≥ 1 since otherwise there is nothing to prove.

Fix a ball B with the above restriction. Let θ ∈ (0, 1) be such that

1
q

=
θ

s0
+

1 − θ
p

.

We see that (?
B

uq dµ
)1/q

≤

(?
B

us0 dµ
)θ/s0

(?
B

up dµ
)(1−θ)/p

.

Using (6.4), b(B) . b̃(B) and K(δ, s0) ≥ 1,(?
B

uq dµ
)1/q

.

(?
B

us0 dµ
)θ/s0 (

(auq(B))1/q + b(B)
)1−θ

.

(?
B

us0 dµ
)θ/s0

K(δ, s0)1−θ
(

(ãus0 (B))1/s0 + b̃(B) + δ(a]uq(B))1/q
)1−θ

. K(δ, s0)1−θ
(

(ãus0 (B))1/s0 + b̃(B) + δ(a]uq(B))1/q
)
.

We apply this last inequality to NkB. This is possible provided NkB belongs to
the same set of balls and this follows from the assumption on the sequences: For
example, using (6.2),

a]u(NkB) =

∞∑
j=k

α
]
j−k

?
N jB

uq dµ . α−1
k

∞∑
j=k

α
]
j

?
N jB

uq dµ ≤ α−1
k a]uq(B) < ∞.
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Similar calculations can be done for the other terms. Thus,

auq(B)1/q =

(
∞∑

k=0

αk

?
Nk B

uq dµ

)1/q

. K(δ, s0)(1−θ)

(
∞∑

k=0

αkãus0 (NkB)q/s0

)1/q

+ K(δ, s0)(1−θ)

(
∞∑

k=0

αkb̃(NkB)q

)1/q

+ K(δ, s0)(1−θ)δ

(
∞∑

k=0

αka]uq(NkB)

)1/q

=: I + II + III.

Each of the three sums is estimated similarly so we restrict our attention to the first
one. Using the continuous embedding `1(N) ⊂ `q/s0(N) and the properties of α in
(6.2), we compute

I s0 ≤

∞∑
k=0

α
s0/q
k ãus0 (NkB) =

∞∑
m=0

(
m∑

k=0

α
s0/q
k α̃m−k

)?
NmB

us0 dµ

.
∞∑

m=0

α̃m

?
NmB

us0 dµ = ãus0 (B).

The same kind of argument applies to the remaining two terms so that

(6.7) auq(B)1/q . K(δ, s0)1−θ((ãus0 (B))1/s0 + b̃(B) + δ(a]uq(B))1/q).
We remark that it is the part of b̃ involving r(B)β that requires us to use the strong
condition (6.3). As the right hand side is finite, we readily obtain K(δ, s0) .
K(δ, s0)1−θ, therefore K(δ, s0) . 1. Now, all the bounds are independent of δ,
so we may send δ → 0 in (6.7). Plugging this inequality into (6.4) concludes the
proof of (6.5). �

6.2. Dilation. Another direction to which the reverse Hölder inequalities self-
improve is the dilation parameter on the right hand side of(?

B
up dµ

)1/p

.

(?
NB

uq dµ
)1/q

.

Indeed, if such an inequality holds in a space of homogeneous type, then the similar
inequality (?

B
up dµ

)1/p

.

(?
CB

uq dµ
)1/q

holds for all balls with any C > K where K is the quasi-metric constant. See for
instance Theorem 3.15 in [2]. The proof of this fact is based on a covering of B by
small balls whose N-dilates are still contained in CB and applying the weak reverse
Hölder inequality in each small ball individually.

It is worth a remark that a change of geometry similar to the property just de-
scribed can be carried out with the reverse Hölder inequality with tails. To for-
mulate this technical remark, we introduce some notation. Given a sequence of
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positive numbers α = (αk)k≥0 and real numbers with 1 < n ≤ m, we define the
(m, n)-stretch S m,nα by

(S m,nα) j := αk, j ≥ 0 : mk−1 < n j ≤ mk.

We also define the (m, n)-regrouping by

(Rm,nα)k :=
∑

j:mk−1<n j≤mk

α j + βk, k ≥ 0,

where βk is a correction term. It makes each (Rm,nα)k to be the sum of equally
many terms and hence the regrouping of a non-increasing sequence remains non-
increasing: The intervals (

(k − 1)
ln m
ln n

, k
ln m
ln n

]
contain ` or ` + 1 integers when ` is the integer such that

` <
ln m
ln n

≤ ` + 1.

We set βk = 0 if
∑

j:mk−1<n j≤mk 1 = ` + 1 and βk = αmin{ j:n j>mk−1} otherwise.

For example, for γ > 0, the (m, n)-stretch of (m−γk) is (term-wise) comparable
to (n−γk), and the (m, n)-regrouping of (n−γk) is (term-wise) comparable to (m−γk).
More generally, if α is summable, so are its stretch and regrouping. For the latter,
it is obvious and for the former, is follows from bounding the number of possible
repetitions by 1 + ln m

ln n . In addition, if α is non-increasing so are its (m, n)-stretch
(m, n)-regrouping.

Proposition 6.8. Let (X, ρ, µ) be a space of homogeneous type and let (αk)k≥0 be a
summable sequence of positive numbers. For u ∈ L1

loc(X), u ≥ 0, N > 1, define

au(B) :=
∞∑

k=0

αk

?
Nk B

u dµ.

Then for any M > 1, one has

au(B) .
∞∑

k=0

βk

?
Mk B

u dµ,

with, if M > N, β = RM,Nα and if M < N, β = S M`,MRM`,Nα where ` is the least
integer to satisfy ` ≥ ln N/ ln M.

Proof. We start with M > N. Then,
∞∑

k=0

αk

?
Nk B

u dµ =

∞∑
k=0

∑
j:Mk−1<N j≤Mk

α j

?
N jB

u dµ .
∞∑

k=0

∑
j:Mk−1<N j≤Mk

α j

?
Mk B

u dµ

≤

∞∑
k=0

(RM,Nα)k

?
Mk B

u dµ

as claimed, using the doubling condition.
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Let now M < N. Assume first that there is an integer ` ≥ 2 such that M` = N.
Then we can write

∞∑
k=0

αk

?
Nk B

u dµ =

∞∑
k=0

αk

?
M`k B

u dµ ≤
∞∑
j=0

(S M`,Mα) j

?
M jB

u dµ.

In general, we can find an integer ` ≥ 2 so that M`−1 < N ≤ M` so that by the
previous case (M > N)
∞∑

k=0

αk

?
Nk B

u dµ .
∞∑

k=0

(RM`,Nα)k

?
M`k B

u dµ ≤
∞∑

k=0

(S M`,MRM`,Nα) j

?
M jB

u dµ.

�

7. Extensions

There are several ways to further generalize the Gehring lemma with tails that
follow by the argument used in the proof of Theorem 2.2. For the sake of clear
exposition, we have not included them in the main theorem, but we briefly discuss
some of them in this separate section. For simplicity we work in the metric situation
(but quasi-metric works the same).

7.1. Sequences. We usually asked the sequence αk in the definition of au to be
non-increasing. Of course, this assumption can always be relaxed by asking the
sequence to be non-increasing starting from a certain index k0 and then replacing
the terms αk with 0 ≤ k ≤ k0 with α′k := max0≤k≤k0 αk. The resulting sequence with
α′k := αk for k > k0 is always non-increasing and summable.

7.2. Maximal function. The functional au can also take the form

mΩ,loc
u (B(x, t)) = sup

r∈[t,(1/2)dist (x,Ωc))

?
B(x,r)

u dµ

where Ω ⊂ X is an open set. In other words, the supremum is over “large” balls B
so that 2B ⊂ Ω. We also define

mΩ
u (B(x, t)) = sup

r∈[t,(3/4)dist (x,Ωc))

?
B(x,r)

u dµ.

Corollary 7.1. Let Ω ⊂ X be an open set in a metric space (X, d, µ) with doubling
measure. Let s, β > 0 and q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D
is any number satisfying (2.1). Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1

loc(Ω, dµ)
and A ≥ 0 is a constant such that for every ball B = B(x,R) with 2B ⊂ Ω

(7.2)
(?

B
uq dµ

)1/q

≤ AmΩ,loc
u (B) + (mΩ,loc

f q (B))1/q + Rβ(mΩ,loc
hs (B))1/s.

Then there exists p > q such that for all balls B with 12B ⊂ Ω,(?
B

up dµ
)1/p

. mΩ
u (B) + (mΩ

f q(B))1/q + Rβ(mΩ
hs(B))1/s

+

(?
2B

f p dµ
)1/p

+ Rβ
(?

2B
hps/q dµ

)q/sp

,

(7.3)
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where both p and the implicit constant depend on A,D, s, q, β.

Proof. We prove the claim for B = B(x0,R) with x0 ∈ X, R > 0 and 12B ⊂ Ω. We
point out the relevant changes to the proof of Theorem 2.2. Having fixed B, we
repeat Step 1 as before (we take N = 2) to define gq = Aq

Rhs
12B with AR a constant

so that for any ball Br contained in 2B we have

rβ
(?

Br

hs dµ
)1/s

.

(?
Br

gq dµ
)1/q

. Rβ
(?

2B
hs
)1/s

.

In Step 2, fix r0 and ρ0 real numbers satisfying R ≤ r0 < ρ0 ≤ 2R. For x ∈ Br0 :=
B(x0, r0), we have that

B(x, ρ0 − r0) ⊂ B(x0, 2R) ⊂ B(x, 4R),

and consequently for any positive function v,?
B(x,(ρ0−r0))

v dµ ≤
µ(B(x0, 2R))

µ(B(x, ρ0 − r0))

?
B(x0,2R)

v dµ

.

(
R

ρ0 − r0

)D ?
B(x0,2R)

v dµ,
(7.4)

where we used the constant D from the doubling dimension in the last line. Set
γ := (R/(ρ0 − r0))D.

We repeat Step 3 as it is. In Step 4, we define three functions

U(x, r) :=
?

B(x,r)
u dµ, F(x, r) :=

(?
B(x,r)

f q dµ
)1/q

,G(x, r) :=
(?

B(x,r)
gq dµ

)1/q

,

and for λ > λ0, we denote the relevant level sets by

Uλ := Br0 ∩ {u > λ}, Fλ := Br0 ∩ { f > λ}, Gλ := Br0 ∩ {g > λ}.

We set

λ0 := CγmΩ
u (2B) + C

(
γmΩ

f q(2B)
)1/q

+ C(2R)β
(
γmΩ

hs(2B)
)1/s

,

where C is a constant independent of u and the ball B, chosen such that, by an
inclusion relation as in (7.4) we obtain

(7.5) U(x, ρ0 − r0) + F(x, ρ0 − r0) + G(x, ρ0 − r0) ≤ λ0

for all x ∈ B(x0, ρ0). Finally, we define as before

Ωλ :=
{

x ∈ Uλ ∪ Fλ ∪Gλ : x is a Lebesgue point for u, f q and gq
}
.

In Step 5, we note, as before, that if x ∈ Ωλ then

lim
r→0

U(x, r) + F(x, r) + G(x, r) > λ,

and thus for x ∈ Ωλ we can define the stopping time radius, this time continuously,
as

rx := sup
{

r < ρ0 − r0 : U(x, r) + F(x, r) + G(x, r) > λ
}
.

Remark that (7.5) implies that rx < ρ0−r0. Of course Ωλ ⊂ ∪x∈ΩλB(x, rx/5). By the
Vitali Covering Lemma (5r-Covering Lemma) there exists a countable collection
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of balls {B(xi, ri)} = {Bi} with ri = rxi such that { 15 Bi} are pairwise disjoint and
Gλ ⊂ ∪iBi.

We make three observations:

(i) For each i, either
>

Bi
u dµ ≥ λ

3 , (
>

Bi
f q dµ)1/q ≥ λ

3 , or (
>

Bi
gq dµ)1/q ≥ λ

3 .
(ii) The radius of each Bi is less than ρ0−r0 and xi ∈ B(x0, r0) so Bi ⊂ B(x0, ρ0).

(iii) Each r ∈ [ri, ρ0 − r0) is ‘above’ or at the stopping time and?
B(xi,r)

u dµ +

(?
B(xi,r)

f q dµ
)1/q

+

(?
B(xi,r)

gq dµ
)1/q

. λ.

We obtain from (7.2) that

uq(Uλ) ≤ uq(Uλ ∪ Fλ ∪Gλ) ≤
∑

i

uq(Bi)

.
∑

i

µ(Bi)
(
mΩ,loc

u (Bi) + (mΩ,loc
f q (Bi))1/q + rβi (mΩ,loc

hs (Bi))1/s)q
.

We handle the term involving f , to begin we split mΩ,loc
f q (Bi) as

mΩ,loc
f q (Bi) = sup

r∈[ri,
1
2 dist (xi,Ωc))

?
B(xi,r)

f q dµ

= max

(
sup

r∈[ri,ρ0−r0)

?
B(xi,r)

f q dµ, sup
r∈[ρ0−r0,

1
2 dist (xi,Ωc))

?
B(xi,r)

f q dµ

)
.

(7.6)

By observation (iii), we see that

sup
r∈[ri,ρ0−r0)

?
B(xi,r)

f q dµ . λ.

On the other hand,

sup
r∈[ρ0−r0,

1
2 dist (xi,Ωc))

?
B(xi,r)

f q dµ = sup
k∈[1, 1

2(ρ0−r0) dist (xi,Ωc))

?
B(xi,k(ρ0−r0))

f q dµ

. sup
k∈[1, 1

2(ρ0−r0) dist (xi,Ωc))

(
k(ρ0 − r0) + r0

k(ρ0 − r0)

)D ?
B(x0,k(ρ0−r0)+r0)

f q dµ

.

(
R

ρ0 − r0

)D

mΩ
f q(B) . λq

0 < λ
q,

where the last line is justified as follows: By the upper bound on k in the supremum,
we always have

R ≤ k(ρ0 − r0) + r0 ≤
1
2

dist (xi,Ω
c) + r0 ≤

1
2

dist (x0,Ω
c) + 3R <

3
4

dist (x0,Ω
c),

where we used |xi − x| < r0 < ρ0 ≤ 2R and B(x0, 12R) ⊂ Ω. Hence every
B(x0, k(ρ0 − r0) + r0) is admissible in the definition of mΩ

f q(B) and we get the bound
claimed before since mΩ

f q(B) ≤ 2DmΩ
f q(2B). Altogether,

(mΩ,loc
f q (Bi))1/q . λ.
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Terms with u and h are estimated similarly. The rest of Step 5 follows as before
and we obtain

∪iBi ⊂ {M(u1Bρ0
) > λ/3} ∪ {M( f q

1Bρ0
) > (λ/3)q} ∪ {M(gq

1Bρ0
) > (λ/3)q}.

Step 6 involving maximal function arguments to estimate the measure of the set
in the above display for λ > λ0 as well as the overall contribution for λ < λ0 is
repeated without changes. In the end, we reach an inequality of the form (2.21).
Indeed, set

ϕ(t) :=
∫

B(x0,t)
up−q

m uq dµ, αp :=
(
mΩ

u (2B) + (mΩ
f q(2B))1/q + (R)β(mΩ

hs(2B))1/s)p

and for p ∈ (q, 2q) we may summarize our estimates as

ϕ(r0) . µ(B)
(

R
ρ0 − r0

)η
αp + εpϕ(ρ0) + ε−1

p

∫
2B

f p dµ + ε−1
p

∫
2B

gp dµ,

whenever R ≤ r0 < ρ0 ≤ 2R. Here εp = p − q and η > 0 is independent of u and
B. The claim (7.3) then follows from a well known iteration argument (see e.g.
Lemma 6.1 in [13]) or from modifying the argument in Step 7. �

Note that the proof for the maximal-function-like object mΩ,loc
u is actually sim-

pler than for the tailed au. Several choices of how to discretize the scale parameters
can be omitted. This setup is also very close but not comparable to Gehring’s orig-
inal assumption

(Muq)1/q . Mu

where q > 1 and M the Hardy–Littlewood maximal operator. Indeed, the left-hand
side here does not have a maximal function and the right hand side is a maximal
function restricted to large scales (a non-local maximal function).

7.3. Domains. We can define the tail functional aΩ,loc
u restricted to an open set Ω,

for example

aΩ,loc
u (B) :=

∑
k≥0

2k+4B⊂Ω

αk

?
2k B

u dµ

and

aΩ
u (B) :=

∑
k≥0

2k+1B⊂Ω

αk

?
2k B

u dµ,

where as before (αk)k is a non-increasing and summable sequence of positive num-
bers. Then we can localize the assumptions of Theorem 2.2 to Ω.

Corollary 7.7. Let Ω ⊂ X be an open set in a metric space (X, d, µ) with doubling
measure. Let s, β > 0 and q > 1 be such that s < q and β ≥ D(1/s − 1/q) where D
is any number satisfying (2.1). Suppose that u, f , h ≥ 0 with uq, f q, hs ∈ L1

loc(Ω, dµ)
and A ≥ 0 is a constant such that for every ball B = B(x,R) with 16B ⊂ Ω

(7.8)
(?

B
uq dµ

)1/q

≤ AaΩ,loc
u (B) + (aΩ,loc

f q (B))1/q + Rβ(aΩ,loc
hs (B))1/s.
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Then there exists p > q such that for all balls B with 32B ⊂ Ω,(?
B

up dµ
)1/p

. aΩ
u (4B) + (aΩ

f q(4B))1/q + Rβ(aΩ
hs(4B))1/s

+

(?
4B

f p dµ
)1/p

+ Rβ
(?

4B
hps/q dµ

)q/sp

,

(7.9)

where both p and the implicit constant depend on A, β, s, q,D.

Proof. Theorem 2.2 shows how to deal with the tail. Corollary 7.1 shows how
to adapt the proof to the setting relative to Ω. The proof of this Corollary can
be reconstructed following the proof of Theorem 2.2 and carefully adapting the
estimation in (2.15) in the spirit of estimating (7.6) to make sure that all relevant
balls appearing in the estimates are contained in Ω. �

7.4. Convolutions. In the Euclidean setting where (X, d, µ) is Rn equipped with
the usual distance and the Lebesgue measure, we can realize the functionals au as
convolutions

au(B(x, r)) = (ϕr ∗ u)(x)
where ϕ has suitable decay and integrability and ϕr(x) = r−nϕ(x/r). More pre-
cisely, our assumptions correspond to ϕ being bounded, radial, decreasing and
globally integrable. A convolution makes sense in certain groups, so this kind
of special functional can also be considered, for instance, in nilpotent Lie groups
as in [27].

8. Very weak A∞ weights

For a weight (that is, a non-negative locally integrable function), the condition∫
B

M(1Bw) dµ ≤ C
∫

B
w dµ

valid for some C < ∞ and all balls B of X can be taken as a definition of the A∞
class, where M is the uncentered maximal operator, see [9, 28] for the Euclidean
case with Lebesgue measure. In spaces of homogeneous type, this condition im-
plies higher integrability with an exponent that can be computed from the constant
C and the structural constants of X, see [16]. This was extended in [2] to weights
in the weak A∞ class defined by

(8.1)
?

B
M(1Bw) dµ ≤ C

?
σB

w dµ.

where σ > 1 is given. The classes are shown to be independent of σ provided
σ > K, K being the quasi-metric constant, and their elements still have a higher
integrability. The methods passing through a dyadic analog yield an accurate es-
timate of the exponent in terms of the best C in the definition. We note that the
dilation parameter σ is uniform: it is the same for all balls. Our methods allow
us to remove the uniformity, that is we define the very weak A∞ class as the set of
weights such that for all balls,

(8.2)
?

B
M(1Bw) dµ ≤ C sup

σ≥1

?
σB

w dµ < ∞.
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The quantity in the middle is the same functional as the one defined in Section 7.2
when Ω = X.

We denote by Avw
∞ this class. As the right hand side of (8.2) requires bounded-

ness of all averages on large balls, this rules out weights growing at ∞. For this
reason, it is neither contained in, nor containing the class Aweak

∞ introduced in [2].
Typically, such very weak A∞ weights arise from fractional equations. See the next
section.

Theorem 8.3. For any very weak A∞ weight w, there exists p > 1 and C′ < ∞
such that for all balls B,

(8.4)
(?

B
M(1Bw)p dµ

)1/p

≤ C′ sup
σ≥1

?
σB

w dµ.

Remark 8.5. The improvement of integrability on a given ball B only depends on
the finiteness of the right hand side for that same ball and nothing else, as the
proof will show. Hence, one can also define the very weak A∞ class on B by the
condition (8.2) on that very ball. The theorem remains valid if one replaces (in
the assumption and the conclusion) the supremum by a tail as before. That variant
leads to the class Cp (see Section 8.1). The advantage is to allow some possible
growth for which the tail is finite while the supremum is not. Finally our argument
works with the supremum replaced by one average with a fixed dilation parameter.
We leave these extensions to the interested reader. They will not be needed here.

Proof. To simplify we do the proof in the metric case. Again the trick to reduce the
quasi-metric case to the metric case applies, see Section 3. The argument follows
again that of Theorem 2.2 with f , h = 0 but with some changes.

We pick N = 2. We ignore Step 1 and have the setup of Step 2. Having fixed the
ball B = B(x0,R), the parameters ρ0, r0, and ` such that 2`(ρ0 − r0) = R, define

M̃v(x) := sup
k∈Z

?
B(x,2k(ρ0−r0))

|v| dµ.

Then if Mc designates the centered maximal operator,

M̃v ≤ Mcv ≤ Mv ≤ κ′Mcv ≤ κM̃v.

Indeed, Mv ≤ κ′Mcv is classical, while Mcv . M̃v follows from the doubling
property and κ does not depend on ρ0 − r0 in particular. By the same token, in
the right hand side of (8.2) we may restrict to the supremum over all σ = 2k for
integers k ≥ 0. This only causes a change in the constant C.

We modify Step 3 as follows. With the truncation of the maximal function at
level m, ∫

Br0

(M(1Br0
w))p

m dµ ≤ κp
∫

Br0

(M̃(1Br0
w))p−1

m/κ M̃(1Br0
w) dµ

≤ κp
∫

Br0

(M̃(1Bρ0
w))p−1

m/κ M̃(1Bρ0
w) dµ

= κp(p − 1)
∫ m/κ

0
λp−2u(Br0 ∩ {u > λ}) dλ

(8.6)
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with u := M̃(1Bρ0
w).

In Step 4, we pick λ0 := C`+2
d supσ≥1

>
σB w dµ (which is assumed finite otherwise

there was nothing to prove), where we recall that Cd is the doubling constant. We
observe that for x ∈ Br0 = B(x0, r0) and k ≥ 0,?

B(x,2k(ρ0−r0))
1Bρ0

w dµ ≤ C`+2
d

?
B(x0,2k+1R)

w dµ ≤ λ0.(8.7)

The stopping time of Step 5 is slightly different. Let λ > λ0. Pick x ∈ Br0 ∩ {u >
λ}. As u(x) = M̃(1Bρ0

w)(x) > λ > λ0, the observation above and B(x, 2k(ρ0−r0)) ⊂
Bρ0 when k < 0 imply

u(x) = sup
k<0

?
B(x,2k(ρ0−r0))

1Bρ0
w dµ = sup

k<0

?
B(x,2k(ρ0−r0))

w dµ.

Let kx < 0 be the supremum of those k < 0 for which
>

B(x,2k(ρ0−r0)) w dµ > λ. We

extract the covering Bi = B(xi, 2kxi (ρ0 − r0)) of Br0 ∩ {u > λ}, where all Bi are
subballs of Bρ0 with the 1

5 Bi pairwise disjoint. We claim that if B∗i = 2Bi, then for
all x ∈ Bi ∩ Br0 , we have u(x) ≤ C2

d M(1B∗i w)(x).
Indeed, fix x ∈ Bi ∩ Br0 and pick k ∈ Z. In the case where k ≥ 0 we have by

(8.7), ?
B(x,2k(ρ0−r0))

1Bρ0
w dµ ≤ λ0 < λ <

?
Bi

w dµ ≤ M(1Biw)(x).

In the case where 0 > k ≥ kxi , we have either by the stopping time or again by (8.7)
if k = −1,?

B(x,2k(ρ0−r0))
1Bρ0

w dµ ≤
µ(B(xi, 2k+1(ρ0 − r0)))
µ(B(x, 2k(ρ0 − r0)))

?
B(xi,2k+1(ρ0−r0))

w dµ

≤ C2
dλ < C2

d

?
Bi

w dµ ≤ C2
d M(1Biw)(x).

In the case where k < kxi , B(x, 2k(ρ0 − r0)) ⊂ B∗i and B(x, 2k(ρ0 − r0)) ⊂ Bρ0 , hence?
B(x,2k(ρ0−r0))

1Bρ0
w dµ =

?
B(x,2k(ρ0−r0))

w dµ ≤ M(1B∗i w)(x).

Thus, the intermediate claim is proved.
Now, using this together with (8.2) and the opening remark, we obtain

u(Br0 ∩ {u > λ}) ≤
∑

i

u(Bi ∩ Br0) ≤
∑

i

∫
Bi∩Br0

u dµ

≤
∑

i

C2
d

∫
Bi∩Br0

M(1B∗i w) dµ

≤
∑

i

C2
d µ(B∗i )

?
B∗i

M(1B∗i w) dµ

≤ CC2
d

∑
i

µ(B∗i ) sup
k≥0

?
2k B∗i

w dµ
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≤ CC2
d

∑
i

µ(B∗i ) λ

. λ µ(∪Bi).

The next to last inequality is by definition of B∗i = 2Bi, hence all the averages do not
exceed λ0 < λ by (8.7), and the last inequality uses doubling and the fact that 1

5 Bi

are disjoint. As Bi ⊂ Bρ0 and λ <
>

Bi
w dµ we have ∪Bi ⊂ Bρ0 ∩ {M(1Bρ0

w) > λ}

and we have obtained

u(Br0 ∩ {u > λ}) . λ µ(Bρ0 ∩ {M(1Bρ0
w) > λ}).

Step 6 is now done as follows by cutting the rightmost integral in (8.6) at λ0. Let
ϕ(r0) :=

∫
Br0

(M(1Br0
w))p

m dµ. Then

ϕ(r0) ≤ κpλ
p−1
0 u(Br0) + κp(p − 1)

∫ m/κ

λ0

λp−2u(Br0 ∩ {u > λ}) dλ

. µ(B)Cp`
d

(
sup
σ≥1

?
σB

w dµ
)p

+ (p − 1)
∫ m/κ

λ0

λp−1µ(Bρ0 ∩ {M(1Bρ0
w) > λ}) dλ

. µ(B)Cp`
d

(
sup
σ≥1

?
σB

w dµ
)p

+
p − 1

p

∫
Bρ0

M(1Bρ0
w)p

m/κ dµ.

We recall that ` was defined by 2`(ρ0 − r0) = R. As κ > 1, we have obtained

ϕ(r0) . µ(B)Cp`
d (sup

σ≥1

?
σB

w dµ)p + εpϕ(ρ0).

From there, we do as in Step 7 an iteration provided p − 1 is small and finally let
m→ ∞ to deduce (8.4). �

Having this theorem at hand, we can proceed as in [2] and show the equality of
the class Avw

∞ with other classes. We say that a weight is a very weak A∞ weight,
if there exist an exponent 1 < p < ∞ and a constant C such that for all balls B and
Borel subsets E of B,

(8.8) 0 < inf
σ≥1

w(E)
w(σB)

µ(σB)
µ(B)

≤ C
(
µ(E)
µ(B)

)1/p

.

We call Avw
∞ this class. We say that a weight w is a very weak reverse Hölder

weight if there exist an exponent 1 < q < ∞ and a constant C < ∞ such that for all
balls B,

(8.9)
(?

B
wq dµ

)1/q

≤ C sup
σ≥1

?
σB

w dµ < ∞.

We call RHvw this class.

Theorem 8.10. Let w be a weight and B be a ball of X. The condition (8.2), (8.8)
for some p ∈ (1,∞) and (8.9) for some q ∈ (1,∞) are equivalent (with different
constants). In particular, we have coincidence of Avw

∞ ,Avw
∞ and RHvw .

Proof. Adapt the proof of Lemma 8.2 in [2] together with our Theorem 8.3 as the
proper replacement for Theorem 5.6 therein. �
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8.1. Cp weights. Let X = Rn equipped with Euclidean distance and Lebesgue
measure and write |E| for the Lebesgue measure of a set E. Fix a weight w. Upon
replacing the supremum supσ>1 w(σB)/|σB| by the tail functional

aCp(B) :=
1
|B|

∫
Rn

M(1B)pw dx h
?

B
w dx +

1
|B|

∞∑
k=1

∫
2k+1B\2k B

(
|B|
|2kB|

)p

w dx

h

∞∑
k=1

2−kn(p−1)
?

2k B
w dx

with 1 < p < ∞ in the definition of Avw
∞ in (8.4), we recover the Cp condition of

Muckenhoupt [22] and Sawyer [24]. Namely, we say that w ∈ Cp if there are δ > 0
and C > 0 so that

(8.11) w(E) ≤ C
(
|E|
|B|

)δ ∫
Rn

M(1B)pw dx < ∞

holds for all balls B and measurable E ⊂ B.
Following the proof of Lemma 8.2 in [2], we see that w ∈ Cp if and only if there

are δ′ > 0 and C > 0 such that for all balls B,(?
B

w1+δ′ dx
)1/(1+δ′)

≤ CaCp(B) < ∞.

Modifying the proof of Theorem 8.3 (see Remark 8.5), one can append?
B

M(1Bw) dx ≤ CaCp(B) < ∞

holding for some C > 0 and all balls B to the list of equivalent definitions of the Cp
class. In conclusion, the class Cp gives examples of functions satisfying a reverse
Hölder inequality with tail as in Theorem 2.2. Conversely, as we prove next a
reverse Hölder inequality with a tail of the form aCp(B) for fractional derivatives of
solutions to certain fractional equations, we see that solutions produce examples of
Cp weights.

9. An application to fractional equations

Throughout this section let α ∈ (0, 1/2). For u ∈ L2 = L2(Rn), we define
the fractional Laplacian (−∆)αu in the sense of tempered distributions through
F (−∆)αu = (4π)2α|ξ|2αû, where we use the normalization

û(ξ) := F u(ξ) :=
∫
Rn

u(x)e−2πiξ·x dx

for the Fourier transform. For simplicity, we shall always assume the dimension
to be n ≥ 3. The Bessel potential spaces H2α,2 = H2α,2(Rn) consists of tempered
distributions u with u, (−∆)αu ∈ L2. For u ∈ H2α,2, we also have the singular
integral representation for almost every x ∈ Rn

(−∆)αu(x) = c
∫
Rn

u(x) − u(y)
|x − y|n+2α dy,

where integral is understood in the principal value sense and c = c(α, n) can be
computed explicitly. For further background on we refer e.g. to [20, 26].
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Fractional Sobolev embedding theorems give us two important indices for every
p ∈ (1,∞):

p∗ :=
pn

n − 2αp
and p∗ :=

pn
n + 2αp

,

that satisfy 1/p∗ + 1/p∗ = 2/p and (p∗)∗ = (p∗)∗ = p. The value of α in the
definition of p∗ and p∗ will usually be clear from the context. Otherwise it will
be given explicitly as p∗,2α or p∗2α. We are interested in the weak solutions of the
equation

(9.1) (−∆)α
(
a(−∆)αu

)
= (−∆)αF + f ,

where

• a : Rn → C satisfies λ−1 ≤ Re a(x) and |a(x)| ≤ λ for some λ > 1 and all
x ∈ Rn,

• α ∈ (0, 1/2),
• F ∈ L2 and f ∈ L2∗,2α .

Note that this fractional equation is different from those studied in [5] and [19].

Definition 9.2. A function u ∈ H2α,2 is a weak solution to (9.1) if for all ϕ ∈ H2α,2,∫
Rn

(a(−∆)αu)(−∆)αϕ dx =

∫
Rn

(
F(−∆)αϕ + fϕ

)
dx.

Weak solutions to (9.1) satisfy a reverse Hölder inequality with tails. This will
allow us to apply the non-local Gehring lemma to prove a self-improving property
of weak solutions.

Lemma 9.3. Let u ∈ H2α,2 be a weak solution to (9.1). Then there exists ε =

ε(n, α) > 0 and γ = γ(n, α) > 0 such that for every ball B(x, r) ⊂ Rn,(?
B(x,r)

|(−∆)αu|2
)1/2

.

(
∞∑

k=0

2−kγ
?

2k B(x,r)
|(−∆)αu|2−ε

)1/(2−ε)

+

(
∞∑

k=0

2−kγ
?

2k B(x,r)
|F|2
)1/2

+ r2α

(
∞∑

k=0

2−kγ
?

2k B(x,r)
| f |q

′

)1/q′

,

(9.4)

where q′ = 2∗,2α and the implicit constants only depend on λ, n and α.

Proof. Throughout we allow the value of γ and ε to change from line to line, noting
that we will only alter their values a finite amount of times and that estimates (9.4)
and (9.6) become weaker for smaller γ and ε. We reduce the proof to the following
claim.
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Claim 9.5. Given any η ∈ (0, 1) we have(?
B(x,r)

|(−∆)αu|2
)1/2

≤ η

(?
B(x,8r)

|(−∆)αu|2
)1/2

+ C

(
∞∑

k=0

2−kγ
?

2k B(x,r)
|(−∆)αu|2−ε

)1/(2−ε)

+ C

(
∞∑

k=0

2−kγ
?

2k B(x,r)
|F|2
)1/2

+ Cr2α

(
∞∑

k=0

2−kγ
?

2k B(x,r)
| f |q

′

)1/q′

,

(9.6)

where C = C(η, λ, n, α), ε = ε(n, α) > 0 and γ = γ(n, α) > 0.

Taking the claim for granted momentarily, for any ball B set

M(B) :=
(?

B
|(−∆)αu|2

)1/2

and

A(B) := C

(
∞∑

k=0

2−kγ
?

2k B
|(−∆)αu|2−ε

)1/(2−ε)

+ C

(
∞∑

k=0

2−kγ
?

2k B
|F|2
)1/2

+ Cr2α

(
∞∑

k=0

2−kγ
?

2k B
| f |q

′

)1/q′

.

Then (9.6) is equivalent to

M(B) ≤ ηM(8B) + A(B).

Iterating this inequality, we obtain for j ≥ 1

M(B) ≤ η jM(8 jB) +

j−1∑
`=0

η`A(8`B)

≤ η jM(8 jB) +

∞∑
`=0

η`/3A(2`B).

Letting j→ ∞ and noting that η jM(8 jB)→ 0 since (−∆)αu ∈ L2, we obtain

M(B) ≤
∞∑
`=0

η`/3A(2`B).
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Letting η = 2−3a where a − 2α = 2γ, we immediately recover (9.4). To see this, let
us examine the following sum (which is the “hardest” to analyze)

∞∑
`=0

η`/3C(2`r)2α

(
∞∑

k=0

2−kγ
?

2k+`B(x,r)
| f |q

′

)1/q′

.

Using Hölder’s inequality we have

∞∑
`=0

η`/3C(2`r)2α

(
∞∑

k=0

2−kγ
?

2k+`B(x,r)
| f |q

′

)1/q′

= Cr2α
∞∑
`=0

2−2`γ

(
∞∑

k=0

2−kγ
?

2k+`B(x,r)
| f |q

′

)1/q′

. Cr2α

(
∞∑
`=0

2−2`γ
∞∑

k=0

2−kγ
?

2k+`B(x,r)
| f |q

′

)1/q′

. Cr2α

(
∞∑

m=0

2−mγ
m∑
`=0

2−`γ
?

2mB(x,r)
| f |q

′

)1/q′

. Cr2α

(
∞∑

m=0

2−mγ
?

2mB(x,r)
| f |q

′

)1/q′

,

(9.7)

as desired. The bounds for the other terms are simpler. Thus, it suffices to prove
Claim 9.5.
Proof of Claim 9.5 When proving the claim we may assume (by scaling) that B =

B(x, r) = B(0, 1) and that u4B =
>

4B u = 0 as u − u4B solves the same equation.
Of course, strictly speaking, u − u4B is usually not contained in L2 but setting
(−∆)α1 := 0, we immediately see that all all conclusions drawn for u in the previous
section remain true upon adding a constant. Let ϕ ∈ C∞0 (Rn) with 1B ≤ ϕ ≤ 1 4

3 B
.

Before continuing we introduce some convenient notation for “error” terms:
When the quantity exists we set

Eα(u, ψ)(x) :=
∫
Rn

u(y)
ψ(y) − ψ(x)
|x − y|n+2α dy.

We will justify absolute convergence of all such integrals on our way. Notice that
for almost every x ∈ Rn,

cϕ2(x)(−∆)αu(x) =

∫
Rn
ϕ2(x)

u(x) − u(y)
|x − y|n+2α dy

=

∫
Rn

u(x)ϕ2(x) − u(y)ϕ2(y)
|x − y|n+2α dy +

∫
Rn

u(y)ϕ2(y) − u(y)ϕ2(x)
|x − y|n+2α dy

= (−∆)α(uϕ2)(x) + Eα(u, ϕ2)(x)

= (−∆)α(uϕ2)(x) + ϕ(x)Eα(u, ϕ)(x) + Eα(uϕ, ϕ)(x),

(9.8)

where we used the difference of squares formula in the last line.
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Using the ellipticity of a and (9.8), we have∫
|(−∆)αu|2ϕ2 .

∣∣∣∣∫ (−∆)αua(−∆)αuϕ2

∣∣∣∣
.

∣∣∣∣∫ (−∆)αua(−∆)α(uϕ2)
∣∣∣∣ +

∣∣∣∣∫ (−∆)αuaϕEα(u, ϕ)
∣∣∣∣

+

∣∣∣∣∫ (−∆)αuaEα(uϕ, ϕ)
∣∣∣∣

=: I + II + III.

(9.9)

We intend on using the equation, (9.1), on term I, but we estimate II and III first
as the estimates will be useful in handling I. Consider first term III. By the mean
value theorem and the fact that |∇ϕ| . 1,

|Eα(uϕ, ϕ)(x)| ≤
∫
|uϕ(y)|

|ϕ(y) − ϕ(x)|
|x − y|n+2α dy

. 12B(x)
∫
Rn

|(uϕ)(y)|
|x − y|n+2α−1 dy

+ 1(2B)c(x)
1

dist(x, 4
3 B)n+2α

∫
Rn
|uϕ|.

(9.10)

By the fractional Sobolev-Poincaré inequality, see Remark 10.3 with p = q = 1 in
the next section, we have∫

Rn
|uϕ| ≤

∫
4B
|u| =

∫
4B
|u − u4B| .

∞∑
k=1

2−kγ
?

2k B
|(−∆)αu|.

This yields the estimate∫
Rn
|(−∆)αu(x)|1(2B)c(x)

1
dist(x, 4

3 B)n+2α

∫
Rn
|(uϕ)(y)| dy dx

≤

(∑
k=1

2−kγ
?

2k B
|(−∆)αu|

)2

,

(9.11)

where we broke the integral in x over dyadic annuli. Also, by Hölder’s inequality∫
Rn
|(−∆)αu(x)|12B(x)

∫
Rn

|(uϕ)(y)|
|x − y|n+2α−1 dy dx

.

(∫
2B
|(−∆)αu|q

′

)1/q′ (∫
Rn

I1−2α(|u|12B)q
)1/q

.

(
∞∑

k=0

2−kγ
?

2k B
|(−∆)αu|2−ε

)2/(2−ε)

.

(9.12)
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Here we used in last line q′ < 2 and that I1−2α : Lq∗,1−2α → Lq with 1 < q∗,1−2α <
q = 2∗2α due to α < 1/2; from this and Proposition 10.1 proved below we obtain

(∫
Rn

I1−2α(|u|12B)q
)1/q

.

(∫
2B
|u|q∗,1−2α

) 1
q∗,1−2α

.

(∫
4B
|u − u4B|

q∗,1−2α

) 1
q∗,1−2α

.

(
∞∑

k=0

2−kγ
?

2k B
|(−∆)αu|2−ε

)1/(2−ε)

.

Combining (9.10), (9.11) and (9.12), we have obtained a desirable bound for III.
Next, we handle term II. Again, using the mean value theorem we obtain

II =

∣∣∣∣∫ (−∆)αu(x)a(x) · ϕ(x)
∫
Rn

u(y)
ϕ(y) − ϕ(x)
|x − y|n+2α dy dx

∣∣∣∣
.

∫
|(−∆)αu(x)|ϕ(x)

∫
B(x,8/3)

|u(y)|
|x − y|n+2α−1 dy dx

+

∣∣∣∣∫ (−∆)αu(x)a(x)ϕ2(x)
∫

B(x,8/3)c

u(y)
|x − y|n+2α dy dx

∣∣∣∣
=: A1 + A2.

(9.13)

To bound A1 we may use that suppϕ ⊂ 4
3 B and the Lp bounds for the Riesz poten-

tial I1−2α(|u|14B) and proceed exactly as in (9.12). For A2 we have

A2 ≤

∣∣∣∣∫ (−∆)αu(x)a(x)ϕ2(x)
∫

B(x,8/3)c

u(y) − u(x)
|x − y|n+2α dy dx

∣∣∣∣
+

∣∣∣∣∫ (−∆)αu(x)a(x)ϕ2(x)u(x)
∫

B(x,8/3)c

1
|x − y|n+2α dy dx

∣∣∣∣
=: A2,1 + A2,2.

Using Young’s inequality with δ’s and Proposition 10.1 we have

A2,2 . δ

∫
|(−∆)αu|2ϕ2 +

1
δ

∫
2B
|u|2

. δ

∫
|(−∆)αu|2ϕ2 +

1
δ

(
∞∑

k=0

2−kγ
?

2k B
|(−∆)αu|2−ε

)2/(2−ε)

,

where we an hide the first term by choice of δ when returning to (9.9). Turning our
attention to A2,1 we recall the definition of w(x) (with r = 8

3 ) and apply Young’s
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inequality with δ’s and Proposition 10.4 to obtain

A2,1 =

∣∣∣∣∫
Rn

(−∆)αu(x)a(x)ϕ2(x)w(x) dx
∣∣∣∣

. δ

∫
|(−∆)αu|2ϕ2 +

1
δ

∫
2B
|w|2

. δ

∫
|(−∆)αu|2ϕ2 +

1
δ

(
∞∑

k=0

2−kγ
?

2k B
|(−∆)αu|2−ε

)2/(2−ε)

.

Hiding the first term above we have a desirable bound for A2,1.
We are left with handling term I. Using the equation (9.1) we have

I ≤
∣∣∣∣∫ F(−∆)α(uϕ2)

∣∣∣∣ +

∣∣∣∣∫ f uϕ2

∣∣∣∣
=: I′ + I′′.

For I′′, using the “sharp” version of Proposition 10.1 and Young’s inequality we
have

I′′ ≤
(∫

2B
| f |q

′

)1/q′ (∫
4B
|u|q
)1/q

≤ η̃−1
(∫

2B
| f |q

′

)2/q′

+ η̃

(∫
4B
|u|q
)2/q

. η̃−1
(∫

2B
| f |q

′

)2/q′

+ η̃

∫
8B
|(−∆)αu|2

+ η̃

(
∞∑

k=4

2−kγ
?

2k B
|(−∆)αu|

)2

,

which by a choice of η̃ = cη is a desirable bound. To bound I′, we use the same
techniques as we did for II and III. Using Young’s inequality and (9.8), we have

I′ ≤
∣∣∣∣∫ F((−∆)αu)ϕ2

∣∣∣∣ +

∣∣∣∣∫ FEα(u, ϕ2)
∣∣∣∣

≤ δ

∫
|(−∆)αu|2ϕ2 +

1
δ

∫
2B
|F|2 +

∣∣∣∣∫ FEα(u, ϕ2)
∣∣∣∣ .

Hiding the first term above it only remains to bound∣∣∣∣∫ FEα(u, ϕ2)
∣∣∣∣ ≤ ∣∣∣∣∫ FϕEα(u, ϕ)

∣∣∣∣ +

∣∣∣∣∫ FEα(uϕ, ϕ)
∣∣∣∣

=: A1 +A2.
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We handle A2 as we did III, recalling our bound for |Eα(uϕ, ϕ)(x)| from (9.10).
Using this bound we obtain (in similar fashion to III)

A2 .

∫
Rn

F(x)12B(x)I1−2α(|u|12B)(x) dx

+

∫
Rn

F(x)1(2B)c(x)
1

dist(x, 4
3 B)n+2α

∫
Rn
|(uϕ)(y)| dy dx

.

∫
2B
|F|2 +

∫
I1−2α(|u|12B)2

+

∞∑
k=0

2−kγ
(?

2k B
|F|2
)1/2

+

(∫
|uϕ|
)2

.
∞∑

k=0

2−kγ
?

2k B
|F|2 +

(
∞∑

k=0

2−kγ
?

2k B
|(−∆)αu|2−ε

)2/(2−ε)

,

where we used that I1−2α : L2∗,1−2α → L2 with 2∗,1−2α < 2 (< q). We now bound
A1. Proceeding as we did for II, the mean value theorem gives the bound

A1 ≤

∫
|F(x)|ϕ(x)

∫
B(x,8/3)

|u(y)|
|x − y|n+2α−1 dy dx

+

∣∣∣∣∫ F(x)ϕ2(x)
∫

B(x,8/3)c

u(y)
|x − y|n+2α dy dx

∣∣∣∣
=: A′1 +A′′1 .

As before, since B(x, 8/3) ⊂ 4B for all x ∈ suppϕ ⊂ 4
3 B,

A′1 ≤

∫
2B
|F|2 +

∫
I1−2α(|u|14B)2

≤

∫
2B
|F|2 +

(
∞∑

k=0

2−kγ|(−∆)αu|2−ε
)2/(2−ε)

.

Finally, appealing to previous estimates we have

A′′1 ≤

∣∣∣∣∫ F(x)ϕ2(x)
∫

B(x,8/3)c

u(y) − u(x)
|x − y|n+2α dy dx

∣∣∣∣
+

∣∣∣∣∫ F(x)ϕ2(x)u(x)
∫

B(x,8/3)c

1
|x − y|n+2α dy dx

∣∣∣∣
.

∣∣∣∣∫
Rn

F(x)ϕ2(x)w(x) dx
∣∣∣∣ +

∣∣∣∣∫
2B

F(x)u(x) dx
∣∣∣∣

.

∫
2B
|F|2 +

(
∞∑

k=0

2−kγ|(−∆)αu|2−ε
)2/(2−ε)

.

Combining our estimates for I, II and III we have proved the claim (by choice of
η̃ = cη) and hence the lemma. �
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With Lemma 3.2 at hand, we can apply Theorem 2.2 to obtain improvement of
the integrability of (−∆)αu. The first application concerns the case when the right
hand side of the equations exhibits higher local integrability:

Theorem 9.14. Let u ∈ H2α,2 and p > 2. Suppose u is a weak solution to (9.1)
where f ∈ L2∗ ∩ Lp∗

loc and F ∈ L2 ∩ Lp
loc. Then there is ε0 = ε0(λ, n, α, p) > 0 so that

|(−∆)αu| ∈ L2+ε0
loc .

Proof. Let ε and γ as in Lemma 9.3 and put v := |(−∆)αu|2−ε and similarly F̃ :=
|F|2−ε and f̃ := | f |2−ε. In terms of v, F̃, f̃ the conclusion of that lemma reads(?

B(x,r)
v

2
2−ε

) 2−ε
2
.
∞∑

k=0

2−kγ
?

2k B(x,r)
v +

(
∞∑

k=1

2−kγ
?

2k B(x,r)
F̃

2
2−ε

)2−ε
2

+ r2α(2−ε)

(
∞∑

k=0

2−kγ
?

2k B(x,r)
f̃

2∗
2−ε

)2−ε
2∗

,

with implicit constants depending on λ, n and α. Now that the exponent of v on
the right hand side is 1, the claim follows from Theorem 2.2 after checking the
numerology. The parameters in that theorem are

(D, β, q, s) :=
(
n, 2α(2 − ε), 2

2−ε ,
2∗

2−ε

)
,

and so the conditions 0 < s < q, q > 1 and β ≥ D(1/s−1/q) are satisfied. (Note that
in fact D(1/s − 1/q) = 2α(2 − ε) = β and that s < 1). Hence, Theorem 2.2 gives
us local higher for v with exponent larger than q, provided F̃ and f̃ are globally
integrable with exponents q and s and locally integrable to some higher exponents,
respectively. By definition, this precisely means F ∈ L2 ∩ Lp

loc and f ∈ L2∗ ∩ Lp∗
loc

and for some p > 2, which is our assumption. Of course we can write the resulting
estimate again in terms of the original functions: We get for all sufficiently small
ε0 = ε0(λ, n, α, p) > 0,(?

B(x,r)
|(−∆)αu|2+ε0

) 1
2+ε0
.
∞∑

k=0

2−kγ
?

2k B(x,r)
|(−∆)αu|2

+

(
∞∑

k=1

2−kγ
?

2k B(x,r)
|F|2
)1/2

+ r2α

(
∞∑

k=0

2−kγ
?

2k B(x,r)
| f |2∗

)1/2∗

+

(?
2B(x,r)

|F|p
) 1

p

+ r2α
(?

2B(x,r)
| f |p∗

) 1
p∗
. �

A global version follows by replacing Theorem 2.2 by Theorem 5.1.

Theorem 9.15. Suppose u is a weak solution to (9.1) where f ∈ L2∗ ∩ Lp∗ and
F ∈ L2 ∩ Lp for some p > 2. Then there is ε0 = ε0(λ, n, α, p) > 0 so that |(−∆)αu| ∈
L2+ε0 .
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10. Technical estimates

The Sobolev–Poincaré inequality is as follows:

Proposition 10.1. Let B = B(x, r) be a ball and u ∈ H2α,2. If α ∈ (0, 1/2) and
N > 1, then(?

B
|u − uB|

q
)1/q

≤ Cr2α
(?

NB
|(−∆)αu|p

)1/p

+
Cr2α

(N − 1)n+1−2α

∞∑
k=2

N−k(1−2α)
?

Nk B
|(−∆)αu|,

(10.2)

where C = C(n, p, q, α,N) for all 1 ≤ p ≤ 2, 1 ≤ q ≤ p∗ with exception of
p = 1, q = 1∗, The constant C stays bounded as N → 1.

Remark 10.3. In the next section we shall only use Proposition 10.1 with N = 2.
In fact, we will only use this “strong” version of the inequality once and we will
often use the inequality(?

B
|u − uB|

q
)1/q

≤ Cr2α

(
∞∑

k=1

2−k(1−2α)
?

2k B
|(−∆)αu|p

)1/p

,

which follows from (10.2) and Hölder’s inequality.

Proof. We prove the claim for a Schwartz function u and B = B(0, 1). The general
claim follows by scaling and approximation via smooth truncation and convolution.
Let K(x) = |x|−n+2α be the kernel of the Riesz potential I2α. Using the formula
u = cI2α(−∆)αu, see Chapter V in [26], we can write

|u(x) − u(y)| .
∫
|(−∆)αu(z)||K(x − z) − K(y − z)| dz

for all x, y ∈ B. Estimating ∇K and using the mean value theorem for z < NB, we
obtain a uniform bound∫

(NB)c
|(−∆)αu(z)||K(x − z) − K(y − z)| dz

.

(
N

N − 1

)n+1−2α ∫
(NB)c

|(−∆)αu(z)||z|−n−1+2α

.

(
N

N − 1

)n+1−2α ∞∑
k=2

N−(1−2α)k
?

Nk B
|(−∆)αu(z)| dz.

For the rest of the integral, we write∫
NB
|(−∆)αu(z)||K(x−z)−K(y−z)| dz ≤ I2α(1NB|(−∆)αu|)(x)+ I2α(1NB|(−∆)αu|)(y).

Then"
B×B
|u(x) − u(y)|p

∗

dxdy .

(
Nn+1−2α

(N − 1)n+1−2α

∞∑
k=2

N−(1−2α)k
?

Nk B
|(−∆)αu(z)| dz

)p∗
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+

(?
NB
|(−∆)αu(z)|p dz

)p∗/p

,

where we have used the boundedness I2α : Lp → Lp∗ if 1 < p ≤ 2. This proves
the claim for the case q = p∗ and 1 < p ≤ 2. The intermediate cases for q are then
obvious by Hölder’s inequality. Finally, we need to consider p = 1 and 1 ≤ q < 1∗.
Here, we use the boundedness I2α : L1 → L1∗,∞ and that the weak-type space
L1,∞(B) embeds into Lq(B) since B has finite measure. �

We next prove an estimate for the truncated fractional Laplacian.

Proposition 10.4. Let u ∈ H2α,2(Rn) and

ω(x) :=
∫
|y−x|>r

u(y) − u(x)
|x − y|n+2α dy.

Given p ∈ [2, 2∗), there are γ > 0 and ε > 0 only depending on α, n and p such
that (?

B(z,r)
|ω(x)|p dx

)1/p

.

(
∞∑

k=1

2−γk
?

2k B(z,r)
|(−∆)αu|2−ε dx

)1/(2−ε)

for all z ∈ Rn and r > 0.

Proof. Again, it suffices to treat the case B(z, r) = B(0, 1) with u a Schwartz func-
tion. The general result follows by scaling and density as before. For x ∈ Rn, we
set Bx := B(x, 1). Let v̂(ξ) := |ξ|2αu so that v = c(−∆)αu. Then, writing h = y − x,

ω(x) =

∫
Rn

(∫
|h|>1

e2πiξ·h − 1
|ξ|2α|h|n+2α dh

)
e2πiξ·xv̂(ξ) dξ.

We analyze the multiplier

(10.5) m(ξ) :=
∫
|h|>1

e2πiξ·h − 1
|ξ|2α|h|n+2α dh

and need to estimate ω = m̌∗v in Lp(B(0, 1)). Let ψ be a smooth and radial function
with

supp ψ ⊂
{

1
2
≤ |ξ| ≤ 2

}
,
∑
j∈Z

ψ(2− jξ) = 1

whenever ξ , 0, and let m j(ξ) := m(ξ)ψ(2− jξ) be the piece of the multiplier local-
ized near the frequency 2 j. We also put ψ j(ξ) := ψ(2− jξ).

Small frequencies. Now assume |ξ| ≤ 1, that is, consider the pieces for j ≤ −1.
Using polar coordinates, we write

m(ξ) = ωn

∫ ∞
|ξ|

∫
S n−1

e2πiρ ξ
|ξ| ·θ − 1
ρ2α dθ

dρ
ρ
.
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The expression above is radial. Denote θ̃ := ξ
|ξ| · θ. Let m̃(|ξ|) := m(ξ). Differentiat-

ing once, we see

m̃′(r) =

∫
S n−1

e2πirθ̃ − 1
r1+2α dθ =

∫
S n−1

∞∑
j=1

(2πiθ̃) j

j!
r j−1−2α dθ.

By symmetry, ∫
S n−1

θ̃ dθ = 0.

Hence the term with j = 1 is zero, and the lowest power of r in the series is 1− 2α.
Consequently, for r ∈ (0, 1) and K ≥ 1 the K-th derivative is bounded by

|m̃(K)(r)| .K r1−Kr1−2α.

Hence a calculation yields for σ ∈ Nn
0, a multi-index with K = |σ| and |ξ| < 1,

|∂σξ m(ξ)| .K |ξ|
1−K |ξ|1−2α

Take a frequency piece m j with j ≤ −1. Bounding the L∞ norm of m̌ j by the L1

norm of its Fourier transform, we get

|x|K |m̌ j(x)| .
∑
|σ|=K

|xσm̌ j(x)| ≤
∑
|σ|=K

∫
|∂σξ m j(ξ)| dξ . 2 jn · 2 j(1−K+1−2α)

by the support properties of m j. Since 2α < 1, we can set K = n + 1 and sum over
j to obtain

−1∑
j=−∞

|m̌ j(x)| . |x|−(n+1)
−1∑

j=−∞

2 j(1−2α) . |x|−(n+1).

This together with the integrability of
∑−1

j=−∞ m̌ j (by local integrability of m) shows∣∣∣∣ −1∑
j=−∞

m̌ j(x)
∣∣∣∣ . 1

(1 + |x|)n+1

and therefore, by splitting the integral into dyadic annuli, we obtain for almost
x ∈ B a desirable pointwise bound∣∣∣∣( −1∑

j=−∞

m̌ j

)
∗ v(x)

∣∣∣∣ .∑
k=0∞

2−k
?

2k B
|v|.(10.6)

Symbol estimate for large frequencies. To estimate the pieces m j with j ≥ 0, we
write (10.5) with aid of a Bessel function (see Appendix B.4 of [14]) as

m(ξ) =

∫ ∞
|ξ|

2πJ n−2
2

(2πρ)

ρ
n−2

2

dρ
ρ1+2α −

ωn

2α|ξ|2α
.

The part m0(ξ) = ωn/2α|ξ|2α is a constant multiple of the symbol of the Riesz
potential I2α. Denoting ψ−∞ :=

∑−1
j=−∞ ψ j (smooth and compactly supported), we

can decompose

m0
∞∑
j=0

ψ j = m0 − m0ψ−∞.
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On the other hand, since we restrict to large frequencies, we have∫ ∣∣∣∣∂β(m0
∞∑
j=0

ψ j)(ξ)
∣∣∣∣ dξ .|β| ∫

|ξ|≥ 1
2

|ξ|−|β|−2α dξ . 1

for all multi-indices β with |β| ≥ n, which, as in the previous step, implies a bound
by |x|−|β| on the inverse Fourier transform. In total, we have

|k ∗ v| :=
∣∣∣∣F −1(vm0

∞∑
j=0

ψ j)
∣∣∣∣ .K min

(
ψ̌−∞ ∗ I2α(|v|) + I2α(|v|),

∫
|v(y)|
| · −y|K

dy
)

for any K > n. Now, we split v = 1B(0,2)v + 1B(0,2)cv. For p ∈ [2, 2∗), we see that
convolution with ψ̌−∞ is bounded in Lp so that for ε := 2 − p∗ > 0,

∫
B(0,1)

(k ∗ |v|)(x)p dx .
∫

I2α(1B(0,2)|v|)(x)p dx +

(
∞∑

l=1

2−l
?

B(0,2l)
|v| dy

)p

.

(∫
B(0,2)

|v|2−ε dy
)p/(2−ε)

+

(
∞∑

l=1

2−l
?

B(0,2l)
|v| dy

)p

.

(10.7)

Here we have chosen K = n + 1 in our estimate for k ∗ v, used the boundedness
of the Riesz potential from Lp∗ → Lp and broke up the integral in y into dyadic
annuli. This is a desirable estimate for m0∑∞

j=0 ψ j.
It remains to estimate on the level of large frequencies the kernel of the multi-

plier

(10.8) M(ξ) := (m − m0)(ξ) =

∫ ∞
|ξ|

J n−2
2

(ρ)

ρ
n−2

2

dρ
ρ1+2α .

This is a radial function, and we denote by M̃(r) its value at any ξ with |ξ| = r. Let
gν(t) := t−νJν(t) so that the recursion (gν(t))′ = tgν+1(t) holds for ν > −1/2 (item
(1) of Appendix B.2 of [14]). Clearly

M̃′(r) = J n−2
2

(r)r−
n−2

2 −1−2α = g n−2
2

(r)r−1−2α

so that

M̃(l+1)(r) =

l∑
l′=0

(
l
l′

)(
∂l−l′

r g n−2
2

(r)
)(
∂l′

r
1

r1+2α

)
.

The Bessel functions satisfy |Jν(r)| . r−1/2 for r ≥ 1/2 provided ν > −1/2 (Ap-
pendix B.7 of [14]). By this and the recursion formula for g, we see that repeated
differentiation does not alter its decay rate so

|M̃(l+1)(r)| .l r−
n−1

2 −1−2α(10.9)

for r ≥ 1/2 and we can use the same technique as in the previous step to obtain for
j ≥ 0 and M j := Mψ j the bounds

(10.10) |M̌ j(x)| .K
2 jn · 2− j( n−1

2 +1+2α)

|x|K
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for all K ≥ 1. This estimate does not allow for a pointwise bound for the associated
kernel, but it will do for an averaged statement.

Pointwise bound for moderately large frequencies. We decompose v into pieces
supported in annuli in space. Let 1B(0,1) ≤ η1 ≤ 1B(0,4) be smooth and for each k ≥ 2
let ηk be supported in 2k+1B(0, 1) \ 2k−1B(0, 1) and be such that

1 = η1(y) +

∞∑
k=2

ηk(y)

for all y ∈ Rn.
Recall M j := Mψ j for j ≥ 0. We aim at estimating F −1(

∑∞
j=0 M jv). Fix a scale

k ≥ 2 and denote Mk−1
0 :=

∑k−1
j=0 M j. By the symbol estimate (10.10) and support

of ηk, we have for |x| ≤ 1,

|M̌k−1
0 ∗ (vηk)(x)| .

k−1∑
j=0

|M̌ j| ∗ (|v|ηk)(x)

.
k−1∑
j=0

2− j( n−1
2 +1+2α) · 2 jn

∫
ηk(y)|v(y)|
|x − y|K

dy

. 2−k
?

B(0,2k+1)
|v| dy,

since |x − y| ∼ 2k whenever ηk , 0 and choosing K large.

L2 bound for very large frequencies. Finally, for k ≥ 2, denote M∞k :=
∑∞

j=k M j.
By (10.9), where M̃ is the real function corresponding to the radial function M,
and by now common arguments for the spatial derivatives, we see that for any
multi-index β , 0,∫

Rn
|∂βM∞k |

2 dξ .
∫
|ξ|≥2k−1

|ξ|−(n+1+4α) dξ . 2−k(1+4α).

By Plancherel’s formula, we infer∫
Rn
|yβM̌∞k |

2 dy . 2−k(1+4α).

Since p < ∞, there is 1 ≤ q < 2 so that 1 + 1
p = 1

2 + 1
q . Then by Young’s inequality,(∫

B(0,1)
|M̌∞k ∗ (ηkv)|p dy

)1/p

≤

(∫ ∣∣(M̌∞k 1B(0,2k+2)\B(0,2k−2)) ∗ (ηkv)
∣∣p dy

)1/p

≤
∥∥M̌∞k

∥∥
L2(B(0,2k+2)\B(0,2k−2))

∥∥ηkv
∥∥

Lq

.
∥∥|x|n/qM̌∞k

∥∥
L2

∥∥2−nk/qηkv
∥∥

Lq

. 2−
1
2 (1+4α)k

(?
B(0,2k+2)

|v|q dy
)1/q

.
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Conclusion for large frequencies. Summing over k ≥ 2 the results from the pre-
vious two steps, we get the desirable bound for large frequencies∥∥∥∥ ∞∑

j=0

M̌ j∗((1 − η1)v)
∥∥∥∥

Lp(B(0,1))

.
∞∑

k=2

(∫
B(0,1)

(
|M̌k−1

0 ∗ (ηkv)|p + |M̌∞k ∗ (ηkv)|p
)

dy
)1/p

.
∞∑

k=2

2−
1
2 k
(?

B(0,2k+2)
|v|q dy

)1/q

.

It still remains to estimate the piece with k = 1. In this case, we just note that the
symbol from (10.8) is

M(ξ) = c|ξ|−2α · |ξ|−
n−2

2

∫ ∞
0

1{r>1}

rn+2α J n−2
2

(2πr|ξ|)r
n
2 dr,

and the second factor can be regarded as the Fourier transform of the radial function
k1 := 1B(0,1)c |x|−n−2α (cf. [14] Appendix B.5) whereas the first factor is the symbol
of the Riesz potential I2α. Then, using again the smooth and compactly supported
function ψ−∞ =

∑−1
j=−∞ ψ j,∣∣∣∣ ∞∑

j=0

M̌ j ∗ (η1v)(x)
∣∣∣∣ ≤ |k1 ∗ I2α(η1v)(x)| + |(k1 ∗ ψ−∞) ∗ I2α(η1v)(x)|

≤
(
‖k1‖L2 + ‖k1‖L2‖ψ−∞‖L1

)
‖I2α(η1v)‖L2

.

(∫
B(0,4)

|v|2∗ dx
)1/2∗

.

This together with the bounds for the kernels of m with frequencies |ξ| . 1 in (10.6)
and m0 = (m − M) with frequencies |ξ| & 1 in (10.7) completes the proof. �
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